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1. Introduction. An important problem in Fourier analysis is that of in-

vestigating the relationship between the "size" of a function and the "size"

of its Fourier transform. The present paper can be regarded as a contribution

to this problem.

The classical Fourier transformation establishes a one-to-one correspond-

ence between the set L1(R) of all Lebesgue integrable functions^) on the real

line R and certain set of bounded continuous functions on R. This corre-

spondence gives rise to two different metrics on the set L1(R), namely one

given by assigning to each fdL1(R) the usual Z'-norm and the other by

assigning to/the maximum of its Fourier transform F(u) = (2ir)~ll2Jf(x)e~i"'dx.

This last metric coincides (as follows easily from the Plancherel formula) with

the metric obtained by the norm of the convolution operator g—*/*g on the

Hilbert space L2(R).

Even when G is an arbitrary locally compact unimodular group we can

in this way assign two natural topologies to the set L1(G) of Haar integrable

functions. The first is given by the Z'-norm /—>/|/(x)|dx (dx denoting left

invariant Haar measure) and the other by the spectral norm /—>||Z,/|| where

Lf denotes the convolution operator g—>f*g on L2(G). A linear operator on

LX(G) we shall call spectrally continuous if it is continuous from the spectral

norm topology to the topology of the L'-norm.

The purpose of the present paper is to determine the spectrally continuous

operators that commute with all right translations on G. The answer breaks

up into two entirely different cases, namely the compact case and the non-

compact case.

I. G is compact. Here the operators in question are precisely left convolu-

tions by L2-{unctions. (Theorem A). The proof is obtained by a study of

certain lacunary Fourier series on the product group G= JJX U(dx). Here x

runs over all equivalence classes of irreducible unitary representations of G

and dx denotes the degree of x- In a later publication we intend to discuss

more fully lacunary Fourier series on noncommutative groups. In the classical

case when G is the circle group our result yields a slight sharpening of the

following well known theorem of Littlewood: If ^,aneinz is a Fourier series

which remains an L1-series after arbitrary change of the arguments of the Fourier

coefficients (a„) then ^\an\ 2< =o. The case of an abelian group was treated
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(') As usual, functions which differ only on a set of measure 0 are identified.
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by different methods by A. Grothendieck [5] and by the author [6]. I am

much indebted to Dr. Grothendieck for interesting discussions about the

noncommutative case.

II. G is noncompact. Provided G satisfies certain minor restrictions the

only spectrally continuous operator commuting with right translations is 0

(Theorem B). The proof is obtained by using the structure theory of con-

nected locally compact groups to construct certain relative identities in the

group algebra LX(G) and then use the generalized Plancherel theorem to

estimate the spectral norm. Since the Plancherel theorem is based on von

Neumann's reduction theory we assume in this part that G is separable.

If G is abelian the other restrictions on G can be relaxed somewhat as

shown in [6], where spectrally continuous operators are studied for com-

mutative Banach algebras.

2. Notations and definitions. Throughout this paper G denotes a locally

compact unimodular group, and Lp(G) lor l^p^°° the Banach space of

pth power integrable complex valued functions on G, equipped with the

norm ||/||P = (/|/(x)| "dx)llp, ||/||M = ess. sup. |/(x)|. Here dx denotes the Haar

measure on G which will be assumed normalized when G is compact. The term

measure will be used in the sense of Bourbaki [2].

If p is a bounded measure on G we write L„ and R„ for the bounded(2)

operators on LP(G) defined by LJ = p*f and R,J=f*p where (p*f)(x)

= Jf(a~1x)dp(a) and (f*p)(x) =Jf(xa~1)dp(a). If p is a point measure g—>g(a)

we write La and 2?0-i instead of 27M and R„, and if p is absolutely continuous

with respect to Haar measure and has derivative fCL1(G) we write Lf and

Rf instead of L^ and 2?„. Let/* denote the function x—»(/(x-1))- (the bar de-

notes complex conjugate) and p* the measure/—*(p(f*))~. Let furthermore J

denote the involution/—*/*. Then it follows by routine computations that

Lf = JR*J.

