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0. Introduction. The purpose of this paper is to study the spectral theory

of a closed linear transformation T on a reflexive Banach space 5. This will

be done by means of certain vector-valued measures which are related to the

transformation. (A set function m from the Borel sets of the complex plane

to 5 will be called a vector-valued measure if the series E<" i ™(S,) converges

to m((Ji Si) ior every sequence {5,} of disjoint Borel sets. The relevant prop-

erties of vector-valued measures are briefly derived in §1(2). A vector-valued

measure m will be called a F-measure if Tm(S) =fszdm(z) for all bounded

Borel sets S. The properties of F-measures are studied in §2.

The results of §2 are applied in §3 to a class of transformations which

have been called scalar-type transformations by Dunford [5], and which

we call simply scalar transformations. A scalar operator as defined by Dun-

ford is essentially one which admits a representation of the type t=JzdE(z),

where £ is a spectral measure. Unbounded scalar transformations have been

studied by Taylor [16].
The main result of §3 is Theorem 3.2, in which properties of the closures

of certain sets of scalar transformations are derived. This theorem is actually

a rather general spectral-type theorem, which has applications to several

problems in the theory of linear transformations. As a corollary we obtain a

well-known theorem, which might be called the spectral theorem for sym-

metric transformations, as given in Stone [15]. We also derive as a corollary

the spectral theorem for self-adjoint transformations. Other corollaries of

Theorem 3.2, which apply to results of Bade [2] and Halmos [9] are derived.

In §4 a functional calculus is developed for a class Y of transformations

T for which both F-measures and F*-measures exist in sufficient abundance.

This is a very general functional calculus, so that correspondingly the usual

theorems of functional calculus must be weakened if they are to remain true.

There is a generalization of the concept of a F-measure introduced in §5.

Many theorems proved in §2 have analogues which hold after the generaliza-

tion. The new type of vector-valued measures have much the same relation
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to spectral transformations (generalizations of scalar transformations, de-

fined by Dunford [5]) as T-measures have to scalar transformations.

1. Vector-valued measures. Let AT be a set, © a a-ring of subsets of X,

and m a function from © to a Banach space B with the property that for

every sequence {5,-} of disjoint measurable sets (measurable sets are sets in

©) we have m(U,- S/) = E"=i *»(S,-), where the convergence is convergence in

norm. Such a set function m is called a vector-valued measure. By a theorem

of Orlicz, proved by Pettis [14], unconditional convergence of series E(" i *<

of vectors to a vector x is equivalent to unconditional weak convergence of

the series to x, i.e., convergence of Ei" i (*•> u) to (x> M) f°r each w in B*.

Thus mis a vector-valued measure if and only if (m(U, £,-),«)= ^(7,,(«(5,-), u)

for each disjoint sequence {Si} of measurable sets and each u in B*.

Equivalently, the set function mu defined by mu(S) = (m(S), u) must be a

complex-valued measure for each u in B*.

If m is a vector-valued measure and So any measurable set, then the equa-

tion m(S) =m(SP\So) obviously defines a vector-valued measure m, called

the restriction of m to S0, and m is said to live on So-

We define the norm ]|m|| of a vector-valued measure m to be the sup of

the quantities || E"=i ^i»»(S,-)||, where S\, • • • , S„ is any finite sequence of

disjoint measurable sets and Ai, ■ • • , A„ is a corresponding sequence of com-

plex numbers with | A,-| ̂  1. To show that ||m|| is finite, let u be any vector in

B*. Then it is known that the quantities | yi?,i A,m„(,S.)| defined for the

finite numerical measure mu considered above are bounded. By the uniform

boundedness theorem (see Banach [3]), ||w|| is finite.

It is easily seen that the norm ||m|| makes the set Q ol vector-valued meas-

ures into a normed linear space. Indeed Q is a Banach space, although we do

not give the simple proof because for the special case which will interest us

this is a corollary of a later theorem. A useful fact is that

||m|| = suptt€B*(||»»u||/|M|),

where the measure mu is defined by mu(S) = (m(S), u). This follows easily

from the definition of ||m||.

It is now simple to define what is meant by the integral of a bounded

measurable complex-valued function/with respect to the vector-valued meas-

ure m. We first consider the case of a simple function / (a finite linear com-

bination of characteristic functions of measurable sets), /= E"-i ^fPst, and

define Jf(z)dm(z) = E"-i X,w(5,). The definition is easily seen to be unique.

Letting ||/|[ denote sup \f(z) |, we see immediately that ||//(z)dm(z)|| ^ ||/|| \\m\\,

and in fact that

lff(z)dm(z)
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where the sup is taken over all simple functions. Thus/—*Jf(z)dm(z) is a linear

transformation of norm ||w|| from the set of simple functions to 5, and there-

fore has a unique bounded linear extension to the set of bounded measurable

functions. The value of this extension at / we call ff(z)dm(z), so that the

integral is a linear transformation of norm ||m|| on the set of bounded meas-

urable functions.

Again defining m„ by mu(S) = (m(S), u), we obviously have Jf(z)dmu(z)

= (Jf(z)dm(z), u) for every simple function /. By continuity the equality

holds for all bounded measurable/.

For a bounded measurable function / and a vector-valued measure m,

consider the set function m defined by th(S)=fsf(z)dm(z). Then for every

sequence {5,} of disjoint measurable sets and every w in 5* we have

(m(UiSi), u)=( f     f(z)dm(z), u) =   f     f(z)dmu(z)
\JUiSi / JUtfi

= E / f(z)dmu(z) = E/J" f(z)dm(z), u^

= E im(Si), u),

so that misa vector-valued measure.

If/ is an arbitrary measurable function, write th(S) =fsf(z)dm(z) ior any

measurable set S on which / is bounded, so that as we have just seen m(S)

= E« fn(Si) if {Si} is a sequence of disjoint measurable sets with U< S, = 5

and if / is bounded on S. We say that / is integrable with respect to m if

11 m(S) 11 is less than some constant K for all Borel sets S on which / is bounded.

This implies for each sequence {S,} of disjoint measurable sets on each of

which/is bounded and for each u in 5* that E« (*(•$»)> u) converges, since

a series of complex numbers converges if there is a uniform bound for the

sums of finite subseries. Thus for each measurable set S we may represent 5

as the union of a sequence {S,} of disjoint measurable sets on each of which

/ is bounded, and define a linear functional th(S) on 5* whose value on u is

E*-i imiSi), u)- This linear functional is bounded because | Ef" i (*»(■$,), u)\

gsup„ ||»»(UjB,i S{)\\ \\u\\ SK\\u\\. It is seen by the usual methods that m(S)

is unique, i.e., independent of the choice of the sequence {5,}, and that it

defines a vector-valued measure th with values in B** if 5 is reflexive. For

m(X) we write jf(z)dm(z), the integral of/with respect to m, which we have

defined under the hypothesis that / is integrable with respect to tn. If 5 is

reflexive, then ff(z)dm(z) may be considered to be in 5 itself.

Under the assumption that B is reflexive, that m is a vector-valued meas-

ure, that/ is integrable with respect to m, and that g is integrable with respect

to the vector-valued measure tn defined by th(S)=fsf(z)dm(z), it follows

that fg is integrable with respect to m and that fsf(z)g(z)dm(z) =jsg(z)dm(z).
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This is easily proved for the case of a simple function g and a bounded meas-

urable function /. Then since both sides depend continuously on g in the uni-

form topology, it follows that the equation holds for all bounded measurable

functions/and g. This implies that if/and g are any functions satisfying the

hypothesis, then the equation holds for sets 5 on which both / and g are

bounded. Then it follows easily for all measurable sets S, because both sides

of the equation are countably additive set functions.

In addition to the a-ring © of subsets of X consider a a-ring ©' of subsets

of X' and let A be a measurable function from X to X', that is, a function

such that A_1(5') is in © for each S' in ©'. Then it is easy to see that for any

vector-valued measure m on S the set function m on ©' defined by m(S')

= m(\~1(S')) is a vector-valued measure on ©'. Moreover if/is a simple func-

tion on S', it is easy to check that ff(z)dm(z) =Jf(\(z))dm(z). From this it

can be first proved for bounded measurable functions/and then for any func-

tion / integrable with respect to m that ff(k(z))dm(z) exists and equals

ff(z)dm(z).
We now let X be a locally compact Hausdorff space and let © be the

Baire subsets of X. Let ^SR(X) denote the set of continuous complex-valued

functions on X vanishing at ». The set %fl(X) is a Banach space under the

norm ||/|| defined previously. For each m in Q we define <pm to be the bounded

linear map from 3Jc(X) to B which takes / into ff(z)dm(z), so that ||<6m||

^||m|| and m—xf>m is a bounded linear transformation from Q to the space of

bounded linear transformations from 'Sfl(X) to B.

Conversely for a reflexive Banach space B, which we consider henceforth,

let 0 be a bounded linear transformation from %R(X) to B. We shall show

that <f>=<pm for some m in Q. For each u in B* define <f>u(f) = (<£(/). u) so that

cpu is a bounded linear functional on Tl(X) and \\<p\\ =supu (||<£u||/||w||). By the

Riesz representation theorem for linear functionals there exists for each u in

23* a unique complex-valued measure mu on X such that <£«(/) = ff(z)dmu(z)

for all/in 1Hl(X), which has the property ||wu|| =||$u||. Since mu is unique, it

must depend linearly on u. Therefore for each Borel set S, mu(S) is a linear

function of u. Since B is reflexive, there exists m(S) in B such that mu(S)

= (m(S), u) for all u in B*. The set function m is a vector-valued measure

because mu is a complex-valued measure for each u. Also

/jf(z)dm(z), u\ = J  f(z)dmu(z) = </>„(/) = (<b(f), u)

for all u in B*, so that<£(/) =ff(z)dm(z) lor all/in SDr(X). Thus<p=<pn. More-

over, ||m|| =supu (||w„||/||w||)=supu (||#u||/||w||)=||#||. Thus m-*f>m is a met-

ric isomorphism of Q with the Banach space of operators from <>£(l(X) to B.

