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1. Introduction. Let A be a nonassociative algebra over a field P. If for

each x in A the subalgebra F[x] of all polynomials in x over P is an associa-

tive algebra we call A a power-associative algebra. In particular the elements

of A must satisfy the identity

(1) x- (x-x) = (x-x) -X.

To any algebra A over a field P of characteristic not 2 we can attach a

commutative algebra A(+) over P which is the same vector space as A and

which has a product (x, y) expressible in terms of the product x-y of A by

1
(2) (x, y) = — (x-y + yx).

Powers of elements in Ai+) agree with their powers in A. Thus the power-

associativity of A implies the power-associativity of A*-+\

This paper is chiefly concerned with the class of nonassociative algebras

satisfying (1) and having A(+'> a separable Jordan algebra. We shall denote

this class by the letters SI.

Suppose that G is a nonassociative algebra over a field P of characteristic

not 2 and G contains a subspace 5 closed under the operation (x, y) defined

by (2). The set of all finite linear combinations of elements in G of the form

xy —yx for x and y in 5 form a subspace U(S) of G. If P is any linear mapping

on U(S) into S we call the mapping P a bonding mapping of G [2](2). Every

bonding mapping determines an algebra B(G, S, T) which is the same vector

space as 5 and is defined by the product

1
(3) x • y = — (xy + yx) + (xy - yx) T

ior all x and y in S, where xy is the product in G. We say that B(G, S, T) is

bonded to G. We note that
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(4) x • y + y ■ x = xy + yx.

Albert has shown [2] that any algebra of characteristic not 2, 3 or 5,

satisfying (1) and having ^4(+) a central simple Jordan algebra of degree t>2

has a scalar extension Ak which is obtained from a bonding mapping. Here

the degree t is defined as the maximum number of primitive orthogonal idem-

potents d in the expression of the unity quantity e = ei+ ■ ■ ■ +et lor any

scalar extension of the algebra. We shall extend this result and show that for

all algebras A of class SJ there exists a direct sum G of simple associative

algebras and 3 by 3 matric algebras over a Cayley algebra such that A
= B(G, S, T).

A class of algebras A satisfying (1) such that A(+) is a semi-simple Jordan

algebra with an inseparable component will be exhibited for which no bond-

ing mapping exists.

2. Bonding mappings. A separable Jordan algebra is defined as a semi-

simple Jordan algebra each of whose components has a separable center over

its base field. Let A be an algebra of class SJ over the field F. The algebra

A(+) is a semi-simple Jordan algebra over F and is therefore a direct sum of

simple Jordan algebras.

Any simple Jordan algebra is isomorphic to a Jordan algebra of linear

transformations or is an algebra of order 27 over its center. These algebras

are called special and exceptional Jordan algebras respective!}'. The simple

special Jordan algebras are the Jordan algebras associated with one of the

following types under the multiplication defined in (2): (a) a simple associa-

tive algebra over F, (b) the set of symmetric elements of a simple associative

algebra with an involution J of the first kind over F, (c) the set of symmetric

elements of a simple associative algebra with an involution J of the second

kind over F, (d) a Clifford system over a field K containing F [l; 3; 5].

Theorem 1. Let A be an algebra over a field F of class SJ and let A(+) be

special. Then there exists an associative algebra G over F such that A =B(G, S,T).

We first prove the following elementary results.

Lemma 1. If for some scalar extension K of F we have Ak bonded to Gk the

algebra A is bonded to G.

Let To be a linear mapping satisfying (3) for all x and y in Ak. Then in

particular if x and y are in A we have xy—yx in U(Ak) and (xy—yx)T0

= x■ y — (xy +yx)/2. Since x-y and xyA-yx = x-y-\-y-x are in A we also have

(xy—yx)T0 in A. The transformation T0 cut down to A induces a linear

mapping T over F such that (xy— yx)To = (xy—yx)T lor all x and y in A.

The mapping T is the desired mapping bonding A to G.

Now let A=A1+ ■ ■ ■ A-An where each Ar+) is an ideal of A1^ and a

simple Jordan algebra. Even though each Ay is an ideal of ^4(+) it doesn't

necessarily follow that A,, is an ideal of A or even a subalgebra of A under the
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multiplication xy. However we do have the following:

Lemma 2. If x is in Ai,y is in Aj and i j^f we have x • y = 0.