Lf acting on L"(G) (p~1+q~1 = l) is the adjoint of 7,„ acting on LP(G),

and similarly interpreted Rf is the adjoint of 2?„. If p = q = 2 it follows easily

that 27„ and 2?„ have the same norm.

Operator norm will in general be denoted by || || and the adjoint of an

operator T by T1*. The domain of the operator will always be clear from the

context since only bounded operators will be considered.

Definition 2.1. Let fCL1(G) and let Ls and Rj be the operators on L2(G)

defined above. The common value of ||T,/|| and ||2?/|| we shall call the spectral

norm of/and denote ||/||»P.

It is well known and easily proved that ||/*g||2^||/||i||g||2 for all gCL2(G)

so that ||/||,p=s||/||i, and consequently the spectral norm topology is weaker

than the usual topology on Ll(G). If G is abelian we denote by 7" the Fourier

transform of/, F(x) =ff(x)(x(x))~dx. For a suitably normalized Haar meas-

(!) See Weil [16, Ch. III].
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ure dx on the dual group G the Plancherel formula /|/(x) 2dx=/| F(x)\ 2dx

is valid. As a simple consequence we derive the relation ||/|,p = maxx | F(x)|

for all/Gi'(G).
Definition 2.2. A linear transformation T on L1(G) is called spectrally

continuous if it is continuous from the spectral norm topology to the L'-topol-

ogy. Equivalently T is spectrally continuous if and only if supn/|],pSi ||2y||i

<°°. Such a transformation is a bounded operator on LY(G) in the usual

sense due to the inequality ||/||rj,=>||/||i.

Throughout this paper G shall denote the set of all equivalence classes of

irreducible unitary representations of G. If x is a member of G we denote by

Ux a member of the class x acting on the dx dimensional Hilbert space 3CX.

If G is compact and for some basis in 3CX, Ux has the matrix form Ux= (wj),

the Schur orthogonality relations together with the Peter-Weyl theorem ex-

press that the system of functions (dx)ll2-u*}, xGG, i, j=l, 2, ■ ■ ■ , dx is a

complete orthonormal system in L2(G). For each integer w>0, U(n) denotes

the compact group of all unitary operators on an w-dimensional Hilbert

space.

For every locally compact space 5 we let C°°(5) denote the set of all

complex valued bounded continuous functions on 5 and 3C(5) the subset ol

QX(S) consisting of all functions vanishing outside some compact subset of

5. The space 6(5) of continuous functions vanishing at infinity on 5 is the

uniform closure of 3C(5) in CM(5).

3. The theorems. We wish to determine all spectrally continuous oper-

ators on LX(G) that commute with the right translations Ra, adG. The answer

is given by the two following theorems.

Theorem A. Let G be a compact group. The spectrally continuous operators

T on LX(G) commuting with right translations on G are precisely the left con-

volution operators T = L/ with fdL2(G).

Furthermore (1/2)"2||/||2:£ || T\\ g||/||2.

Let us look more closely at the case when G is the circle group. HfdL1(G)

and /Yx)~ y^.aneinx is the usual Fourier series representation of/, then as

noted earlier we have ||/||,p = maxn |a„|. Suppose ~^2,aneinx has the property

that for each sequence y = (y„) tending to 0 (that is y = (y„)£e(Z)) the series

~J2ianyneinx is a Fourier series for a function fydL1(G). It is trivial to verify

that the mapping T: y—>fy of Q(Z) into LX(G) is linear and has a closed graph

{iy,fy)\y(=.GiZ)} in the product space Q(Z)XL1(G). Using the closed graph

theorem of Banach we conclude that T is continuous. Hence T is a spectrally

continuous operator on L:(G) which clearly commutes with translations on G

so Theorem A tells us that 221 an| 2< °° • This sharpens the theorem of Little-

wood stated in the introduction, because each y£<3(Z) can be written

y = a+/3 where a and /3 are two sequences (an) and (Bn) for which |an| and

|/3n| are independent of w.