In particular, Q is a Banach space and ||w|| =sup/€gj!(X) (||//(z)d?w(z)||/||/||).

In this equation we may even take the sup over those / with compact sup-

port, since they are dense in <3Jl(X).
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Definition 1.1. The weak operator topology of Q is that topology ob-

tained by considering Q as the bounded linear transformations from 2JJ(X) to

B, and then defining the weak topology in the usual fashion.

The unit sphere of Q is compact in this topology.

2. Measures associated with operators. We turn now to the study of a

closed linear transformation T whose domain is a dense subset of the reflexive

Banach space 5 and whose range is a subset of 5. The class of such trans-

formations we call X. It is well known (see, for instance, von Neumann [17])

that each T in X has an adjoint which is a closed linear transformation T*

on 5* with dense domain and that T** = T. This means that (Tx, u) = (x, T*u)

for each x in £)(F) and each u in £)(F*). Thus £*, the set of T* for T in £,

is the set of closed linear transformations on 5* with dense domain.

A vector-valued measure m on the Borel sets @ of the complex plane X

will be called a F-measure if for each bounded Borel set 5 we have m(S) £2)(F)

and Tm(S) =fszdm(z). The vector x = m(X) will be said to have the F-meas-

ure m under these conditions. It is clear that the set of all F-measures is a

linear subset of Q. Later we shall see that this set is closed.

As an illustration, let m be a F-measure and Zobe a point with m({zo})^0.

Then Tm({za}) = /|,o)zdm(z) = z0m({zo}), so that w({z0}) is a characteristic

vector of T. Conversely if m is a vector-valued measure which lives on a

countable set S0, then it is easy to see that if Tm({z}) =zm({z}) for each z

in So then m is a F-measure. Thus the notion of a F-measure is a generaliza-

tion of the notion of a characteristic vector.

As another example, let 5 be a Hilbert space and let T = JzdE(z) be a

normal transformation on B. Select any x in 5 and consider the set function

rnon® defined by m(S) =E(S)x. From the properties of the spectral measure

E it follows that m is a vector-valued measure. Moreover

Tm(S) = TE(S)x =  \ zdE(z)E(S)x =   \ zdE(z)x =   j zdm(z),
J J 8 J S

so that wi is a F-measure. We shall show later that x has no F-measures other

than m.

In the following pages we collect a few simple properties of F-measures

which will be useful later and then prove the fundamental theorems about

F-measures.

Given a F-measure m and a Borel set 50, it is obvious that the restriction

of m to So, i.e., the vector-valued measure m defined by ih(S) = m(Sr\So), is

also a F-measure.

If wx is a F-measure and / a bounded measurable function, and if the

Borel set S is bounded, then fsf(z)dm(z) £ S)(F) and Tfsf(z)dm(z)
= Jszf(z)dm(z). For a simple function /= E?-i X,^, where ipSi is the char-

acteristic function of the set 5,-, this amounts to a quick computation:
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T f f(z)dm(z)
J 8

= E \iT(m(S r\ Si))
i-1

= zZ^i j       zdm(z)
i-i     J snsi

=  I zf(z)dm(z).
J s

For an arbitrary bounded measurable function fit can be proved by approxi-

mating / in the uniform topology by a simple function g and noting that

fsg(z)dm(z) approximates fsf(z)dm(z) and that fszg(z)dm(z) approximates

fszf(z)dm(z), so that by the closure of T the assertion follows. If it is assumed

merely that/is integrable with respect to m, then the above proof holds only

on bounded sets S on which/is bounded. To prove the equality for all bounded

Borel sets S, it is necessary to make use again of the fact that T is closed.

Conversely if the vector-valued measure m has the property that for every

function / in Wl(X) with compact support it is true that ff(z)dm(z) €zT)(T)

and Tff(z)dm(z)=fzf(z)dm(z), then m is a T-measure. To prove this define

a numerical measure mu for each u in B* by mu(S) = (m(S), u). Then for each

u in 35(7"*) we have

j f(z)dmT\(z) = /j f(z)dm(z), T*u\ = (T J f(z)dm(z), u\

= /   I  zf(z)dm(z), uj=\ zf(z)dmu(z).

Since the functions with compact support are dense in 'SR(X) and since the

representation of a linear functional on ^SJt(X) as a measure is unique, we

must have mT\(S) =Jszdmu(z) for all Borel sets 5. For 5 bounded this be-

comes (m(S), T*u) = (fszdm(z), u). Since u is any vector in 35(7"*) this implies

that m(S)(E.T)(T) and Tm(S) =fszdm(z), as was to be proved.

We have seen that m(S) =fsf(z)dm(z) is a vector-valued measure if/ is

integrable with respect to m. On the other hand if m is a T'-measure it was

shown above that wj(S)E2)(T) and Tm(S)=fszf(z)dm(z)=fszdm(z) for all

bounded Borel sets S, so that m is also a T'-measure. In particular, we see

again by taking /to be a characteristic function that the restriction of m to a

Borel set So is a T'-measure.

To note that the concept has suitable invariance properties, let m be a

T-measure which lives on the spectrum a of the operator T. (We shall see
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later that every F-measure has this property.) Let / be analytic on an open

set about a, and let C be a finite collection of simple closed rectifiable curves

lying in the domain of/ and surrounding a. Then the operator/(F) is defined

byf(T) = (l/2iri)Jcf(\)d\/(\- T) (seeHille [10 j). We omit the easy proof that
the vector-valued measure m defined by th(S) =m(f~1(S)) is an/(F)-measure.

For a Hilbert space B it will at times be necessary to state theorems about

F-measures in terms of the Hilbert space adjoint F° and the inner product

in 5 rather than in terms of T* and the bilinear product (x, u). There exists a

unique 1-1 norm-preserving anti-linear map r from 5 onto B* such that

(x, y) = (x, ry) for all x and y in B. li T° denotes the Hilbert space adjoint of

F, then T« = T-1T*t.

li p. is a vector-valued measure with values in B* let p° be the vector-

valued measure with values in 5 defined by n°(S) =t~1h(S*). Then if y. is a

F*-measure, ;u0 is a F°-measure. Conversely, if *t° is a F°-measure then p, is a

F*-measure.

We now prove some of the more fundamental properties of F-measures.

Lemma 2.1. Let Si and S2 be compact disjoint subsets of the complex plane.

Let T be in X, let x\ be an analytic function from S( to B such that xx£ 35(F) for

all X in S( and (F—X)xx = x, a constant. Similarly let u\ be an analytic function

from S2 to B* such that Mx£3)(F*) for X in S2 and (T*—\)u\ = u, a constant.

Then if x\—*0 as | \| —»• °o it follows that (xx, u) = 0.

Proof. Define the function /(X) to be (xx, u) for X in SI and (x, u\) for X

in S2. This definition is consistent since for X in SI C\S2 we have

(x, Mx) = ((T - \)x\, wx) = (x\, (T* - \)u\) = (xx, u).

Since xx is analytic in S{ and Mx in S2 it follows that /(X) is everywhere

analytic and therefore a constant. But/(X)—>0 as X—»» since Xx—>0 as X—><» ,

so that/(X) =0 identically.

Corollary. If in addition to the hypotheses of the theorem T is bounded,

then (x, w) = 0.

Proof. If F is bounded, then xx = (F—X)_1x for |X| >||F|| and lim |XI,* — Xxx

= x. Thus (x, tt) = lim|x|,M — X(xx, w) = 0.

Theorem 2.1. Let T be in X and let m and p. be T and T*-measures respec-

tively which live on Borel sets Si and S2 respectively with Sif~\S2 = 0. Then ml/i,

i.e., (m(U), u(V)) = 0 for all Borel sets Uand V.

Proof. Replacing U by UC\Si and V by VT\S2 if necessary, we may as-

sume that f/C-S'iand VCS2. As a function of the Borel set S, (m(U), p.(SC\V))

is a numerical measure, so to show that (m(U), u(V)) = 0 it is enough to prove

that (m(U), m(F)) = 0 for all compact subsets V of V. Thus we may assume

that  V is compact. Similarly we may assume that  U is compact. Define
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x = m(U), u = p(V), Xa = fu(l/(z — \))dm(z) for A in V, and u\

= Jv(l/(z—\))dp(z) for A in V. Then x\ is analytic on U' and (T—\)x\ = x.

Also u\ is analytic on V and (T*—\)u\ = u. Since x\ vanishes at infinity,

Lemma 2.1 states that (x\, u) = 0. Since lim\\\^.a—\x\ = m(U)=x, this gives

(x, «) = 0 or (m(U), p(V)) = 0, as was to be proved.

To see the significance of this theorem, let m be a T-measure concentrated

at the point Z\, so that m({zi}) is a characteristic vector and Tm({zi})

= z1ot({zi}). Also let p be a T*-measure concentrated at the point Zi^zi, so

that T*p({z2}) =Zip({z2}). Then the theorem says that (m({zi}), p({z2}))

= 0, i.e., that characteristic vectors of T are orthogonal to characteristic vec-

tors of T* which belong to different characteristic values. This is a well-

known and trivial result.

Corollary 1. If mis a T-measure and p a T*-measure, then (m(Si), p(S2))

= 0 for disjoint Borel sets Si and S2.

Proof. Let th be the T-measure defined by m(S) =m(SC\S/), so that m

lives on S\. Let p similarly be defined by p(S) =p(SC\Si), so that p lives on

S2. By Theorem 2.1, mLp, so that (m(Si), p(S2)) = (m(Si), p(Ss)) = 0, as was

to be proved.

Corollary 2. If m is any T-measure and p is a T*-measure for which

p(X)=0 (X is the entire complex plane), then ml.p, i.e., (m(U), p(V)) = 0 for

all Borel sets U and V.

Proof. We have

(m(U), p(V)) = (m(UC\ V), p(V)) + (m(U CW), p(V))

= - (m(Vr\V), p(V')) + (m(Ur\ V), p(V))

= 0

by Corollary 1.

Corollary 3. If the values of T*-measures are dense in B*, then each x in

B has at most one T-measure.