By a linearization process and (4), (1) becomes

x-(yz + zy) + y • (xz + zx) + z • (xy + yx)

— (yz + zy)-x + (xz + zx) • y + (xy + yx) ■ z.

If we let z = ej in (5) where es is the unity element of Aj we obtain x-y = y-x.

From (4) we have 2xy = xy+yx = 0, so x-y = 0.

We have seen that the only nonzero products in A arise from the products

of two elements of the same component of Al+). Therefore we need only show

the existence of an algebra Gr, a subspace Sr of GT equal to the space Ar, and

a transformation Pr mapping U(Sr) into A and satisfying (3) for all elements

x and y in ^4r. The composition of all the Gr, Sr and Tr will be the desired

G, S and P. The Gr, Sr and Tr will be defined separately for each of the types

(a)-(d) above.

If A,+) is of type (a), it is the Jordan algebra associated with a simple

separable associative algebra C over P. Since C is separable it has a splitting

field K. The extension Cr is a direct sum of total matric algebras. By Lemma

1 and Lemma 2 we can assume that C is a total matric algebra and A[+) is

the Jordan algebra associated with kt. The algebra has a matric basis

( • ■ • dj ■ ■ • ) over P.

Lemma 3. If Al+) is the Jordan algebra associated with the total matric alge-

bra C then Gr = Sr = C and Tr is defined by

(e,j) Tr = en ■ en — e,j/2 for i ?± j,

(e,i)Tr = — en-en + en/2.

Since (3) is linear over P we need only show that it is satisfied for the basal

elements or that

1 1
\t) &ij'epq = —   €,j'epq -\   — ePq'e%j -\- \e,jePq      ePqe{j) 1 r.

To prove that (7) holds under the definition in (6) we assume first that

i^ji P, <Z and jV^, q. Put x = «,-,-, y = epq and z = epp in (5). We obtain eij-epq

= epq-eij. This identity together with (4) gives us ety-epa = 0. Since the right

hand member of (7) is 0 it has been verified in this case. Assume next that

i = p9£q,j. We put x = en, y = en, z = ejq in (5) and obtain e,-ye,j = 0 and again

(7) is satisfied. Now if j = p and t = jwe must show that

(8) tij-tji = eif — eu-en + en-en.

We use (5) with x = e,y, y = eyi and z = ei,-, all indices distinct, and obtain (8).

If i=j, (8) reduces to eu■ en = en which is clear from (4). If i=i in (8) this
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becomes ei,e,i = eije,i. If i—j and i?*p = q in (7) the right hand member is

zero. This identity is satisfied if eu-epp is also zero. The product eu-ePV is

seen to be 0 when we put x = e„, z = y = epp in (5). The only remaining case to

consider is i = q and j5*p. We need to show that ey ePi = ePj — epp-ePj which is

clear from (5) with x = e,y, y = epi and z = epp. Thus (3) is satisfied for x and y

and Ar and Tr defined as above.

If Ar+) is of type (b) it is the Jordan algebra associated with the set of

symmetric elements of a simple separable associative algebra C over F with

an involution J over F of the first kind. If K is a splitting field of C the in-

volution J can be extended uniquely to an involution over K of Cr. The

algebra Ck is a direct sum of total matric algebras with an involution J0.

The set of symmetric elements of Ck is (Ar+))K- By Lemma 1 we may assume

that F = K. We need the following two lemmas on involutions.

Lemma 4. // / is an involution of a direct sum of total matric algebras any

component M is left fixed by J or is mapped into a component MJ of the same

degree. The total matric algebra MJ will have a matric basis ( • • • /,-,- • • • )

where fi, = eJfl and ( • • • e,-,- • • • ) is a matric basis of M.

We shall omit the proof of this lemma.