272 SIGURDUR HELGASON [November

Theorem B. Let G be noncompact connected separable unimodular locally

compact group. Then every spectrally continuous operator T on LX(G) that com-

mutes with the right translations on G is 0.

Remark. If G is abelian one of the conditions "connected," "separable"

in Theorem B is unnecessary. Both of them can be dropped if G is assumed

to be connected. These statements are proved in [6].

In the proofs of Theorems A and B we make use of the following simple

lemma which is well known to workers in the field (3).

Lemma 3.1. The bounded operators on Ll(G) that commute with the right

translations on G are precisely the operators 7,„ where p is a bounded measure.

Proof. Let T be an operator on G with the stated property. Since TRa

= RaT, a CG we see from §2 that Ra-iT* = T*Ra-i lor allaGG. T* is a bounded

operator on L"(G) and from the fact that T* commutes with right transla-

tions it follows easily that if/ is continuous and has compact support then

T*f is continuous (even uniformly continuous). The functional f—*(T*f)(e)

is clearly continuous in the uniform topology on X(G). Hence there exists a

bounded measure v on G such that

(T*f)(e) =   f f(x)dv(x).
J a

Since T* commutes with right translations on G it follows that T* = L,>

where v'(E) =v(E~l) lor each Borel set E. Hence 7" = LM with p= (*»')*• On

the other hand it was mentioned in §2 that every 7,M has the properties stated

in the lemma.

4. The compact case. Proof of Theorem A.

We shall use the Peter-Weyl theory on G. Let / be an arbitrary function

in L1(G). For each irreducible unitary representation Ux of G on the dx-

dimensional Hilbert space 3CX we define the endomorphism Ax by Ax

= ff(x)Ux(x~l)dx (the Fourier coefficient corresponding to Ux) and to / we

associate the Fourier series

/(*) ~ E dx Tr (AxUx(x)) (Tr = Trace)
xEa

/is uniquely determined by this Fourier expansion. The Peter-Weyl theorem

says that

f |/(x)|2<*x= 2ZjxTr(AxA*).
J a xGo

(3) Added in proof. After this was written I have in fact found a proof of this lemma in

H. W. Wendel's paper, Left centralizers and isomorphisms of group algebras, Pacific J. Math,

vol. 2 (1952) pp. 251-261. The proof above is somewhat simpler.
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Here the finiteness of one side implies finiteness of the other.

If gCL2(G) it is trivial to verify the inequality ||/*g|[2 = maxx ||.4X|| -||g||2

which shows that ||/j|8pgmaxx ||.4X||. We have written here max instead of sup

which is legitimate, since the function ||j4x|| vanishes at infinity on the dis-

crete space G. Furthermore we have the relation

(4.1) H/IU = max \\AX\\.
xEc

Indeed, let ||.<4X|| reach its maximum for x=<p. Then we have clearly for each

endomorphism Bt on 3C*

(ll/IU)2 = Tr [AiAfBtB?] [Tr (B^)\~\

We choose a basis in 3C# for which A+A* is represented by a diagonal matrix

and then choose B$ with matrix representation having all entities 0 except at

the place in the diagonal where the largest eigenvalue of A+A* occurs. The

relation (4.1) follows immediately.

If fCL2(G) and g has Fourier coefficients Bx we have evidently

\\f*i.\\i = \\f*g\U
^ max ||5X|| ||/||2.

Hence Lf is spectrally continuous and the right inequality in Theorem A

follows.

To prove the converse (and the nontrivial) part of Theorem A we assume

that T is a spectrally continuous operator on Ll(G) commuting with the right

translations Ra, aCG. By Lemma 3.1 we have

Tg = p*g for all g C L\G),

where p is a bounded measure. To p we assign the Fourier-Stieltjes series

(4.2) p(x) ~ 2Zjx Tr (AxUx(x)).
xE o

This formalism merely expresses that for each xGG.