Proof. If x had the two T-measures mi and m2, then m=mi —m2 would be

a nontrivial T-measure with m(X)=0. By the previous corollary (with the

roles of m and p interchanged), for every Borel set 5 the vector m(S) is orthog-

onal to the values of all T*-measures. Thus m(S) =0, which contradicts the

fact that m is nontrivial.

Corollary 4. Letf be a Borel function which is integrable with respect to the

T-measure m and the T*-measure p. Then for each Borel set S,

( f f(z)dm(z), p(S) ̂> = (m(S), j f(z)dp(z)\
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Proof. Let the measure m be defined by m(C) = (m(C), u(S)) and let the

measure p be defined by p(Q = (m(S), p(C)). Then for each Borel set C we

have

m(C) = (m(C), p(S)) = (m(C C\ S) + m(C C\ S'), p(S))

= (m(Cr\S), p(S)) by Corollary 1

= (m(c n s), p(c n s)) = (m(s), p(c r\ s))

= (m(S), p(Q) = p(C),

so that m = p. Thus

(j f(z)dm(z), p(S)^ = j f(z)dth(z) = j f(z)dp(z)

= /m(S), f f(z)dp(z)\

Corollary 5. Let T be the operator on the Hilbert space B which acts on the

complete orthonormal set {x,}," x by Txi = xi+X. Then there are no nontrivial T-

measures.

Proof. In the dual space 5* there exists a complete orthonormal set

{m,-}("i with (xj, Uj) = bn. Also T*Ui = ut-i for i>l and F*Wi = 0. Thus for

each a with \a\ <1 the vector va= Ef" i a<M« 1S a characteristic vector of F*

corresponding to the characteristic value a. This means that the measure

consisting of a point mass va concentrated at the point a is a F*-measure.

Thus if 5£{X: |X| ^1/2} and if |a| < 1/2, Corollary 1 implies that (m(S), va)

= 0 for each F-measure m. Now it is easy to see that the vectors va with

\a\ <l/2 span 5*. Thus m(S)=0. Similarly it can be shown that m(S)=0

if 5C{X: |X| <l/2}. But every Borel set 5 can be written in the form

5 = 5iU52 with 5iC{X: |X| ^1/2} and S2C {X: |X| <1/2J. Thus m(S)
= m(Sx)+m(S2)=0. Hence m(S)=0. Therefore m is trivial, as was to be

proved.

It is easy to see that in case B is a Hilbert space Theorem 2.1 can be stated

as follows: Let F be in X and let m and pt be T- and F°-measures respectively,

which live on Borel sets Si and S2 respectively with Sxr\St = 0. Then mLp,

i.e., (m(U), p(F))=0 for all Borel sets U and V.

Theorem 2.2. If Sx and S2 are compact disjoint sets such that each component

of S{ P\52' contains a point of the resolvent set of T, then for any two T-measures

mx and m2 it is true that mx(Sx) ^m2(S2) unless mx(Sx) =m2(S2) =0.

Proof. Suppose mx(Sx) =m2(S2) =x. Define

xx =   j    -dmx(z) for X in 5/ ,
J st z - X
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C        1
x\ =   I    -dm2(z) for A in 52 .

J s, z — A

To see that this definition is consistent for A in S{ f~\S2', note that it is con-

sistent for A in the resolvent set since in that case there is only one vector x\

with (T—A)xx = x. Then note that the definition must be consistent on each

component of S{ C^\S2 because each component intersects the resolvent set

in an open region. Thus xx is everywhere analytic and xx—>0 as A—><*, so that

X\ is identically zero. This gives x=(T—A)xx=- 0, as desired.

Theorem 2.3. Every T-measure m lives on cr(T).

Proof. Let R\ be the resolvent of T and K the resolvent set. Let 5 be

any compact subset of K, and write x = m(S). Then x\= fs(l/(z—\))dm(z) is

analytic in S' and (T—A)x\ = x. On the other hand R\x is analytic in K and

(T—A)2?xx = x. Moreover, R\x = x\ lor A in Kl^iS'. Thus xx can be extended

to be analytic in the whole complex plane. Thus x\ = 0 since xx—>0 as A—>».

Therefore x = (T —A)xx = 0. Thus the measure m is zero on all compact sub-

sets oi K. It follows that the measure mu defined by mu(S) = (m(S), u) is zero

on compact subsets of K, for all u in B*. By regularity mu is zero on all sub-

sets of K. Hence m is zero on all subsets of K. Thus m lives on o~(T), as was to

be proved.

It is natural to define the basic sets O(T0, M, e) of a topology on X as

follows: let T0 be any member of X, M any finite-dimensional subspace of

3)(T0), and e any positive number; write O(T0, M, e) = {T: MC$>(T),

\\(T— To)x\\ <e||x|| for all x in M}. It is easy to see that the conditions that

these sets be the basic open sets of some topology are satisfied. The resulting

topology is called the strong topology because it agrees with the strong topol-

ogy on the set of operators. Convergence of a directed set { Ta} to T means

convergence of {Tax} to Tx for each x in 3)(T). The strong topology is not

well behaved because for Ti and T2 in 37 with TiCT2 every neighborhood of

Ti will also be a neighborhood of T2.

The next theorem might be called the continuity property of T-measures,

that is, continuity as a function of T. It says that under certain conditions

a T'-measure can be obtained as a limit of T„-measures, if { Ta} is a directed

set such that T*—>T* strongly. It will be the principal tool in the investiga-

tion of §3.

Theorem 2.4. Let T be in X and let { Ta} be a directed set of transformations

in X such that T*—>T* in the strong topology of X*. Let ma be a Ta-measure with

||Wa|| "=c for all a. Let m in Q be a cluster point of the directed set {ma} in the

weak operator topology of Q (such cluster points exist because those measures m

in Q with ||m|| ^c are compact in the weak operator topology). Then m is a T-

measure.

Proof. It will be enough to show that for each / in 'jffl(X) with compact
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support we have //(z)dra(z)£2)(F) and Tff(z)dm(z) =fzf(z)dm(z), or equiv-

alently that

(f f(z)dm(z), T*u\=/j zf(z)dm(z),u\

for all u in X)(T*). Since T*-^T*, there exists for each e>0 an index a0 such

that uEX)(T*) and \\T*u-T*u\\ <e ior all a>a0. Then (Jf(z)dma(z), F^w)

= (Jzf(z)dma(z), u) for a>a0 because ma is a Fa-measure. Since m is a cluster

point of {ma} in the weak operator topology, we can choose a particular

a > a0 such that | (ff(z)dma(z), T*u) - (ff(z)dm(z), T*u)\ <e and

| (Jzf(z)dma(z), u)-(Jzf(z)dm(z), u)\ <e. It follows that

|^ J f(z)dm(z), T*u\-/fzf(z)dm(z), «\|

g |/ j f(z)dm(z), T*u\ - (f f(z)dma(z), T*u\

+ \/ff(z)dma(z), T*u\ - /j f(z)dma(z), T*au\

+   \ I zf(z)dma(z), u)-(j zf(z)dm(z), w\

II r
^ e + «    I   f(z)dma(z)    + t

^ 2, + .| W| ll/H
= 2e + ec\\f\\.

Since e is arbitrary, this gives (ff(z)dm(z), T*u) = (Jzf(z)dm(z), w), as was to

be proved.

Corollary. The set of T-measures m with ||m||^l is closed in the weak

operator topology of Q.

Proof. Call the set in question C. li m is in C then there exists a directed

set {wa} of elements in C converging to m. Define a directed set {Ta} of

elements of I by Ta = F, so that {F*} converges to F* and m„ is a Fa-

measure. By the theorem, m is a F-measure, as was to be proved.

To make Theorem 2.4 useful there must be some way of showing that the

F-measure m is nontrivial. An example of how this can be done may be seen

in Theorem 3.2.
3. Application to scalar transformations. Consider a function E( ) on the

Borel sets of the complex plane whose values are operators on the reflexive

Banach space 5, such that for every disjoint sequence {Si} of Borel sets we
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have E(\J?Li Si) = zZ"-i E(S/) in the strong topology, and such that E(X)
= 1, and such that E(Sir\S2) =£(5i)£(52) for all Si and S2. This function is

called a spectral measure. It is not hard to show (see Dunford [5]) that the

norms ||£(5)|| are uniformly bounded. The reason we use E( ) instead of the

more usual symbol E lor a spectral measure will become apparent.

It follows directly from the definition that for each x in B the set function

E( )x defined by (E( )x)(S)=E(S)x is a vector-valued measure. We define

a transformation T = fzdE(z), which has for its domain the set of all x in B

for which z is integrable with respect to E( )x, by setting Tx = fzdE(z)x. It

is obvious that T is a linear transformation. Dunford calls T a scalar-type

transformation, which we abbreviate to scalar transformation. The domain

of T is dense because E(S)x(E%)(T) for each bounded Borel set 5 and each x

in B. Since the set function E*( ), defined by E*(S) = (E(S))* for each Borel

set S, is also a spectral measure, we may analogously define a transformation

U=fzdE*(z). It is also linear and has dense domain. For x in 35(T) and u in

X)(U) we have

(Tx, u) = (   j  zdE(z)x, u j =   I zd(E(z)x, u)

=   j zd(x,E*(z)u)

so that T has an adjoint and UC.T*. For x in 3)(T) and u in 35(T*) it is true

that (fzdE(z)x, u) = {x, T*u). In particular, for every bounded S, every

u in X)(T*), and every x in B we have (x, fszdE*(z)u) = (JszdE(z)x, u)

= (JzdE(z)E(S)x, u) = (E(S)x, T*u) = (x, E*(S)T*u), so that fszdE*(z)u
= E*(S)T*u. This shows that z is integrable with respect to E*( )u and that

fzdE*(z)u=T*u. Thus u£X)(U) and Uu=T*u. It follows that U=T*. Simi-

larly, T= U*. Hence T and U are closed. Thus T and U are in X and X* re-

spectively and are the adjoints of each other.

In case B is a Hilbert space, it is a theorem of Mackey and Lorch that

every scalar transformation T is similar to a normal transformation, i.e.,

there exists an invertible operator A such that A~lTA is normal. A good place

to read about scalar transformations is in Dunford [5].