If M is a total matric algebra of degree n = 2m then M = MmXM2 (direct

product) where M2=(gu, gu, g2i, £22) and Mm=( ■ ■ ■ etj ■ ■ ■ ) lor i, j

= 1, ■ • ■ , m. Every element of M is uniquely expressible in the form

(9) a = Agn + Bgu + Cgn + £>g22

where A, B, C and D are elements of Mm. If we define

(10) aJ = D'gn - B'g12 - C'g2i + A'g22

where A', B', C and D' are the transposes of A, B, C and D. J is an involu-

tion of M. The set of symmetric elements of M are of the form a=Agn

+ (B-B')g12 + (C-C')g21+A'g22 [4].

Two involutions / and /' of an algebra C are called cogredient if there

exists an automorphism S over the center of C such that J' = S~lJS.

Lemma 5. An involution J of a total matric algebra M is cogredient to trans-

position or to the involution described in (9)-(10).

The proof of this lemma can be found in [4].

By these two lemmas we see that J0 leaves M fixed and is cogredient to

transposition, Jo leaves M fixed and is cogredient to the involution defined

in (9)-(10) or Jo maps M into an isomorphic component. We shall treat

each of these separately.

We first assume that JQ is cogredient to transposition and leaves M fixed.

We can choose a matric basis ( • • • a, • ■ ■ ) on M such that eJva = eji.

Lemma 6. If AT+) is the Jordan algebra associated with the set of symmetric
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elements under transposition of a total matric algebra M then Gr = M, S, = set

of symmetric elements and Tr is defined as

1
(en — ej,) Tr = — ejj ■ (e,-y + ey.) H-(ey + en) for i 9^ j,

a.)
yea) 1 r en.

To prove that Tr satisfies (3) we need only show that it is satisfied for the

elements  e,-,- and  e;y+ey,  or  that

1 1
\e,j -p eji) • \epq -\- eqp)      —- Ken -\- eji)\epq -f- eqp) -f    — \epq -j- eqp)\eij -\- eji)

\   K^iy  r eji)\epq -\- eqp)      \eqp ~~Y~ epq)\€ij -p 6y,jji r.

Assume first that i^p, q, j and j^p, q. Put x = e,y+ey,, y = eP9+e5P and

z = epp in (5). We obtain (e<y+ey,-) • (eP9+e9P) =0 and since the right hand side

of (12) is also 0 this identity is satisfied. Next if we put x = e,-y+ey;, y = e;p+epi

and z = epp ior p^i, j we have (e.-y+eyO • (eip-\-ep%) = (eyP+ePy) -epp = — epp

■ (ejp-\-ePj)-\-(epj+ejp)    when   zVj   and    e,<-(eip+ep,-) = (eip+ept)-epp= —epp

• (e;P+ep,-)+(e,-p+ep,-) when t=j' and again (12) is satisfied. Now let x = y = en,

z = epq-\-eqp and i, p and q be distinct. Identity (5) gives us en- (epq-\-eqp) =0.

If we put i = p and j — q in (12) it reduces to (c,y+gy.) • (e«y+Cy<) =(e<y+ey<)

• (fiiy+eyi) and is certainly satisfied. It remains only to show that el-,--epp = 0

when t^/>. This is obtained from (5) by putting x=y = en and z = epp.

We next consider the case where Jo leaves M fixed and is cogredient to the

involution described in (9)—(10). We shall use the following notation: A,y

= e.ygn + ejig22,fij = (en — eji)gi2, d,-y = (etj — ejt)g2i, Fin = eugn — eugn, J,y

= (e,y+ey,-)gi2 and o\-y= (eij-Y-eji)gn- The set Sr of all Jo-symmetric elements

has a basis ( • • • A,y ■ • • /„,„ • • • d,t ■ • • ). The set U(ST) has a basis

( ■ • • A,y • • • /m„ • • ■ rfs( • • • ).

Lemma 7. // ^4j+> is the Jordan algebra associated with the set of symmetric

elements under the involution described in (9)—(10) of a total matric algebra M

then Gr = M, Sr = set of symmetric elements and TT is defined by

1
(13a) (hij)Tr =   -  AyyA.y + — A,-y,

(13b) 2(hn)Tr = fij-dj, + A;yAy,- — A,,- — Ayy,

1
(13c) (/y)Pr= - hjjffn + —fih

(13d) (fn)Tr=fji-hii,

(13e) (dn)Tr = — dji-hji,
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1
(13f) (dn)Tr = hu-dij- da

and i^j.

