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I regret to announce that there is a serious error in my paper in these

Transactions, volume 84, pp. 430-443. The error was discovered by Louis

Kokoris who found that on line 8 of page 434 the expression given as

l[g(bz)](az) should have been 4[g(az)](bz). As a consequence the computa-

tion of P(z, g, az, b) yields nothing, the proof of formula (30) is not valid, and

the important Lemma 9 is not proved. Thus the paper does not give a proof of

its major result stated as Theorem 1.

Nevertheless, the theorems of the paper are all correct and we shall pro-

vide a revision of the proof here. This revised proof has been checked by

Louis Kokoris to whom the author wishes to express his great thanks.

We observe first that the equation

(29) gSab = gSaSb- (wa)[z<pg{b)}

occurs before the error and is correct. The results of §4 on pages 434 and 435

depend on Lemma 9, and their use must be postponed until we apply them

in a new Lemma 25. Equation (41) is correct as proved and will become a

part of a corrected version of Lemma 17. The following result will be used

here and is proved correctly in the paper.

Lemma 14. Let a and b be in 93 and gbe in ®. Then

(42) g[(wa)(bz)] = b<pg(a) - <W«).

Lemma 17 uses Theorem 1 and so needs revision. The computation of

P(wa, bz, c, w) of its proof actually yields 4a(bc) — 3b(ca) — c(ab) = <j>h(a)

— 4<pa(c). The interchange of a and c implies the interchange of g and h and

results in the formula 4c(ba) — 3b(ca) — a(cb) =4>g(c) — 4$/,(a). The quantity

4>h(a) can now be eliminated and we obtain the second equation in a relation

which we shall number (41R). The proof of the first relation is exactly as in

the paper.

Lemma 17R. Let g = (wa)(bz), where a and b are in 33. Then

(41R) f„(c) = 0,        4>s(c) = (ac)b - a(cb)

for every c of 23.

Since Theorem 1 is still not valid at this point we shall require the following

result.
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Lemma A. The algebra 93 is a special Jordan algebra such that 93 = e3: + 9f>

where e is the unity element of the algebra 21, and 9t is the radical of 93.

For Lemma 2 states that the algebra S3 is isomorphic to the algebra

2L(1) =33m. It is also known(') that the mapping a\—->Si/2(ai), defined by the

multiplication Xi/2di = Xi/2Si/2(ai) in our w-stable case, is a homomorphic map-

ping of 23m onto the special Jordan algebra of all of the linear transformations

Si/2(ai) where ai ranges over all elements of 93w. These elements all have the

form a\ = au for a in 93, and if Si/2(ai) =0 then wSi/2(<Zi) =w(au) =0. However,

Lemma 3 states that w(au) =2~l(wa). Hence the kernel of our homomorphism

consists of all elements au such that wa = 0, w(wa) =a = 0. It follows immedi-

ately that 33 is a special Jordan algebra. The basic assumption that 21 has

degree two implies that the only idempotent of SBu is u, the only idempotent

of 93 is its unity element e. It is then known(2) that 93 =e$-Y-yt as desired.

We are now able to use Lemma 17R, Lemma A, and Lemma 4 to derive

the following result.

Lemma B. The inclusion relation [(w93)(93z)](93z)^w9,I holds.

For, we can always write every element a of 93 in the form <z = ae + c where

a is in % and c is in 9L Since w(bz) = (wa)z = 0 for every a and & of 93 we also

write b in the form b=fte-\-d with d in 9c and have (wa)(bz) = (wc)(dz), that is,

(1A) (w33)(93z) = (wm)(mz).

But if g=(wa)(bz) we use (41R) to see that [(wa)(bz)](tz) = —w<pg(t) where

4>a(t) = (at)b—a(tb). By (1A) we can take both a and b to be in 9t, <j>g(t) is in

SSI and our proof is complete.

Lemmas 18 and 19 of our original version state that [w(bc)](az)

= b[(wc)(az)]+c[(wb)(az)] and that consequently

(47) fg(a)[(wa)(bz)] = 0

for every a and b of 93. However, we cannot use Lemma 16 to conclude that

(w93)(93z) =0 and we shall, in fact, be forced to delete Lemma 16. The proof

of the relation

(45) b»fM](zb) + [wf0(b)](za) = 0

is correct and this relation is used later. We now use our results to obtain a

corrected proof of the following lemma.

Lemma 20. Let there exist a nonsingular element c=fs(a) for some g in ®

and a in 93. Then (wB)(Bz) =0.