Theorem 3.1. A transformation T in X is a scalar transformation if and

only if each x in B has a T-measure and each u in B* has a T*-measure. If T

is a scalar transformation, then each x in B has a unique T-measure. If each

x in B has a unique T-measure, then T is an extension of a scalar transformation,

and if T is bounded it is a scalar operator.
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Proof. If T = fzdE(z) is a scalar transformation and if x is an arbitrary

vector in 5, then for each bounded Borel set S the function z is integrable

with respect to E( )(E(S)x) and the integral is JazdE(z)x. Thus £(S)x£S)(F)

and TE(S)x = fszdE(z)x. It follows that x has the F-measure E( )x. Similarly

every u in 5* has the F*-measure 7£*( )u.

li every x in B has a F-measure and every u in 5* has a F*-measure, then

by Corollary 3 to Theorem 2.1 every x in 5 has a unique F-measure.

If every x in 5 has a unique F-measure mx, then define the transformation

W from 5 to Q by JF^m*. Then since \mx+p.my is a F-measure for Xx+/xy

it follows that m\x+liy=\mx+p.my. Hence IF is a linear transformation. If

x»—>x in 5 and Wxn = mXn—*m in Q, then m is a F-measure by the corollary to

Theorem 2.4. Since mXn(X) —>m(X) we have m(X)=x. Hence Wx — m. Thus

W is closed. By the closed graph theorem W is bounded. For all x in 5 we

ha\e\\mx\\=\\Wx\\^\\w\\\\x\\.
For each x in 5 and each Borel set S define E(S)x = mx(S) = (Wx)(S).

E(S) is an operator because W is an operator. It follows immediately that

£(Ui" i S,) = Ef" i P-iSi) in the strong topology for every disjoint sequence

{Si} of Borel sets. Finally note that the vector E(S)x has a F-measure which

is the restriction of mx to S. Hence E(S)E(S)x = mB(S)x(S) =ms{S)X(X)

= E(S)x. Thus E(S) is an idempotent operator. The set function E( ) is

therefore a spectral measure. If x£5 and 5 is a bounded Borel set, then

£(5)x£!D(F) and TE(S)x=Tmx(S)=fszdmx(z)=JszdE(z)x. It follows from

the closure of F that Fx exists and Tx=fzdE(z)x whenever x£J)(/zd7i(z)),

i.e., whenever JzdE(z)x exists. Thus JzdE(z)QT. Therefore F is an extension

of a scalar transformation.

Now if each x in 5 has a F-measure and each u in 5* a F*-measure, then

by what we have just proved there is some scalar transformation fzdE(z) of

which F is an extension. For the same reasons there is some scalar trans-

formation jzdF(z) of which F* is an extension. Therefore fzdF(z)QT*

<ZfzdE*(z). Thus for each u in 5* the function F( )u is a /zd£*(z)-measure.

Since u has the unique JzdE*(z)-measure E*( )u, it follows that F( )u

= E*( )«. Hence F( )=E*( ). Thus JzdF(z) = T*=fzdE*(z), so that F
= JzdE(z) is a scalar transformation. This proves the first statement of the

theorem. The second statement has already been proved.

It has been shown that F is the extension of a scalar transformation if

every x in B has a unique F-measure. If F is bounded, the scalar transforma-

tion is also bounded, and so must be equal to F. This completes the proof of

the theorem.

If T = JzdE(z) is a scalar transformation, define

HIF|||   =supieB(||£( )x||/||x||).

Then
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|||r|||   =sup /zZ\iE(Si)x,u\   = supj/x, zZ *iE(Si)*u\\ ,

where the sup is taken over all x and u with ||x|| = ||w|| =1 and over all finite

disjoint sequences {Si} of Borel sets and corresponding finite sequences

{A,} with |A,| 3»1. By the uniform boundedness theorem (see Banach [3]),

|||T||| is finite if the above sup is finite for each fixed x. This is the case be-

cause for fixed x the sup is equal to ||fi( )x||. Let Gc be the set of all scalar

transformations T with |||T|||^c. It is easy to see that then |||T*|||gc, so

that G*, the adjoint of the set Gc, consists of all scalar transformations U on

B* with HI I/IH ^e. It will be seen later that the following theorem about Gc

is generalization of the spectral theorem.

Theorem 3.2. Let T be in the closure Gc of Ge in the strong topology. Then

there exists a function E( ) from the Borel sets of X to operators on B such that

(1) for each u in B*, E*( )u is a T*-measure for u and \\E*( )m|| ^c||m|| ;

(2) ifx£X)(T), then Tx = fzdE(z)x;
(3) if T is in the closure of the subset of Gc consisting of those transforma-

tions whose spectrum is in a given closed set C, then E(S) =0 if S is disjoint

from C;
(4) if B is a Hilbert space and c = l, then E(S) is a positive Hermitian oper-

ator and \\Tx\\ = f\z\ 2d(E(z)x, x) for all x in X)(T).

Proof. Since T(EzGc, there exists a directed set {Ta} from Gc converging

to T, and under the assumption of (3) we may choose the transformations Ta

to have their spectra in C. Let Ta = fzdEa(z) so that T*=fzdE*(z). For each

index a and each u in B* consider the T*-measure E*( )u, which depends

linearly on u. The inequality |||T*| ±£c implies \\E*( )u\\ ^c\\u\\. Let Du be

the set of all m in Q with ||m|| ^jc||w . Then Du is compact in the weak oper-

ator topology. Hence the Cartesian product space D = IX«eB* Du is also com-

pact. For each index a, E*( ) can be identified with the point of D whose

coordinate in Du is E*( )u.

Since D is compact the directed set {E*( )} has a cluster point in D

which we call E*( ). The coordinate of E*( ) in Du will be written E*( )u.

The value of E*( )u on the Borel set 5 will be written E*(S)u. The trans-

formation on B which takes u into E*(S)u will be written E*(S).

By Theorem 2.4, E*( )u is a T*-measure for each u in B*. To prove the

equality E*( )(\u+pv)=\E*( )u+pE*( )v, note that we can simultaneously

approximate E*( )(\u+pv) by £*( )(\u+pv),E*( )u by E*( )m, and £*( )v

by E*( )v in the weak operator topology because E*( ) is a cluster point of

the directed set E*( ). Hence the equality in question is a consequence of the

equalities 7i*( )(\u+pv)=\E*( )u+pE*( )v.

Now E*( ) we may consider to be the function on the Borel sets of the

complex plane whose value at S is E*(S). For each Borel set 5, E*(S) is a
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linear operator on 5* because E*( )u is a linear function of u and ||7£*( )«||

^c||m||. Under the assumption of (3) we have <x, Jf(z)dE*(z)u) = d for each

index a, each x in 5, each u in B*, and each/in <3R(X) with compact support

disjoint from C. Passing to the limit we obtain (x, Jf(z)dE*(z)u) =0. Since

this holds for all x and/the measure E*( )u lives on C. Thus E*(S) =0 if 5 is

disjoint from C. Hence E(S) = (E*(S))* = 0 if 5 is disjoint from C.

To show that E*( )u is a F*-measure for «, i.e., that E*(X)u = u, assume

otherwise. Choose x in X)(T) such that (x, u — E*(X)u) 9* 0. Define S,

= {z: \z\ ^r}. Then

||£«( )£.(S,')*|| =  sup     f/(z)d£0(z)£a(5r')x
ll/ll = i II 7

ll r z/(z)
=  sup     I     -dEa(z)x

ll/ll=i II7 s;     2

li  f   /(z) .rnr
=  sup     I     -dEa(z)Tax

!i/n=ili7s;  z

II r
g    sup       I f(z)dEa(z)Tax

11/11 =l/r II 7

= —1|£„( )Fax||
r

c ,.       .,
^ — ||F„x||

r

g-(||rx|| + 1)
r

if a is sufficiently large, say a>a0.

For each positive number r choose a function fr in W(X) with compact

support which is 1 on S, and for which ||/r|| = 1. Since E*( )u is a vector-valued

measure, the vector Jfr(z)dE*(z)u — u converges to E*(X)u — u as r—>°o.

Therefore for each e>0 a number r«>l/e exists for which

(x,   f fTt(z)dE*(z)u - u\ - (x, E*(X)u -«)<«.

Since E*( )u has E*( )u as a cluster point in the weak operator topology, an

index at>ao exists for each e>0 for which

/x,   f fu(z)dE*(z)u - u\ - (x, j fri(z)dE*at(z)u -u\   < e.

We have
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| (x, E*(X)u - u)\   < t + Vx,   j fu(z)dE*(z)u - u\

<2e+ j/x, j fu(z)dE*t(z)u - «\

= 2e + \(f(fr.(*) - DdEa,(z)x,u\

= 2e + \{f(fr.(*) - l)dEa,(z)Eat(STi)x, u^

(since/r<(z) — 1 = 0 for z in Sr/)

^2t + ||«||||/ri(a) - l||||£.,( )Eai(Srl)x\\

^ 2e + —[||Tx|| + 1]||«||
r,

= 2e + ~ [||Tx|| + l]||M||
l/<

^ e[2 + 2c(||Tx|| + 1)||«||].

Since e is arbitrary this gives the contradiction (x, E*(u)—u) = 0. Thus

E*( )u is a T*-measure for u.

For x in 3)(T), w in B*, and each bounded Borel set 5 we have

(Tx, E*(S)u) = (x, T*E*(S)u)= / x,   f zdE*(z)u)

=   I zd(x, E*(z)u) =  I zd(E(z)x, u).
J s ^ s

Since this holds for all bounded Borel sets S, jzd(E(z)x, u) exists and equals

(Tx, u). Since this holds for all u in B* it follows that fzdE(z)x exists and

equals Tx. We have thus proved (1), (2), and (3).

If B is a Hilbert space and c=l, then Ea(S) and E*(S) are idempotents

of norm 1 and therefore projections. Thus for each non-negative function/in

%fl(X) with compact support and each x in B we have

° = (f f(z)dEa(z)x, X) = (J f(z)dEa(z)x, rx\

= (x,   I   f(z)dE*(z)rx\

Passing to the limit this gives
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( j f(z)dE(z)x, x\ = /x, j f(z)dE*(z)rx\ £ 0.