Ax = J   Ux(x~1)dp(x),

where Ux is an irreducible unitary representation from the class x- We remark

that the series above in general has more than countably many nonvanishing

terms. Furthermore we note that the measure p is uniquely determined by

its Fourier-Stieltjes series, because if all ^4X = 0 then for each fCL 1(G), f*p

has a vanishing Fourier series, hence/*M = 0 for a\\fCLx(G) and p = 0.

Now let xi. Xi, ' ' ' . X.v be an arbitrary finite subset of G and U\, U2, • • •

Un corresponding representations of G. Then, using (4.1) we get
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c \ N
\\t\\ =   sup   |[/i*g[|i^      sup       I     Z dn Tr(A„VnUn(x)) dx

w.psi v„eu(ij jG\ i

(4.3) ^   f dV f\ Z dn Tr (^lnFnc7n(x)) dx

=  f dx f I Z dn Tr (^„F„/7„(x)) dV.
'' a    J U(d1)x---xu(d!f) I   i

Here dV stands for the product measure dVxdV2, ■ ■ • , dVx, dVn being the

normalized Haar measure on U(dn). Now, for all x£G, (7„(x) belongs to

U(dn) and due to the invariance of dV we have

f dx f Z dn Tr (^nF„c7„(x)) dV
, .    .-. ° U(d0X---XU(dN)       1

=  f Z ^ Tr U„Fn) dV.
J Ut.d0X---XU(dN)      1

We put F(Vi, V2, • • • , VN)= YX dnTr (AnVn) and intend to evaluate the

integrals /| F| 2dV and /| F\ 4dV. The function F is a continuous function on

U(dx) X • • ■ X U(dN) and is easily seen to have the Fourier series

N

F(VX, ■ ■ ■ , Vs) ~ Z <*» Tr UnF„)
i

and by the Schur-Peter-Weyl theorem

/. N t NZ dn Tr (^,7.)   dV = Z dn Tr (^^ *).

For the other integral we need the following

Lemma 4.1. Let A be an arbitrary nXn complex matrix (w^2). Then

f       | Tr(^F) |W= -{[Tr (AA*)]2-Tr (AA*AA*)\.
J U(n) n2 — 1 { n )

Proof. We begin by writing A =P0X where P is positive definite and Oi

is unitary and then B = 02P02x where B is a diagonal matrix, Ot is unitary.

Clearly Tr(AA *) = Tr(BB*) and since d V is left and right invariant it suffices

to prove the lemma when A is a diagonal matrix. Assuming this being the

case and letting ei, e2, • • • , e„ be the corresponding basis for the Hilbert

space on which A and V act, we have

/\Tr(AV)\*dV =    Z   aadjjakkau j       VuVjjVkkVudV
r/(n) i.i.k.l Ju(n)
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where a,-,-= (Ad, ei) and Vu= (Ve{, ei) (inner product). The terms in the sum

above fall into three classes, namely, I: All indices i, j, k, I, are the same,

II: The indices i,j, k, I, form two pairs and III: Among the indices i,j, k, I,

at least one is different from the others.

The terms of the type III give no contribution to the integral

/| Tr(.4 V) | *d V; in fact let us for example consider the term auaiianduViiViiViiVu.

We denote by Ui(n — 1) the subgroup { TC U(n) \ Tei = ei} and by C7i,2(ra — 2)

the subgroup {SCUi(n —1)| Se2 = e2}. Furthermore let ]£„ denote the unit

sphere in a complex «-dimensional Hilbert space; then the space U(n)/Ui(n — 1)

of left cosets V =VUi(n — l) can be identified with ^„ and the space

Ui(n-l)/Ui,i(n-2) of left cosets T=TUi,2(n-2) can be identified with

2„_i. From the integration theory on coset spaces we have (denoting by

dV and df the unique normalized measures on 2» ar>d X]«-i invariant under

the action of U(n) and Ui(n — 1) respectively)

/VuVnVuVudV =  I       (Vei, ei) \ (Vei, e2) |2(e4, Vet)dV

=  f d? f (VTeh ei) | (VTe2, e2) |2(e4, VTei)dT
J z»     *'r/i(»-D

=  f dV f    df f (VTSd, ei) | (VTSe2, e2) |2(e4, VTSei)dS
J S„ «'2„_i -,U1|2(n-2)

which vanishes since

f ((VT)-lei, Sei)dS = 0

due to the orthogonality relations for the canonical representation J: S-+S of

Ui,2(n-2).