For a number of choices of x and y we have both xy—yx and xy-\-yx equal

to 0. To show that (3) is satisfied in these cases we have merely to show that

xy = 0. This can be done by using (5) with z = hrr and a proper choice of r.

If both x and y are equal to ha we have xy—yx = 0 and xyAryx = 2hu, however

it is easily demonstrated from (4) that hii-ha = hu. To prove that (3) holds

under the definition of Tr in (13a) we make use of the two identities hij-hjq

= hu-hiq and hu-hiq = — hqq-hiq-\-hiq obtained from (5) by substituting

x = hij, y = hji, z = hiq and x = hiq, y = hiq and z = hqi. The remaining products

x-y with xy—yx = h~ij that we need to consider are fijdjp, fiq-dpq, fi,-dpi and

fiP-diq. For each of these products we use (5) with z = hpp.

In considering (13b) we must first show that the right hand member is

independent of the choice of/. We let x=fpj, y = hip and z = dij in (5) and get

Jpj ' Clpj        Wpj ' fTjp      Jij ' d-ij —i   "ii * flji      ivpi ' flip   \ '•vjp ' 'vpj ~~r~iv%j ' flji       "ii       "pp       "ii       ^*

Use (5) with x=fu, y = h,j and z = du to obtain —fi,-di,=fi,d,i. By setting
x=fu, y = hji and z = di, we obtain a third identity fi,di,=fi,d,i. These three

identities combine to give us fijdji-yhijhji—fipdpi — hiphPi-hjj-\-hpp = 0

and the right hand member of (13b) is independent of the choice of/. From

these identities we can also obtain (hii — hjj)Tr = 2~1fij-dji-\-2~1hij-hji — 2~1hij

■ hji = hij ■ hji and (h~u + h„) TT = 2-1/i,- • djt + 2-1/,-,- • di, =/,,- • d,t.
To prove that (3) holds with the definition of Tr given in (13c) we let

z = hpp and x and y equal the two factors of the product x-y=fiq-hpq,fpq-hqq,

fqi-hpi in (5). This gives us three of the necessary four identities. The fourth

identity, firhu = h„fi, is obtained from (5) by letting y = hu, x=fi, and
z = hjj.

The right hand member of (13d) is independent of the choice of/, for if

we let x=fji, y = hPj and z = hiP in (5) we have f,i-hi,=fPi-hiP. Terms of the

form/ii will arise only when we consider the products ftj-hji. Clearly these

products satisfy (3) as Tr is defined in (13d) since fi,h,i-\-h,ifi, = 0.

We can show that (3) holds under the definitions (13e) and (13f) by using

the identities proven for (13c) and (13d) with the subscripts 1 and 2 of gi,

interchanged and with the matric coefficients of gij replaced by their trans-

poses. This leaves hi, fixed and replaces ft, by dji.

Finally if M is mapped onto the component MJo distinct from M by the

involution J0 the symmetric elements are linear combinations of elements

eu+fu and e,y+/,i described in Lemma 4. We have

Lemma 8. If A{r+) is the Jordan algebra associated with the set of symmetric

elements under the involution Jo of the direct sum of total matric algebras M and

MJ" then GT = M®MJo, Sr = set of symmetric elements and Tr is defined by
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1 1
(en) Tr = — (en + /,-,-) ■ (e,y + /,,) - —- ei};

1 1
(fa) P = - — (e» + fa)' (en + fa) + — //<,

(14)
1                                              1

(en)Tr =-— (eu+fii) • (e,i +/u) -\-en,

1 1
(fii)Tr = — (ch +/n) • (en + fn) - —fa,

and i^j.

To show that (3) is satisfied under this definition of Pr for all products

x-y, except the product (e,y+/yi) • (fiyt+p-y), we use (4) and (5) with z = epp+/pp

and the proper choice of p. When 1 9^i, j we put x = (e,y+/yi), y = (eji +/iy) and

z = (eii+fa) in (5) to obtain (e,-y+/,-,-) ■ (ey,+/,-y) = (dy+/yi) ■ (e,i+fu) - (eu+fn)

•(«.i+/h)+««+/«• When i=l (3) reduces to («iy+/yi) • (eyi+/iy) = (eiy+/yi)

• (eji+/iy)- This completes the study of algebras of type (b).