It follows that (E(S)x, x)^0 for all Borel sets 5. Hence E(S) is a positive

Hermitian operator. Since E*( )rx is a F*-measure, the measure mx defined

by

mx(S) = ^^(S^tx = r-1(r£°(5*)r-1)TX = E°(S*)x = E(S*)x

is a F°-measure. Therefore

F° f f(z)dE(z)x = F° f f(z*)dE(z*)x
J s Js'

=   f   zf(z*)dE(z*)x
Js'

=   fz*/(z)d£(z)x
J s

for each bounded Borel set 5 and each bounded measurable function /. Thus

for each x in 3)(F) we have

(Tx, Tx) = I   I zdE(z)x, Tx\ = lim I   I       zdE(z)x, Tx\

= lim [T0f     zdE(z)x, x)

= lim (   j        | z|2d£(z)x, x)

=   f |z|2d(£(z)x, x).

This completes the proof of the theorem.

The double strong topology on X is defined after von Neumann by taking

the open sets in the strong topology of X and the adjoints of the open sets in

the strong topology of X* and letting these form a sub-basis.

Corollary 1. The set Gc is closed in the double strong topology.

Proof. If T is in the closure of Gc in the double strong topology, then by

part (1) of the theorem each u in B* has a F*-measure, since T is in the

closure of Gc in the strong topology. Similarly each x in 5 has a F-measure.

By Theorem 3.1 it follows that F is a scalar transformation. By part (1) of

Theorem 3.2 it follows that |||F*||| ^c, or |||f|||^c. Thus F£GC as was to be

proved.
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Corollary 2. If T is a symmetric transformation on the Hilbert space B

(that is, T(EX and TC.T"), then there exists a set function E( ) (called a gen-

eralized spectral measure) from the Borel sets of the real line to the positive Her-

mitian operators on B such that

(1) for each x in B, E( )x is a T°'-measure for x,

(2) ifxG$)(T), then Tx = JzdE(z)x and ||Tx||2= f|z|2d(£(z)x, x).

Proof. For any finite-dimensional subspace MQX)(T) let P be the projec-

tion whose range is M. Then PTP is a Hermitian operator whose range is

finite-dimensional. By the theory of finite-dimensional matrices this implies

that PTP(E.Gi (see [15]). It is clear that the operators 7"TP form a directed

set if we let PiTPi precede P2TP2 whenever PiP2 = Pi, and that this directed

set converges to T strongly. Thus T£Gi. Hence there exists a set function

E( ) with the properties described in Theorem 3.2. Since for each M the spec-

trum of PTP is included in the real line, E( ) lives on the real line by (3) of

Theorem 3.2. Since 23 is a Hilbert space and c = l, part (4) of Theorem 3.2 is

true. It remains only to prove that E( )x is a T°-measure. This follows from

the fact that E*( )rx is a T*-measure, since the measure p° defined by p"(S)

= t~1E*(S*)tx is therefore a T°-measure and

pa(S) = r-1£*(5*)rx = r-1(T£°(5*)r-1)TX = E°(S*)x = E(S*)x = E(S)x,

since E(S) =E(S*) (because E( ) lives on the real line).

Corollary 3. If H is a self-adjoint transformation on the Hilbert space 23,

then H is a scalar transformation, H = fzdE(z), where the operators E(S) are

projections and E( ) lives on the real line.

Proof. By Corollary 2 there exists a generalized spectral measure E( )

which lives on the real line such that Hx = JzdE(z)x tor x in X)(H) and such

that E( )x is a 77° = 27-measure for each x in B. Thus 27 is a scalar transforma-

tion since every x in B has an 27-measure as well as an 77°-measure (which

implies that every u in 73* has an 77*-measure). By the unicity of 77-measures,

E( ) must be the spectral measure for 77, so that H=fzdE(z). Therefore E(S)

is an idempotent which is positive Hermitian, or a projection. This completes

the proof.

Professor F. Wolf has called the attention of the author to an interesting

result of Bade [2]. Bade considers a directed set { Ta} of operators in Gc such

that T*—*T* strongly for some operator T on 23, much as in Theorem 3.2.

In addition he assumes that there is a closed set C oi complex numbers such

that the spectrum of each Ta lies in C and such that linear combinations of

functions of the type l/(z —z0) with z0 in C" can be used to approximate any

continuous function on C. The conclusion is that T£(jc. This result can be

derived from Theorem 3.2, with the hypothesis that the spectrum of each

Ta lies in C replaced by the weaker hypothesis that the spectrum of T lies

in C. To see this, let T be such an operator in Gc, so that (1) and (2) of Theo-
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rem 3.2 hold for some function E( ). The F*-measure £*( )u lives on C be-

cause it lives on the spectrum of F*. If p is any other F*-measure for «, then

p also lives on C, so that £*( )u— p. is a F*-measure for 0 which lives on C.

For each X in C define xx = /cd(£*( )u— p.)(z)/(z—X), so that (F —X)xx = 0

for all X in C. Since X is in the resolvent set of C this implies that xx = 0 for all

X in C. By the assumptions about C this means that fcf(z)d(E*( )u—p.)(z)

= 0 for every continuous function/(z) on C. Therefore the measure £*( )u— p

is zero. Thus u has the unique F*-measure £*( )u. It follows from Theorem

3.1 that T* is a scalar operator.

The author knows of no way to show directly that Gi includes the set of

normal transformations if 5 is a Hilbert space. Therefore Theorem 3.2 cannot

be used to prove the spectral theorem for normal transformations directly,

but instead the usual proofs based on Corollary 3 may be given. For the rest

of the paper we assume that the spectral theorem for normal transformations

is known.

Halmos [9] has defined an operator F on a Hilbert space 5 to be sub-

normal if there exists an extension 5 of 5 and a normal operator T on 5

which is an extension of F. We define similarly a transformation F in X to

be subnormal if there exists an extension 5'of 5 and a normal transformation

F on 5 which is an extension of F. The following theorem gives a new char-

acterization of the subnormal transformations.

Theorem 3.3. The transformation T is subnormal if and only if F£C7i.

Since Gx is the set of normal transformations, this means that the subnormal

transformations are the strong closure of the set of normal transformations. The

transformation T is subnormal if and only if there exists a generalized spectral

measure E( ) such that

(1) for each u in B, E*( )u is a T*-measure,

(2) Tx = fzdE(z)xfor all x in X)(T),
(3) ||Fx||2 = /|z|2d(£(z)x, x) for all x in £>(F).

Proof. We may assume that 5 is infinite-dimensional since otherwise the

various transformations mentioned in the theorem can easily be shown to be

normal. Let F be subnormal, so that B and T exist. We may assume that 5

has the same dimension as 5, since the least subspace of 5 including 5 and

invariant under F and F* will have this property; and on this subspace F

is normal. For any finite-dimensional subspace M of £)(F), we may therefore

find a unitary map U oi B onto 5 which takes each vector of MVJT(M) onto

itself. Thus U^TU is a normal transformation on 5, which agrees with F

on M. The existence of such a transformation for arbitrary M means that

F£Gi.
If F£Gi, conditions (1), (2), and (3) follow from Theorem 3.2.

If there is a generalized spectral measure E( ) satisfying (1), (2), and (3),

then by a theorem of Neumark [13] there exists an extension 5 of 5 and a
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spectral measure £( ) on 5 such that£( ) =P£( )P, where P is the projec-

tion whose range is 5. Let T = Jzd£(z). Then for x in 35(F), ||Fx||2

= /|z|2d(£(z)x, x)=/|z|2d(P£(z)Px, x) =/|z|2d(£(z)x, x). Since the latter

integral converges, x£3)(F), and so ||Fx|| =|| Fxl|. Moreover

PT(x) = P f zd£(z)x =  j zdP£(z)Px = Tx.

Since ||Fx|| =|| Fx||, we must have Tx=Tx. Thus T is a normal extension of

F, so that F is a subnormal transformation. This completes the proof of the

theorem. See [l] for this type of argument.

Corollary 1. The subnormal operators are the closure of the normal oper-

ators in the strong operator topology.

Proof. It follows from the theorem that the closure of the set of normal

operators is included in the set of subnormal operators. To prove the con-

verse, it is only necessary to repeat the first part of the proof of Theorem 3.3

for operators instead of transformations.

4. Functional calculus. A functional calculus for certain transformations

F in X will be developed. It is clear by induction that if m is a F-measure and

51 is a bounded Borel set then m(S)££)(F") for each positive integer w and

Tnm(S) =fszndm(z). More generally if p(T) is a polynomial in F, then under

the same assumptions m(S)^X)(p(T)) and p(T)m(S)=fsp(z)dm(z). This

gives one hopes of establishing a functional calculus by defining, for a given

Borel function /, f(T)x = y to mean that x = m(S) for some Borel set S over

which/is integrable with respect to some F-measure m and thaty =Jsf(z)dm(z).

There are two requirements which such a definition of/(F) might not ful-

fill. First, there might not be a sufficient number of F-measures, in which

case the domain of/(F) would not be dense. Second, it might turn out that

f(T) so defined is multiple-valued.

Neither of these things can happen, as we shall see, for the following class

r of transformations.

Definition 4.1. The class T consists of those F in X for which the set F

of values of F-measures is dense in 5 and the set F* of values of F*-measures

is dense in 5*.

Lemma 4.1. If F£T, then each x in F has a unique T-measure mx and each

u in F* has a unique T*-measure pu. The sets F and F* are linear, and mx and

uu are linear functions of x and u respectively.

Proof. If x£F there exists a F-measure m and a Borel set 50 such that

x = m(S0). Defining mx by mx(S) =m(Sf~^So), we see that x has the F-measure

mi. Since the values of F*-measures are dense, there is no other F-measure

for x by Corollary 3 of Theorem 2.1. If x has the F-measure mx and y the

F-measure my, then Xix+X2y has the  F-measure \imx+\2my; hence F is
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linear and mz is a linear function of x. The statements about F* are proved

similarly.