Since terms of type III give no contribution, we obtain

f      | Tr (AV) |W =  J2 I «»|4  f      | vu\*dV
J t/(n) 1 J Uln)

+ 2E I <m |21 o„ |2 f     |»«|f|»„|W
(4.6) ,-*, J mn)

v   2   2    C -2
+  2-, aiidii   I VuVjjdV,

i*! J U{n)

and it suffices to compute the integrals

/|»u|W, |»u|  [fl22|aT    and      |      vnvMdV.
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Using the previous notation we have

f      | v 111W =   f      | (Fei, e,) | W =  f dV f \ (VTex, ex) |4dT
,a    ^     *^U(n) •'{/(n) ^Zn        J £/l(n-l>

(4.7)

=  f   | (Fe„ ei) | W =  f \zx | W.
•^2™ ^ l*ll*+---+l*»l*-l

Let now jx, kx, •■ ■ , j„, kn be a basis for a 2w-dimensional euclidean vector

space. The mapping

" "     1 1
Z «p©p —* Z ~ («p + 5p)/p-i(ap — ap)kp
i i    2 2

is an isometric mapping of the w-dimensional Hilbert space onto the 2w-

dimensional real euclidean space. Z» is mapped onto the real (2w —1)-

dimensional sphere 52"-1 and the measure dV on Z» is transformed into the

unique normalized measure dw on 52n_l which is invariant under the orthog-

onal group 0(2w).

Now we clearly have

/| 2i |4dF =  I 2 2    (xi + x2) du = 2 I        Xidco + 2 j XiX2dco

and if 12(5"') denotes the euclidean surface area of the real wi-dimensional unit

sphere we get

/4                         1 C       * tn—t t n—1 2 —1/2
Xxda}   =  -   I      XXQ(S )(1   —   Xi)        (1   —  Xi) dxx

Sfr-i Q(S2n~1)J-X

and using the formula
2T(m+l)/2

a(Sm) =-■
r((« + i)/2)

the integral reduces to

r        4 2(t2"-1)1'2      r(»)      T(5/2)r(w - 1/2)    _ 3

J^n-i *l     ~ T(n- l/2)'2(7r2n)"2'        T(w + 2) " 4w(« + 1)

Observing that Js2"-1(x2+ ■ ■ ■ +x\n)2du = l one finds that

/XiX2dco = -
g2»-i                      4«(w + 1)

and therefore

(4.8) f      |»u|W« ■
•/f/CB) »(»    +     L)



1957] TOPOLOGIES OF GROUP ALGEBRAS 277

Using the notation introduced above we have

f      \vn\2\v22\2dV =  f      | Vei, ei)\2\ (Ve2, e2) |W

=   f dV f | (VTei, ei) \21 (VTe2, e2) \2dT

=  f dV f     dT f | (F7^ei, ei) |2| (FTSej, ei) |W

=   f   | (Vei, ei) \2dV f      \ (Te2, V^ei) \2dT.

If we write

Vei = wid + • • • + w„en,

F_1e2 = biei + • • • + 6ne„,

7e2 = 0 • ei + z2e2 + • • • + zne„

(since (7e2, ei) = (e2, 7-1ei) = (e2, ei) = 0

we obtain

r i»ni2if22|w = r        i wii^f
•^ I/(n) J I wi|2+ ■••+!«»» I2=l

/| 5222 +  • ■ •  + 0»ZB|2oT
Usl!+--.+ l*«l2=l

= (»-1)-- r        i wii2(|j2i2+ •.. + i6ni2)^f
J   |„.1|2+...+ |„,j2=1

= (n - l)-1 f   | wi|2(l -  | w2|2)aT

since    |62|2+ • • • + | bn\ 2= 1 - | 6i| 2= 1 - | (F'WO 12 = 1 - | (e,, Vei) \2 =1
— | w2|2. On the other hand

n(n — 1)  I     | vo 1121 w2 \2dV =   \    ( | wt |2 + • • • +  | wn \2)2dV — n \    \w\ \4dV
"* 2„ J 2„ J Sn