(') See Lemma 1 of A theory of power-associative commutative algebras, these Transactions,

vol. 69 (1950) pp. 503-527.
(2) Ibid., Theorem 2.
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For (45) is equivalent to (wc)(az) =0 if c=fg(a). Lemma 18 then implies

that in this case [w(bc)](az) = c[(wb)(az)]. However, (10) states that (wb)(az)

= —(wa)(bz) and so (47) implies that [w(bc)](az) =0. If c is any nonsingular

element of the special Jordan algebra 33 we can write c = ye-\-d where d is in

9t and 7 is in %. It is known(3) that the corresponding right multiplication

Rd of the algebra 23 is nilpotent and it follows that the right multiplication

Rc = yI-\-Rj is nonsingular. Hence the equation bc = t has a solution b in 23

for every t of 23. It follows that our assumption that c=fg(a) is nonsingular

implies that (wt)(az) =0 for every t of 23 and every a of 23 such that/0(a) is

nonsingular. It remains to consider the singular elements fg(m). The sum

fg{rn)-\-fg(a)=fg(a-\-m) is then nonsingular, that is, is not in the radical 31.

Then our proof implies that (wt) [(a-\-m)z] =0 = (wt) (az) + (wt)(mz) — (wt)(mz)

as desired, and we have completed a proof of the relation (a/23) (23z) = 0 in

the case of a nonsingular value of the function/,(a).

We are now able to combine our results so as to restore the validity of the

first of our basic theorems.

Lemma C. Let a simple commutative power-associative algebra SI of degree

two contain an element g of @ and an element a of SB such thatfg(a) is nonsingu-

lar. Then Lemmas 9, 10, 11, 12, 13, and 15 are all correct and Theorem 1 is

correct.

For Lemma 20 implies that the relation (29) reduces to Sat = SaSb = SbSa

and this and Lemma 20 give Lemma 9 completely. Thus all of the results of

§4 are now correct.

Lemma C reduces our study to what we have called the "singular case,"

and to the possible case where every f„(a) is singular but some <f>g(a) is non-

singular. We shall actually be able to show that the latter case cannot occur

and indeed that every <pg(a) is in 9L Our first new result in this direction fol-

lows.

Lemma D. Let a, b, and c be in 23 so that g= (wa)(bz) and h = (wa)(cz) arc

in G. Then gh is in 31.

By (1A) we can assume that a, b, and c are all in 31. Compute P(wa, wa,

bz, cz) to see that 8gh+4a2(bc) = 2(a/a) [g(cz) + h(bz) + (wa)(bc)] + (bz) [a2(cz)

+ 2h(wa) ] + (cz) [a2(bz) +2g(wa)]. Then

8gh = - A-a2(bc) + 2(wa)[-w<t>g(c) - wd>h(b) + w-a(bc)] + b(a2c)

+ 2b[<t>h(a) + «/*(«)] + c(a*b) + 2c[4>„(a) + zfg(a)].

Since a, b, and c are all in the radical W of 23 all terms on the right side of this

equation are in 31 + 5Rs. But gh is in 23 and hence is in 91.

(3) See Theorem 1 of the author's A structure theory for Jordan algebras, Ann. of Math.

vol. 48 (1947) pp. 546-567.
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We now use the relation (42) in the form

(2A) h[(wa)(tz)] = t<$>h(a) - *m,(<»),

where h is any element of ®, and a and t axe arbitrary elements of 93. Assume

that

(3 A) h = (wo)(dz)

for the same a and some d in 93 and use Lemma B to see that <pn(a) is in SSI

and so t<f>h(a) is in SSI. By Lemma D we know that the left member of (2A) is

in SSI. Thus (2A) implies the following result.

Lemma E. Let a, d, and t be any elements of SSI and h = (wa)(dz). Then

<Phst(a) is in SSI.

There is a minor error in the statement of Lemma 21 which actually does

not affect the argument but which should be corrected as follows. We com-

pute P(wa,  z,  g,  g)   and  see  that

0 = 2g[(wa)g-z] + (wa)(g*z) = 2g\fg(a)-z + *,(«)] + (wa)(gh)

= - 2w{fe[cj,g(a)] + <pg[fg(a)}) + 2gSc + (wa)(gH)

where c = 4>g(a). This yields the corrected version of Lemma 21 which we

now state.