We now consider any Borel measurable function / on the complex plane

and any T in T. Let Ff be all those x in F for which / is integrable with re-

spect to mx. Define Ff similarly.

Lemma 4.2. The set Ff is linear and dense in B. The set Ff is linear and

dense in 73*.

Proof. If x and y are in Fj, then / is integrable with respect to mx as well

as my, and so is integrable with respect to m\ix+\1y=\imx+'k2mv. Thus

Aix+A2y£7v, so that Ff is linear. Write Un= {z: \f(z)\ <n}. Then for each

x in F we have x = mx(X) =limn mx(Un). Now mx(Un) has the T-measure m„

defined by mn(S) = mx(Un<^S), which lives on the set Un on which f(z) is

bounded. Thus mz(Un)(E:Ff, so that F is included in the closure of Ff. Since

F is dense, this implies Ff is dense. The statements about Ff* are proved

similarly.

Now consider the transformation /o(T) from F/ to 73 defined by /0(T)x

= Jf(z)dmx(z), where the integral exists because x£T/. This transformation

/o(T) is linear because mx is a linear function of x. Similarly define f0(T*).

Lemma 4.3. We have f0(T*)C(h(T))*.

Proof. For x in Fs and u in Ff we must prove (/0(T)x, u) = (x,fo(T*)u), or

(ff(z)dmx(z), u) = (x, ff(z)dpu(z)). The latter equation however is just Corol-

lary 4 to Theorem 2.1, with S = X.

The lemma tells us that/0(T) has an adjoint with dense domain, since the

domain Ff of/0(T*) is dense. As is proved in [15], the transformation /o(T)

therefore has a closure (/o(T))**.

Definition 4.2. The transformation f(T) is the closure of /o(T), i.e., is

(/•(D)**.
We have now defined a map f(z)—>f(T) from the set of Borel functions on

X to the set X. Some of the usual properties of the functional calculus for

self-adjoint transformations, such as are expounded in [15], [17], or [l],can

be demonstrated.

Theorem 4.1. Let f and g be Borel functions and let T be in T. Then

(1) iff(z)=z,thenf(T)CT;

(2)/(AT)=A/(T);
(3) /(T*)C(/(T))*;
(4) if x(E.Ff and if the measure mx is defined by mz(S)=mx(f~1(S)), then

thx is a f(T)-measure for x;

(5) f(T)eT;
(6) if {Snjr.i ** an increasing sequence of sets with U„ Sn = X, if C is the

set of all x in F for which mx lives on one of the sets S„, and if CC.F/, thenf(T)

is the closure of f(T)\C;
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(7) if f(z) is bounded, then F=Ff;

(8) if (/o g)(z) =f(g(z)), thenf(g(T)) = (/o g)(F);
(9) there exists a dense linear set ?£©(/(F))PiJ)(g(F))nS)((/g)(F))

C^X)((f+g)(T)) for which the closures of the transformations f(T)| 8, g(T)\%,

(f+g)iT)\2, and (/g)(F)|? are respectively f(T), g(T), (f+g)(T), and (fg)(T),

and for which (f+g)(T) j 8 =/(F) 12+g(T) | 8 awd (fg) (T) \ 8 =f(T)g(T) | 8;
(10) if fn(z)—>f(z) as n—>=° for all z, then there exists a dense linear subset

di of B such that the closure of f(T) | 9t is f(T) and such that f„(T)x—>/(F)x as
w—> co for all x in 3t.

Proof. If f(z)=z and x£F/ = £)(/o(7)), then f0(T)x = fzdmx(z) = Tx, as

was shown in §2. Thus/0(F)£F, and since F is closed, /(F) £ F, proving (1).

It is obvious that/(XF) =X/(F).

Since (/(F))* = (/„(F))*** = (/0(F))* and since (/o(F))*D/0(F*), we have

(f(T))*Dfo(T*). Since (/(F))* is closed, this gives (f(T))*Df(T*).
li x£F/ and if 5 is a bounded Borel set, then we saw in §1 that Jszdmx(z)

= jf-\S)f(z)dmx(z). Since /(z) is bounded on f~l(S) it follows that mx(S)

= w-ff-KS)) £ Pf and f(T)mx(S) = f(T)mx(t\S)) = fo(T)mx(f~l(S))
= ff-i(s,f(z)dmx(z) = Jszdmx(z). Thus wer is a/(F)-measure.

We have just seen that each x in Ff has a/(F)-measure. Similarly each u

in F* has a/(F*)-measure, which is at the same time a (/(F))*-measure since

/(F*)£(/(F))*. Since Ff is dense in 5 and F/ is dense in B*, this implies that

/(F)£r.
To prove (6) it is necessary only to show that f0(T) is included in the

closure of/(F)| C, since the closure of/0(F) is/(F). If x£F/ let x„ = mx(Sn).

By hypothesis x„£C. We have x„—>x and/o(F)xn = jsj(z)dmx(z)^>jf(z)dmx(z)

=/0(F)x as w—>°° since x£F/. Thus/0(F) is included in the closure of/(F) | C,

as was to be proved.

If f(z) is bounded, then for each x in F the integral ff(z)dmx(z) exists so

that F=Ff.

To prove that f(g(T)) = (fog)(T), we consider the sequence of sets {S„}

defined by Sn = g~1{z: \f(z)\ ^n}C\{z: \g(z)\ Sn}, which satisfies the hy-

pothesis of (6). Take any x in C, so that there exists an w for which mx lives

on Sn, and define mx by mx(S) =mx(g~l(S)). Then mx is a g(F)-measure for x

by (4). Moreover for any subset S of {z:|/(z)|>w} we have mx(S)

= mx(g~1(S)) =0, since mx lives on Sn and 5n^g~'(^) is void. Thus mx lives

on {z: |/(8)| Sn}. Hence x £ ®(/(g(F))) and /(g(F))x = Jf(z)dmx(z)

= Jf(g(z))dmx(z) = f(fo g)(z)dmx(z) = (fog)(T)x. Therefore, /(g(F)) | C
= ifog)iT)\C = A. It follows from (6) that f(g(T)) as well as (/o g)(T) is the

closure of 4, so that/(g(F)) = (/o g)(T).

To prove (9), let Sn= {z: \f(z)\ Sn and |g(z)| Sn}, so that {Sn} satisfies

the hypothesis of (6). Write ? = C. Then ?££/, ?£F„, ?£F/+9, and ?£F/o.

It follows from (6) that/(F), g(T), (f+g)(T), and (/g)(F) are theclosures

respectively of/(F) | 8, g(F)|8, (/+g)(F)|8, (/g)(F)|8. Moreover, for x in 8
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we have f(T)x + g(T)x = jf(z)dmx(z) + jg(z)dmx(z) = /(/ +g)(z)dmx(z)

= (f + g)(T)x. Choose n for which mx lives on 5„. Define mx by mx(S)

= fsg(z)dmx(z). As was shown in §2, mx is a T-measure. By definition g(T)x

= mx(Sn)=rhx(X), and hence mx is a T-measure for g(T)x. Since/(T) is

bounded on Sn we have g(T)x £ 3)(/(T)) and f(T)g(T)x = f(T)mx(Sn)

= fsJ(z)dmx(z)=fsJ(z)g(z)dmx(z) = (fg)(T)x. Thus (fg)(T)x=f(T)g(T)x lor
x in 8. This completes the proof (9).

To prove (10), define the sequence S„ of (6) by 5„= {z: \f(z)\ Sn and

|/»(z) — /(z)| =1 f°r a'l i = n} and write 9? for C. Clearly 5„ is a monotone

increasing sequence. Also U„5„ = Ar because lim„/„(z) =f(z) pointwise. Any

element x of 3? is in F} because/(z) is bounded on each S„. Thus by (6),/(T)

is the closure of/(T)| 9i. For any x in 9t, rax lives on 5„ for some n, so that

xGFft for i^w. Moreover fi(T)x = fsJi(z)dmx(z) converges to JsJ(z)dmx(z)

=f(T)x as t—>oo by Lebesgue's bounded convergence theorem (which is

easily shown to hold for vector-valued measures). This finishes the proof of

Theorem 4.1.
At several points the calculus just developed falls short of the functional

calculus for self-adjoint transformations. One would like to have equality

instead of inclusion in (1) and (3). It would also be desirable to strengthen

(9), and prove for instance/(T)+g(T)C(/+g)(T), or at least that/(T)+g(T)

and (f+g)(T) agree on their common domain. The author was not able to

decide these questions.

In analogy with the case of a self-adjoint transformation, it might be ex-

pected that/(T) is bounded in case/(z) and T are bounded. That this is not

true can be seen from very simple examples.

We merely state, without giving the somewhat lengthy proof, that an

operator T in T is a scalar operator if and only if f(T) is bounded for every

bounded Borel function /.

5. Weak 7'-measures. For certain operators T there are no nontrivial T-

or T*-measures. For instance, let T be quasi-nilpotent. Then any T-measure

m must be concentrated at the origin. Its value at the origin must be in the

null space of T. Thus there are no nontrivial T- or T*-measures in case the

null spaces of T and T* are trivial. On the other hand it would be desirable

to generalize the notion of T-measure in order to have every measure concen-

trated at the origin be a T-measure when T is quasi-nilpotent.

Before giving the generalization in question, we must prove some pre-

liminary lemmas.

Lemma 5.1. If T is a closed linear transformation on the reflexive Banach

space B, and if m is a vector-valued measure on the set of positive integers with

values in 57 (T), then Tm is a vector-valued measure.

Proof. We first note that if {x.j is a sequence from 2>(T) converging to

x in X(T) for which ;JT.v,j| <K for all i, then Txi—>Tx in the weak topology
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as i—»oo. To see this, note that for all u in 3)(T*) we have (Tx, u) = (x, T*u)

= lim (x,-, T*w) = lim (Tx,-, u). This, together with ||Txj|| <K, implies the re-

sult.