If AT+) is a Jordan algebra of type (c) it is the algebra over P of all J-

symmetric elements of a simple associative algebra C where J is an involution

of the second kind. If K splits C over F then J can be extended uniquely to

an involution of the second kind on Ck- The following lemma tells us the

nature of this involution [3].

Lemma 9. Let M be a direct sum of total matric algebras over K. If M has an

involution J of the second kind over K then M has 2t components and J leaves no

component fixed.

Since J carries each component into an isomorphic component we may

apply Lemma 8.

If Ar+) is a Jordan algebra of type (d) it is the Jordan algebra associated

with a Clifford system over a field containing P. Again with the assumption

of separability we can make a scalar extension by P that splits the center of

Ar+). Then (AI+))k will be a direct sum of Jordan algebras associated with a

Clifford system over P. We can assume that F = K and Ar+) is one of these

components by Lemmas 1 and 2. A[+) is a subspace (si, • • • , s„) of an associ-

ative algebra C. The multiplication of these basal elements in C is given by

52 = a,5^0 in P and 5,5y= —SjS, for i^j.

Lemma 10. If A{T+) is the Jordan algebra associated with the Clifford system

(si, • ■ ■ , sn) of an associative algebra C then we let Gr—C,Sr=(si, ■ ■ ■ , sn) and

TT be defined as

(15) 2(siSj)Tr = Si-Sj.

To show that Tr satisfies (3) we need only show that SiSi = a, since s,-Sj
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= 2~1SiS,-r-2~1SjSi-r-(siSj — SjSi)Tr by the definition of Tr. Identity (4) gives

us SiSi-\-SiSi = 2ai so Si-Si = ati. This completes the proof of Lemma 10 and

Theorem 1.

3. The exceptional simple Jordan algebra. Let A be an algebra over F

satisfying (1) such that .4(+) is an exceptional simple Jordan algebra whose

center is separable over F. The algebra A belongs to the class SJ. We can

make a scalar extension K of F such that (^4(+>)x will be a direct sum of ex-

ceptional central simple Jordan algebras over K. It has been shown [6] that

any exceptional central simple Jordan algebra arises in the following manner.

Let G he the algebra of all three-rowed matrices with elements in a Cayley

algebra C over K. The algebra C has a basis (e, u2, ■ ■ ■ , w8) and multiplica-

tion is defined by eUi = Uie = Ut, —UjUj = utUi= ±uk for i^j, and u2,=at9^0 in

K. The general element of C is x = 8ie-\-B2u2-r- ■ ■ ■ -\-B$us and we can define

an involution x—>x of C by x = 8ie—(@2U2-\- ■ ■ ■ +8$us). If A=(xn) is an

element of G and P is a diagonal matrix of G with elements in K the mapping

A—>AJ = P(xij)'P~1 is an involution of G. The /-symmetric elements of Gare

closed under the multiplication (A, B) =2~1(AB-\-BA) and form an excep-

tional central simple Jordan algebra under this multiplication.

If P = (xi, x2, x3) for xt- in K, the set of symmetric elements of G are finite

linear combinations over K of the elements en, (xiw)yi —(xyM),y and (ir.-e)y,-

+ (ir,e) ij where u is any of the m, above. We wish to determine the nature of

the multiplication of A. From (4) we have that en■ en = en- Also we obtain

ejj ■ en = 0 from (5) by putting x=y = en and z = ejj. Identity (5) with x = en — e,-j,

y = eu, z= (iriu)ji-\-(irju)ij lor any of the basal elements e, u2, ■ ■ • , u% gives us

2ejj ■ [ (tTiu)ji+ (wju) n ] = (iTiu)ji+ (wjU) a = e„ [ (x iu)ji+ (tt,u) ,-,- ] + (inu),i+ (ir,u) </.