2
= 1 — n-

n(n + 1)

by (4.7) and (4.8). Hence

(4.9) I        |zi„|2|»22|W =-
J uw (n - !)(»+ 1)
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Finally we have by the same arguments

f     vxxv2\dV =   f     (Fei, ei)2(e2, VerfdV
J t/(n) J U(n)

=   f w\dV j (et, VTetfdT

=    f   w\dV   f       (b2Z2 +  • • •  + bnZn^df

= 0.

For later use we remark that the same methods yield the relations

(4.10) I       vuVjjdV = 0 for i, j, arbitrary.
J uw

On substituting the found results in (4.6), Lemma 4.1 follows immediately.

The lemma has the following well known

Corollary. Let J denote the canonical representation U—+U of U(n). If

w^2 the tensor product J® J decomposes into two irreducible components neither

of which is the identity representation.

Proof. Denoting the character of a representation T by xt we have

Xj®j = XJ'Xj so the lemma gives the relation

f      I xjMV) |W = 2
J t/(n)

which implies the first statement of the corollary. Furthermore, the number

of times the identity representation occurs in J® J is

f     XJ®AV)dV=  C     {XJ(V)}2dV = 0
" U(n) J [/(»)

by (4.10).
This decomposition oiJ®J corresponds to the decomposition of a co-

variant tensor of second order into a symmetric and a skew-symmetric part.

We can now estimate

f |f(Fi, ■••, vn)\hv
^ U(.dx)X-- -xc/Kv)

where F(VU ■ ■ ■ , F.v) = Z^ dn Tr(^4„Fn). We expand the fourth power and

note that terms of the type | Tr(/4i Fi) |2 Tr(^42 V2) Tr(Z4 Vi) give no contribu-

tion to the integral over U(dx) X • • • X U(dN) due to the orthogonality rela-

tions. Therefore
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/at N     i   CZ d„ Tr (AnVn) | W = Z ^ I       | Tr (AnVn) | W„
U(d,)X---XU(d„)       1 1 J [/(n)

+ 2 Z f       | rfi Tr (4.F,-) \2dVi f       | d, Tr (AjVj) \*dVt

+ Z f       {d{ Tr (.4 ,F.)} W< f       {d, Tr (J,F,)} W,-.
iytjJ U{di) J V(dj)

The first sum on the right side we estimate by Lemma 4.1. The second sum

can be directly evaluated by means of the orthogonality relations and the

last sum vanishes due to the corollary. It is an elementary exercise to show

that

2»2/(«2 - 1){ [Tr (AA*)]2 - (1/w) Tr (AA*AA*)\ :g 2[Tr (AA*)]2

so we finally obtain

/. N 4

/ Z^«Tr(^„F„)   dV
tA    a.\ U(dx)x---XU(dl/)      1

(4-U) s
g 2 Z dl[Tr (AnA*)]* + 2 Z did,- Tr (AiAf) Tr (A^f)

1 iVi

and using (4.5)

(4.12) J |F(Fl( • • • , Vs) |W£ 2|" J |F(Fi, ...J,) |2dvl .