Let C be the range of m, so that CQB. To show that C is closed, let

{m(Si)} be a convergent sequence from C. By passing to a subsequence if

necessary, we may assume that the sequence } 5,- j of sets is convergent to a

set S. Since m is a vector-valued measure, {m(Si)} will then converge to

m(S). Thus C is closed. By the Baire category theorem, there exists a K such

that {m(S)\ || Tot(5)11 <K~} is dense in some C-neighborhood U ol a point

m(So) of C. We may assume that S0 is finite, say «<w0 for all n in .S0. If

xG c7, we may therefore find a sequence {x„} converging to x with ||Tx„|| <K.

Then {Txn}, by the above remark, converges weakly to Tx. Therefore

||Tx||gi:forallxin U.

Since m is a vector-valued measure, an integer ni>n0 can be chosen so that

m(SiUSo)£U whenever Si(Z{n: n>ni}. From this and the above we see

that ||Tot(5)|| SKo for some constant K0 independent of S. It follows that

Ei"i Tm(Si) converges weakly to Tm(Ui Si) lor every disjoint sequence

{Si} of Borel sets. In other words, (Tm)u is a vector-valued measure for each

u. This proves the lemma.

Lemma 5.2. If T is a closed linear transformation on the reflexive Banach

space B and if m is a vector-valued measure with values in 1)(T), then Tm is a

vector-valued measure.

Proof. If {Si} is a disjoint sequence of measurable sets, define the vector-

valued measure p on the positive integers C by p(R) =w(U,e« S/). Then Tp

is a vector-valued measure by Lemma 5.1, so that E"=i Tm(S/)

= Ei* i Tp({i}) = Tp(C) = Tm(\Ji S/), as was to be proved.

If/is a simple function and Tm exists (i.e., Tm(S) exists for all Borel sets

S) we obviously have ff(z)dm(z)£T)(T) and Tff(z)dm(z) =ff(z)d(Tm)(z).
For an arbitrary bounded Borel function / take a sequence {/„} of simple

functions converging uniformly to /. Then ffn(z)dm(z)—>>ff(z)dm(z) and

ffn(z)d(Tm)(z)—>ff(z)d(Tm)(z) as n—»<x>. Since T is closed, this gives

ff(z)dm(z)£X)(T) and Tff(z)dm(z)=ff(z)d(Tm)(z). Thus if we define the
measure m° by m°(S) =fsf(z)dm(z), it follows that Tm° exists and that Tm°

= (Tm)°.

It is clear that if T is an operator, then || Tm|| S || T|| ||m|| .

Definition 5.1. The set Q0 is the set of those v in Q which have compact

support, i.e., those v which live on bounded sets. The transformation 12 from

Qo into Qo is defined by (ilv)(S) =Jszdv(z). A measure v in Q0 is said to be a

slice of a measure m in Q if there exists a bounded Borel set 5o with v(S)

= m(SC\So) for each S; v is called the slice of m lying on S0, i.e., the restric-

tion of m to S0.

It is clear that Q is a linear transformation from Q0 to Q0. If v in Qo lives
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on the set 5= {z: \z\ Sc}, then for each Borel function/with ||/|| ^1 we have

jl f f(z)d(Qp)(z)\  = ll fzf(z)dv(z)    S HtflllMI S c\\v\\.
It*-' II **

Therefore by definition ||fl»»|| ̂ c||v||.

Let v be in Q0 and let/ be integrable with respect to v. Let V be the meas-

ure defined by v(S) =fsf(z)dv(z). Since V lives on the same sets as v, vElQo-

We have

(fiP)(5) =   f zdv(z) =   | zf(z)dv(z) =  f f(z)d(Qv)z = (Qi>)~(S).
J s J s J s

Thus Qv = (Q»)-.

If ra£<2o and Fm exists then taking f(z)=z and taking m° as above we

have seen that Tm° = (Tm)°. This means that TQ,M = Q,Tm, assuming that

Fm exists.

Definition 5.2. A measure m in Q is a weak F-measure if for each slice

v oi m and each positive integer w, Tnv exists and || (T" — Si)"*'!!x/"—>-0 as w—»°o.

The notion of a weak F-measure includes that of a F-measure. It is clear

that any slice of a weak F-measure is a weak F-measure, and that if m£0;o

is a weak F-measure, then Sim is a weak F-measure. More generally let / be

a bounded Borel function and define m° as above. For any slice v of m, v° is

the corresponding slice of m°. Thus ||(F-fi) V||1/" = ||((F-£2)"»')0||1/"

= ||/|| ""II (^~"^)"I'll1/n—*0 as »—><J0, so that m° is also a weak F-measure.

Furthermore, if Tm exists, then each slice of Tm is of the fbrm Tv for some

slice v of m and

||(T - n)"Tv\\1/n S\\(T - 0)"+V||!'» + || 0(F - fi)-v||l'» -» 0
\

as w—* oo so that Fm is a weak F-measure.

As an example consider a weak F-measure m and a point {z0} which has

measure x. Let v be the measure of mass x concentrated at z0, i.e., the slice

of m on {zo}. It is easy to see that

||(T- 0)<v|| =||(F-zoH|,

so that || (F — z0)nx||1/n—>0 as w—>» because »< is a slice of m. Conversely it

follows easily that a measure of mass x concentrated at a point {z0} is a weak

F-measure if ||(F —Zo)"x||""—>0 as w—>». Applied to a quasi-nilpotent oper-

ator F this means that every measure concentrated at the origin is a weak F-

measure. 1

Theorem 5.1. If m is a weak T-measure, then for every bounded Borel set

S there exists an analytic function X\ on S' such that (T—\)x\ = m(S) for each

X in S', defined by xx= - E"=o /s(l/(X-z)"+1)d[(F-fi)»w](z). It has the

property xx—>0 as |x|—»°o awd — Xxx—*m(S) as |X|—»».
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Proof. Since 1/(A—z) considered as a function of z is bounded on 5 for

each A in S', the integral fs(l/(\— z)n+1)d[(T— Q)nm}(z) defines an analytic

function xn on S' and

||xn(A)|| gmax-—-\\\(T - 0)»,|| = —||(T- 12)v||,
zes    (A - z)"+1i r"+1

where r is the distance from \ to S and v is the slice of m lying on S. Since

||(T — i2)nj<||1/"—+0 as w—>o°, the series xx= — E"-o xn(\) converges uniformly

on compact subsets of S' and therefore defines an analytic function on S'.

Obviously Xx—>0 and — Axx—>m(S) as A—>°°. We shall prove that (T —A)

•(— zZn-o xH(\))—>m(S) as N—>oo. Since T is closed, this will show that

(T-\)xx = m(S). We have

(T-\)(-lZ xn(X)) = -zZT f -——-d[(T - a)-m](a)
\     „_0 / „-0     Js (A - z)n+1

*   r (A - z) + z  .
+ E-■—d[(T - Q)fn](z)

n=0Js   (X - z)n+1

= - E f   „     l.d[T(T - G)"m](s) + E f  —^-—rf[(r - «)"»](*)
n_0Js  (A - z)n+1 n-oJs  (X-z)n

+ V f  77—V^ 4"(T - «)"«](*)
n=oJs  (A - z)"+1

= - E f  —"^-T--A(T- QY+1m](z) + IZ(  —^—-d[(T - 0)«»](i)
„_o Js  (A - z)n+1 „-o Js  (X - z)n

=   f dm(z) -   f 1 d[(T- 0)™»](«)
Js Js  (A-z)^1

= m(S) -   f-d[(T - fi)JV+%](z).
Js  (X-«)»+»

Since

II    r 1 r ,        II 1      II
I    -d (T - a)N+1m](z) [I < -   (T - tt)N+h\\ -> 0

I! Js  (X-z)'v+1 l| " r^1 " "

as 2V—»=c , this completes the proof.

This theorem has as some consequences results analogous to results for

T-measures which were demonstrated in §2. The most important of these is

the analog of Theorem 2.1.

Theorem 5.2. If m is a weak T-measure, p a weak T*-measure, and Si and

S2 are disjoint Borel sets, then (m(Si), p(S2)) = 0.
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Proof. Since (m(Si), p(C)) is a numerical measure as a function of C,

(m(Sx), p(S2)) will be zero if (m(5i), p(C)) is zero for all closed bounded sub-

sets C oi S2. Thus we may assume that 52, and similarly Si, is closed and

bounded. By Theorem 5.1 there exists a function xx analytic on Sx and 0 at

infinity such that (F—X)xx = m(5i). Similarly there exists wx analytic on S2

such that (T*—\)u\=p(S2). By Lemma 2.1, (m(5i), p.(S2)) = 0, since —Xxx

—>m(Sx) as X—> *.

Corollary 1. If m is a weak T-measure and p is a weak T*-measure with

p.(X) =0, then (m(Sx), p(S2)) = 0 for all Sx and S2. If those x having weak T-

measures are dense in 5 then each u has at most one weak T*-measure. If f is

integrable with respect to the weak T-measure m and the weak T*-measure u,

then (Jf(z)dm(z), li(X)) = (m(X), jf(z)dp(z)).

Proof. If p(X) =0, then p(Si) = ~n(S2). Therefore

(m(Si), p(S2)) = (m(Sx C\Si), p(S2)) + (m(Sx C\ S2), p(S2))

= (m(Sx nSi), p(S2)) - (m(Sx C\ S2), p(S{))

= 0

by Theorem 5.2.

If m in B* has weak F-measures pi and p2, then (m(X), (pi— p.2)(S)) = 0 for

each weak F-measure m and each Borel set 5, as has just been demonstrated.

Thus under the assumption that a dense set in 5 has weak !F-measures, this

shows that p.x=p2.

To verify that last assertion of the corollary, put x = m(X) and u=p.(X).

Define the measures m„ and ptx by mu(S) = (m(S), u) and px(S) = (x, p.(S)).

Thus
mu(S) = (m(S), u) = (m(S), p(S) + p(S')) = (m(S), p(S))

= (m(S) + m(S'), p(S)) = (x, p(S)) = px(S),

and so mu=px. This gives

/ j f(z)dm(z), p(X)\ = j f(z)dtnu(z) = J f(z)dpx(z)

= (x, j f(z)dp(z)\ = (m(X),  j f(z)dp(z)\

The next two theorems are not proved because the proofs follow exactly

the proofs of Theorems 2.3 and 2.2.