Now let both u and v be any of the eight basal elements of C. If we put x = e„,

y=(iriu)ji+(irju)ij and z=(irtv)ki+(Tkv)ik in (5), we have [(*%•«),•.•+0r/fi)</]

• [(TrlJv)ki + (irkv)ik] = 2~1(ir^TjUv)kj + 2-1('n-iTkvu)jk. Next put x = eu, y = epp and

z=(irpu)qp+(TTqu)pq in (5) we get en-[(irpu)gp + (Tqu)pq]=0. Now put x

= (XiM)ji + (xyw)ij, y = (irpv)qp + (irqv)pq and z = en in (5) and obtain

[(■Wju)ij-\-(Tnu)ji] ■ [(TrPv)qp + (ffqv)pq] =0. We have shown that all products of

basal elements in A agree with their products in A<-+) except the product

[(xiM)ji + (xyw),y] • [(x,fl)ji+ ('Tjv)ij]. We will now show that this product has

the property. We first show this for v = e. Let x = (x;e)ij + (xie)yi, y = (irie)ki

+ (irke)ik and Z=(vku),k in (5) for k^i, j. We have [(irkir,e)i,+ (irkirie),i]

■ [(*7«)« + (TfiU)ji\ + [(xyXie)ti + (irk-n-je)ik]- [(iriu)ki + (tt*«),*] = [(xt-x,e)ty

+ (ir,-7Tte),-t] ■ [(xy«)*y+ (xt«)y*]. Lettingx = (iry«)</+(ir,-«)y,-,y = (x,-M)t,-+ (irku)ik

and z=(irku)jk + (irjU)kj in (5) we have xy[(7r,-e)t,-+(ir*e),-*] • [(ir1-M)Jfe,-+(7r*M),-*]

+ Xfc[(xie)yi+(xye)iy]- [(xyM)iy+(x,«)yi]=Xl[(xAe)y«:+(xye)ty]- [(x*w)yt+(xy«)*y].

These two identities together give us [(x*e)yt + (irie)y,-] ■ [(xjtw)yt + (xyM)iy] =0.

Now if w=w in our product we have the square of an element and since

xx+xx = xx+xx, this product agrees with the product in^4(+).The remain-

ing case is where both u and v are distinct from e and from each other. Let w
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be the unique basal element such that uw = v. Now let x=(iriu)ji-Y-(irju)n,

y = (irkw)ik + (Triw)ikandz=(irku)jk-Y-(Trju)kjin (5) and we have [(iTiu)ji + (irju)n]

■ [(Tk-Wjv)n + (niWkv)ji]+[(irku)jk + (nju)kj]-Wi[(Trkv)jk + (irjv)kj]=0. Now let-

ting x=(7rl-M)yl + (7ryM)iy, y = (irjv)kj+(irkv)jk and z = (iTje)kj-\-(irke)jk in (5), we

obtain    [(x,M)y< + fa*)*/]- [(irkirjv)n + (irt7T,-i))y,-]  =   [(ir*ir,-«)yt + (iry7T,-«)w]

• [(T*»)y* + 0*y*>)*y]=0.   These   two   identities   give   us    [(irt«)yA + (xyM)*y]

• [(T*w)yt + (iryii)ty] =0. We can summarize the above in the following theorem.

Theorem 2. Let A be an algebra over afield F such that Aw has an ideal I

that is a simple, separable, exceptional Jordan algebra. Then I is an ideal of A

and the multiplication of I in A agrees with the multiplication of I in A(+).

This theorem together with Theorem 1 gives us:

Theorem 3. Let A be an algebra of class SJ. Then there is an algebra G

that is a direct sum of a semi-simple associative algebra and algebras of three-

rowed matrices over a Cay ley algebra such that A=B(G, S, T).

For each component of A{+) that is an exceptional Jordan algebra we de-

fine Pr = 0. This together with the mapping of Theorem 1 defined on the

components of ^4(+) that are special gives us the desired mapping P.