By Holders inequality we have

§ \F(Vi,--,VN)\dv\

^ [ / I FiVi, ■ ■ ■ , VN) I wj     J I F(Vi, ■ ■ • , VN) |2dV~|

and using (4.3), (4.4), (4.5) and (4.12) we finally obtain

(4.13) —ZdBTr(^n^n*) ^||r||2.
2 1

The coefficients Ai, ■ ■ • , An were chosen arbitrarily from the Fourier-

Stieltjes series (4.2), and the relation (4.13) shows that this series is indeed a

Fourier series for a function fdL2(G). Since a measure is uniquely determined

by its Fourier-Stieltjes series, the measure p is absolutely continuous and has

derivative / with respect to Haar measure. Hence 7g=p*g=f*g. Further-

more (4.13) shows that (l/2)1/2||/||2^||r|| and Theorem A is then completely

proved.
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5. The noncompact case. Estimate of the spectral norm. We proceed to

prove Theorem B, so let T be a spectrally continuous operator on LX(G)

which commutes with all the right translations Ra, aCG. From Lemma 3.1

we know that T is of the form

Tg = p*g

and since T is spectrany continuous there exists a constant M>0 such that

(5.1) ||p*g||i ^ M\\g\\sp for all g C V(G).

We wish to show that p = 0 and for this purpose we can assume p absolutely

continuous with respect to Haar measure. In fact (5.1) implies

\\f*p*g\\i£ M\\f\\i\\g\\ep for all /, g C L\G)

andf*pCL1(G). Furthermore, if f*p = 0 for all fCLl(G) then p = 0.
Assuming now p absolutely continuous, let h be the derivative of p. To

show that the relation

(5.2) ||**«||i= M\\g\\.p for all g G U(G)

implies h = 0, we use the generalized Plancherel formula due to Segal and

Mautner [14; 15] and [8]. This formula can be described as follows.

Let G be a separable unimodular group and put K = L2(G). We consider

the operators Lf and Rf on 3C for all/G7'(G). Let £ and (R denote the weak

closures (in the set of all bounded operators on 3C) of the sets {Lf\fCL*(G)}

and {Rf\fCLi(G)} respectively. Then £C\6{ is the center of each algebra

£ and (R (Segal [13], Godement [4]). If T denotes the maximal ideal space

of the commutative Banach algebra £f^\ (R, there exists a measure p on T

such that 3C, £ and (R can be written as a direct integral(4) with respect to the

center £H(R:

JC =   I  5Cydp(y),

(5.3)

£ =   I  £,dp(y), (R =   I  (Rydp(y)

where for each yGT, £y and (Ry are rings of operators acting on the Hilbert

space 3CY.

For almost all yGT there is a two sided(6) irreducible unitary representa-

tion {Ly, Ry} on X such that for fCLx(G) the decomposition of 27/ and Rf

according to (5.3) is given by

(4) For the definition and further details, see von Neumann [12], Segal [15] and Godement

[4].
(5) For this notion see Godement [3] and Segal [15].
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Lj =   I Fydp(y)    where    Fy =   I  Ly(x)f(x)dx;

Rf =  \ F*>dp(y)   where   F? =   \  Ry(x)f(x)dx.

For these (almost all) y, £y and (R7 are the weakly closed algebras generated

by Ly(x), xdG and Ry(x), xdG respectively, and are therefore (due to the

irreducibility of {Ly, Ry}) factors. We denote the relative dimension function

in the factor £7 by dim7 and the corresponding relative trace by Tr7. Further-

more we put rank7(^4) =dim7 (Range A).

As usual we refer to the mapping 7—>Fy as the Fourier transform of/. The

Plancherel formula asserts the existence of a strictly positive p-measurable

function a(y) on T such that

(5.4)        f \ f(x) \2dx =  f Try(FyF*)a(y)dp(y)      for each / £ L\G) C\ L2(G).

Lemma 5.1. If fdL1(G)r\L2(G) and Fy is the Fourier transform of f, we
have the inequality

11/11 sp = ess. sup ||F7||.

Proof. From the definition of the spectral norm it is clear that

II/II.P = sup        \\f*g\\t
oET>. Ilfllj^l

where 3D is an arbitrary dense subspace of L2(G). For J) we shall choose the

set of all finite sums Za»/» where a, are complex numbers, and /,• are func-

tions in L2(G) such that /,-=/f and/, */,=/,. As shown by Ambrose [l], 3) is

indeed dense in L2(G). Now let g= Za«/iG© and denote by Gy and F\ the
correspondv/ig Fourier transforms. F\ is a projection almost everywhere so

TrT(F7)=dim7(F7) and

j I fi(x) \2dx = f dimy(Fy)a(y)dp(y).