Theorem 5.3. If m is a weak T-measure it lives on the spectrum of T.

Theorem 5.4. Let mx and m2 be weak T-measures and Sx and S2 be closed

disjoint sets such that each component of S{ C\Si contains a point of the resolvent

set of T. Then mx(Sx) = m2(S2) implies that mx(Sx) =m2(S2)=0.
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The exact analog of Theorem 2.4 does not hold. Instead we have the fol-

lowing result.

Theorem 5.5. Let {Ta} be a sequence of operators on B and T an operator

for which T*—*T* strongly. For each a let mabeaweakTtt-measurewith\\ma\\ Sc.

Let m be a cluster point of the sequence {ma} in the weak operator topology. Let

{an} be a sequence of positive constants converging to 0 such that ||(Ta — Q)"ma||l'n

Sanfor all n and a. Then m is a weak T-measure and ||(T —I2)nw||1/ngan/or

all n.

Proof. For each / in Wl(X) with compact support and each u in 23* we

have|| f/(z)d[(Ta-fi)«ma](z)|| ^||/|| ||(7\.-n)"m.|| ^[/IRand \\fzif(z)dtna(z)\\
Sc sup, |z'/(z)|. Also

(ff(z)d[(T.- UYma](z),u^= zZ(-iy(^)^f^f^)dma(z),(TtY-^

and

( f f(z)d[(T - n)»m](z), «\ = E (-1)*(")(/z*f(z)dm(z), (T*)»-%).

Now (T*)n_iw—»(T*)n~'w as n—>=o because T*—+T* strongly. Thus we may

choose a0 such that (T*)"~'u is arbitrarily near to (T*)"~'u lor all a>a0 and

then choose a>a0 such that (fzif(z)dma(z), (T*)n~{u) is arbitrarily near to

(fzf(z)dm(z), (T*)"-itt) for l^i^n, because m„ has m as a cluster point in

the weak operator topology. Thus the quantities

\/{zif(z)dma(z), (r!)"-%y -/jzif(z)dm(z), (T*)»-««\

zif(z)dma(z)\\ ||(Tly-iu - (T*)"-;M||

+ Yfzf(z)dma(z), (T*)«-iuS-/fzif(z)dm(z), (T*)«~'u\

can simultaneously be made arbitrarily small for all i with 1—i^n. Hence

(ff(z)d[(Ta — Sl)nma](z), u) can be made arbitrarily close to

(J /(z)d[(T-n)»m](z),«\

by an appropriate choice of a. It follows that

\(f f(z)d[(T-n)"m](z),u^   S \\f\\a"n\\u\\.
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Since this holds for all u in 5* we have ||//(z)d[(F-n)"m](z)|| San\\f\\. As

was shown in §1 this implies that ||(F — fi)"m|| San. Thus m is a weak F-

measure, since the same inequality must also hold for all slices of m. This

completes the proof.

Supplement. 7//or each positive integer a we have || Fama|| S K and ma(X) =

x, then m(X) =x.

Proof. Let / be any function with compact support in t>Dl(X) ior which

f(z) = 1 for \z\SM and 0 Sf(z) S 1 for all z, so that | (f(z) -l)/z\sl/M for
all z. For each u in 5*, (ff(z)dm(z), u) is a cluster point of the sequence

{(ff(z)dma(z), u)}, so that

M  f(z)dm(z), u\- (x,u)

S sup \(   I f(z)dma(z), u)- (x,u)   = sup \(   I  (/(z) - l)dma(z),u)

1/ /■/(«) - 1                      \               l/CO — 11.,   „
= sup \(   I   —-d(fiwa)(z),w)   ^ sup   - ||w|| sup ||ftm„||

a     | \J Z / z     \ Z a

S ~ sup (|| Tama\\ + || (Fa - Q)««||) S~(K+ a,).
M    <x M

Letting M become infinite we obtain | (m(X), u) — (x, u)\ =0, or (m(X),u)

= (x, u). Since u is arbitrary this gives m(X) =x, which finishes the proof.

As defined by Dunford [6], a spectral operator F on a reflexive Banach

space 5 is one for which there exists a spectral measure £( ) such that for

all Borel sets S

(1) TE(S)=E(S)T,
(2) the spectrum of F| 9t£(S) is a subset of S.

The spectral measure E( ) is uniquely determined. The adjoint F* of F is

also a spectral operator and the corresponding spectral measure, denoted by

£*( ), has the value (E(S))* on the Borel set 5.

If x is any vector in 5 there exists a function xt analytic for z in S' with

values in 9J(£(5)) such that (F—z)xz = E(S)x. This follows from the fact

that the spectrum of T\ dt(E(S)) is a subset of 5. This implies (we omit the

proof) that E( )x is a weak F-measure. This remark enables us to character-

ize the class of spectral operators.

Theorem 5.6. An operator T on a reflexive Banach space B is a spectral

operator if and only if every x in B has a weak T-measure and every u in B* has

a weak T*-measure.
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Proof. We omit the proof that if F is a spectral operator then every x

in 5 has a weak F-measure. Every u in 5* has a weak F*-measure because

T* is also a spectral operator.

Conversely assume that every x in 5 has a weak F-measure mx and that

every u in B* has a weak F*-measure pu. The measures mx and p„ are unique

by Corollary 1 to Theorem 5.2. Therefore mx and fiu are linear functions of x

and u respectively. The transformations x-^mx and w—tyi„ are closed. To see

this let a sequence {x„} from 5 converge to x and let {mXn} converge to a

measure m in Q. Then m(X) =lim mXn(X) =lim x„ = x. By Theorem 5.5, m is

a weak F-measure. Therefore m = mx. This proves that the transformation

x—>mx is closed. By the closed graph theorem, the transformation x—>mx is

bounded. Similarly the transformation w—>pu is bounded.

Thus for each Borel set S the transformation x^>mx(S) is an operator

E(S) on 5. Since (mx(S), u) = (x, pu(S)) for all u in 5*, the adjoint £*(5)

of E(S) is the transformation w—>p„(S). If y = £(5)x, then m„ is defined by

my(U) =mx(UC\S), so that my lives on S. Therefore E(S)y=y, so that E(S)

is an idempotent. The set function £( ) is therefore a spectral measure since

E(X) = / and

e(u sAx = mx(U 5,-J = E "-(5*) = E £(•$.•)*

for every disjoint sequence {Si} of Borel sets and all x in 5. For any x,

Tmx is a weak F-measure, so that by uniqueness Tmx = mrx. Thus TE(S)x

= Tmx(S) = mTx(S) =E(S) Tx.

It remains to prove that the spectrum of F| 9?(£(S)) is included in 5.

We first calculate the adjoint of F| di(E(S)). Each u in 5* is a bounded linear

functional on 5 and therefore on dt(E(S)). Two such, wi and u2, are equal on

9t(E(S)) if and only if (E(S)x, Ui—u2)=0 for all x in 5, or (x, E*(S)ux)

= (x, £*(5,)«2), which implies E*(S)ux = E*(S)u2. Since any bounded linear

functional on dl(E(S)) comes from such a u in 5*, by the Hahn-Banach theo-

rem, it follows that there is a 1-1 map w—>« from ?H(E*(S)) onto the dual

space of di(E(S)). It is obvious that ||«|| ^||«||. From the closed graph theorem

it therefore follows that the map u—>« is a homeomorphism and that 9t(E*(S))

may be identified with the dual space of di(E(S)). For x in $l(E(S)) and w in

SR(£*(5)) we have (Fx, «) = (x, T*u). Therefore the adjoint of F| 9t(£(S)) is
r*|»(£*(5)).

Let X be any number in S'. By Theorem 5.1, for every x = mx(S) in dl(E(S))

there exists y in 5 with (F—X)y = x. This gives

x = £(5)x = £(5)(F - X)y = (F - \)E(S)y,

so that we may suppose y£3t(£(5)). Thus 9i((F-X)| 9t(£(5))) = $(£(£)).

Similarly, 9?((F* -X) | 9c(£*(5))) = «R(£*(5)). Since (F*-X) | 9c(£*(5)) is the
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adjoint of (T-A)| ft(£(S))itfollowsthatAisintheresolventsetof T| 9t(E(5))t

as was to be proved.

Consider a spectral operator T and the corresponding spectral measure

E( ). It is known [6] that T—J\dE(\) is a quasi-nilpotent operator, so that

there exists.a sequence {an} of positive numbers converging to 0 such that

|| (T— rAd£(A))n||1/nga„ for all positive integers ra. Since the projections E(S)

are uniformly bounded there also exists a constant c such that ||£( )x||

5=c||x|| for all x in B. If we define 9J to be the set of T satisfying these condi-

tions for fixed c and {a„}, then the following analog to Corollary 1 of Theorem

3.2 is valid.

Theorem 5.7. Each operator T which is a limit in the double strong topology

of a sequence { Ta} of operators in 5U is a spectral operator.

Proof. Let Ea( ) be the spectral measure associated with Ta, so that for

each x in B the set function Ea( )x is a weak Ta-measure for x. For each Borel

set 5 we have

[J2£«( )x](S) =  f Ad£„(A)x = f \dEa(\)Ea(S)x.

Hence QEa( )x=J\dEa(\)Ea( )x. Therefore (T-Q)'Ea( )x = (T-/Ad£„(A))"

•Ea( )x. It follows that

|| (T - «)•£„( )x||»'• g Mt - J Ad£(A)Y ||£„( )x|| l'»

= a„(c||x||)"".

By Theorem 5.5 this implies that any cluster point mx in the weak operator

topology of the sequence {£«( )x} is a weak T-measure. Since lima..M | Tax\\

= ||Tx||, the norms ||Tax|| are bounded. Thus the norms ||Ta£a( )x | are

bounded, since by the commutativity of Ta and £„( ) we see that || TaEa( )x\\

= ||£„( )Tax|| gc||T„x||. By the supplement to Theorem 5.5 it follows that

mx(X) =x.

Thus every x in B has a weak T-measure. Similarly, every u in B* has a

weak T*-measure. Therefore T is a spectral operator, as was to be proved.
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