Lemma 21R. Let a be in 93, g be in ®, and c=<f>g(a). Then

(49R) 2gSc - - (wa)(g*z),        fMg(a)} + <j>g[fg(a)] = 0.

We have now obtained the key elements in a proof of the singularity of

the function <pg(a).

Lemma F. The elements <f>g(a) are in SSI for every g of ® and a of 93.

For assume that there does exist an element g of ® and an element a of

93 such that c = dyg(a) is nonsingular. By (49R) we have

(4A) h = gSc = (wa)(dz)

where d= — l/2g2 is in 93. We now use (29) to see that if t = c~l then gSct

= gS*=Z< and so

(5A) gScSt = hS, = g- (wc)[z<pg(t)}.

Hence

(6A) g = hS, + *

where k is in (w93)(93z). By (4A) and Lemma E we know that <j>hs,(a) is in SSI.

By Lemma B we know that <f>k(a) is in Sfl. But then (6A) implies that 4>„(a)

= <j>hsl(a)-Y<i>k(a) =c is in SSI, contrary to hypothesis.
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We are now ready to turn to the discussion of the singular case of Section

6. The proof there makes some slight and unnecessary use of Lemma 9 and

we correct the argument as follows. Note that Lemma 9 cannot be used since

we have only proved its validity in the nonsingular case. We observe that

(7A) 21 = 93 + 93z + w93 + ®

and we now write

(8A) m = 9c + SSlz,

so that SSR is the radical of the Jordan algebra e = 2L(l)+2I„(0) =93+93z.

Then the combination of the hypothesis that every/,(a) is in 91 and Lemma

F is equivalent to the inclusion relations

(8A) (w93)@ C SSR,       ®(93z) C wSSl.

Define ®* to be the vector spanned by all elements of the form gSa for g in

® and a in SSI. Then Lemma F implies that

(9A) @9Jc c ®* + wSft,       ®*93 = ®* + ®*9J C ®*.

Also Lemma F and (42) imply that

(10A) @[(w93)(93z)] C SSI.

Then (29) implies that, if we write x=y for x and y in 93 whenever x—y is in

Sft, we have the property

(11 A) (gSah)h m (gSaSb)h

for every g and h of ® and a and b of SSI. We now have all of the results of

(55)-(60), the argument which forms the last paragraph of page 440 is valid,

and the relation

(12A) ®®* C SSI

is correct.

We are now able to prove that the space

(13A) © = wSSl + ®* + (w93)(93z) + SSJl

is an ideal of 21. Indeed 2I9J? = 9Jc9JJ + (w93)9Jfc + ®9JcC9J£+w9fc + (w93)(93z)
+®*C@. Also 2((w9c) = 93(w9c) + (93z)(w9c)+®(w9c) + (w93)(w9c)ew9c

+ (w93)(93z)+9D,cC<S. We see next that 21®* = 93®* + (93z)®* + (w93)®*

+®®*C@*+w9t+9JcC@,andthat2l [(w93)(93z) ] = (w93) (93z) +9c [(w93)(93z) ]
+ (93z) [(w93) (93z) ] + (w93) [(w93) (93z) ] + (w93) ® C (w93) (93z)+® * + wSSl + wSSl
-t-SSSIQ® and our proof that @ is an ideal of 21 is complete. Since © does not

contain the idempotent e the hypothesis that 2lis simple implies that SSSI = 0,

93 = «v5. and so 21 is actually a Jordan algebra in this case.



62 A. A. ALBERT

This completes our revision but we take this opportunity to correct the

following misprints:

p. 431, line —4. Should read w[(ab)g — wd)g(a) ■ (bz) —W(j>g(b) ■ (az)].

p. 432, line 3. Delete — 4afg(b) at end of sentence.

p. 432, formula (13). Replace <pg(a) by 4>g(ab).

p. 432, line 3 below (13). Replace first — by +.

p. 432, line 4 below (13). Replace first — by +.

p. 433, line 11. Replace last gSaSb by gSbSa.

p. 435, Lemma 13. Replace M by 9JJ.

p. 436, line below (44). Replace 21 by §.

p. 436, line 7 below (44). Add +(ab)(zc) at end of line.

p. 436, line 8 below (44). Add +(ab)(zc) before "Since."

p. 436, line 10 below (44). Add +(ab)(zc) before "is in."

p. 440, formula (54). Replace e@ by QW.

Yale University(4)

New Haven, Conn.

(4) The work on this paper was sponsored by the Office of Ordnance Research, United

States Army, under Contract DA-19-059-ORD-2329.