Since a(y)>0, F'y is for almost all y of finite y-rank and the same holds for

Gy and GyG*. Using simple formal properties of the relative trace (see von

Neumann [ll, Theorems I and II]) we obtain

J \f*g(x) \2dx = £ Tr7[F7G7(F7G7)*]a(y)dM(7)

^ J^j|F7*F7|| Tr(G7G7*)a(y)dM(T) ^ ess. sup7||F7||2 f \ g(x) \2dx
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which proves the lemma.

6. Completion of the proof. To prove Theorem B or that h in (5.2) must

be 0 we first assume that h is continuous and has compact support. Making

use of the connectedness of G we then construct a sufficiently large class 9)?

of approximate identities in LX(G) relative to h, that is functions gCL*(G)

for which ||A*g||i is approximately equal to ||A||i||g||i and such that

supoean ||g||i/||g||»j>= °°. The inequality (5.2) will then show that h = 0. Fi-

nally, the restriction that h should belong to the class X(G) is removed by

means of a suitable approximation argument.

Now assuming hC3Z(G) and hj^O we choose e such that 0<e<||fc||i and

a continuous function u(x) vanishing outside a compact neighborhood of e

such that

(6.1) ||A*m — /t||i < e    and    ||«||i = 1.

Let K be a compact subset of G outside which all the functions h, u and h * u

vanish. From a structure theorem of Iwasawa and Yamabe about connected

locally compact groups (see e.g. Montgomery and Zippin [10, pp. 188-189])

it is easily deduced that there exists an element dCG such that the sets

Kd", n=0, +1, ±2, • • • are all pairwise disjoint. Let g be an arbitrary

finite linear combination of the ^"-translates of u, i.e. g(x) = Y,anu(xd").

Then h*g= 2~2a„Rdn(h*u), and due to the construction of d we have

(6-2) ||g||i = X) | On |     and    P*g||i = 53 I ff» I ll**Ml|i

and in view of (6.1) it follows that ||&*g||i = ||g||i||A||i + (e)||g||i where |(e)| <e.

From (5.2) we conclude that

(6.3) ||g||i ^ 2V||g||.„ where N is a constant

for all g of the form g(x) = Yanu(xd"). Now let Gy be the Fourier transform

of g(x), Gy = foLy(x)g(x)dx. We find immediately that Gy= Uy[Ya„Ly(d-")]

where Uy is the Fourier transform of «(x). Since || Uy\\ i 1 we get from Lemma

5.1 and (6.3)

(6.4) 23  | a.|   g ATess. sup||X;on[7T(d)H|gsup||£anf/«||
7er u

the supremum on the right being taken over all unitary operators on the

spaces 3Cy, yCT. By the spectral theorem there exists a spectral measure E

on the real line such that U = feudE(t). Then it follows easily that

||E  an£/n||   =SUP   I   Z  One''"'!

and from (6.4) we get

Y, |o„|   ^ N sup | £one<n'|

for arbitrary finitely many coefficients an. This inequality however, is impos-
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sible since there exist continuous functions with Fourier series that are not

absolutely convergent. This contradiction shows that A = 0.

We shall now free us of the restriction that h has compact support. Let

h satisfy (5.2) and hdL1(G), ||/s||i5^0. Let e be a positive number less than

|| A||i/4, k a continuous function on G of compact support satisfying |[& — &||i <«.

As before we can determine a function w(x) and an element ddG such that

all functions g of the form g(x) = Ya»uix^n) satisfy ||^*f||i = ||^||i||g||i

+ (e)||g||i. Hence

P||i|k||i - <|k||i ̂ P*£||i = ||(* - h)*g\\i + \\h*g\\i g t\\g[\1 + M\\g\\.p.
But this gives an inequality

11*11 i ^ R\\g\\>P for all g(x) = Z«n«(xd»),

and the same contradiction as before ensues.
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