4. An algebra not of the form B(G, S, T). Let P be a field of characteristic

p7L2, 3 with two elements a and ft that are algebraically independent and

transcendental over the prime field of P. Let a and b be roots of the irreducible

equations xp — a = 0 and xp — ft = 0 over P respectively. The field K = F(a, b)

is a nonsimple extension of F. The field K is a Jordan algebra under the

multiplication xy of the field. We shall now define a second product x-y such

that the vector space K is a noncommutative algebra A over F satisfying

(1) and having Al+)=K. This algebra has a basis consisting of all elements

a'b1 for s, t = 0, 1, ■ • • , p — 1. We define

asb'-ambn = as+mb'+n + (sn — lm)(a — ft)

(16)
= a'ftia'b1 + (sn — tm)(a — ft),

where s-Ym = r+pq, tA-n^i-Y-pj and Ogr, i^p — 1. Since ar=a, bp=ft and

the characteristic of K is p we see immediately that this definition holds for

all values of s, t, m and n. Now let x= Ec»a*'^"> V= ^2djam>bn'. Then x-y

+y • x = xy +yx + Ec>^y(5«wy — titni) (<x — ft) + Ec<^i("M» — nis>) (a~P) = 2xy
and A(-+) =K. However A is not commutative since ab■ ab2 — ab2■ ab = 2(a — ft)

9^0. Again let x= Ec»a"^"- Then (x-x)-x—(xx) ■x = (xx)x-Y-^lCiCjCk(sitk

+ Sjtk —tiSk — tjSk)(a—ft) = (xx)x and

x- (x-x) = x(xx)+ E cic)ck(skti-Y-sktj — tkSi — lkSj)(a — ft) =x(xx) = (xx)x=(x-x) x.

Therefore Identity (1) holds for the elements of A.
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Assume that there exists an algebra G that is a simple associative algebra

or an algebra of three-rowed matrices over a Cayley-Dickson algebra such

that A = B(G, S, T). If G is of the latter type we see that P must be identically

zero and A is commutative. Therefore we shall assume that G is associative.

We denote its product by x o y = xy for all elements of K we have x o y = y o x

and x-y = 2_1(x o y-Y-y o x) + (x o y—y o x)P = xy and there is no transforma-

tion that bonds G to A.

We shall now show that the vector space P is a commutative subalgebra

of G under the product x o y and therefore A cannot be bonded to G by the

above. Recall that xoy+yox = 2xy for all x and y in P. In particular

xox = xx so no confusion should arise from the symbol x2. Now a2 o b

= a o (a o b) = — (a o b) o a-\-2a(a o b) =boa2-\-2a(ao b) — 2a(boa) = — a2 o b

+4a(ao b) —2a2b. Soa2ob — 2a(ao b) —a2b. But a2o A= —ao b oa-\-2a(aob);

therefore (a o b o a) = a2b and (a o b)2 = (a o b o a o b) = a2b o b and (boa)2

= boa2b. We also have 2abo (ao b) =ao boao b-Yboaoao b= —aobo boa

+ 2a o b o b o a-\-a2b2 = 2(a o b) o ab. Therefore ab o (a o b) = (a o b) o ab

= (a o b)ab = ab(a o b). But ab(a o b) =ab( — b o a + 2ab) = —ab(b o a)+2a2A2

= — (b o ab) o a-\-2a2b2 = ab o b o a — 2a2b o a-\-2a2b2, so (a o b) satisfies the

identity

(17) x2 + (ab)x - 2a2b2 = 0.

Now(aoi)2 = (- boa + 2ab)2 = (boa)2 - 4ab(boa) + Aa2b2 = - (aob)2

+4afr(a o b) —2a2b2 or (a o b) satisfies the identity x2 — 2(ab)x+a2b2 = 0. This

together with (17) gives us (ab)(a o b)—a2b2 = 0. Multiplying by a_16_1 we

have (a_1A_1) o (ab(a o b)) —ab = a~*b~l o ab o (a o b) — ab = a o b — ab =0.

Therefore a o b = ab and G is commutative.

5. Subalgebras of B(G, S, T). Let A be an algebra B(G, S, T) where G is

an associative algebra.

Theorem 4. Let G' be a commutative subalgebra of G. Then G'C\A is an

associative, commutative subalgebra of A.

For if G' is a commutative subalgebra of G and x and y are in GT\A we

have xy—yx = 0. Expressing the product x-y in terms of the mapping T we

have 2xy = xy+yx+2(xy—yx)P = 2xy. Therefore products in A of the ele-

ments of GT\A agree with their products in G.

Theorem 5. Let A be an algebra of class SJ and let S be an associative com-

mutative ideal of Ai+). Then S is an associative commutative ideal of A.

The components of G corresponding to S can be taken as the associative

algebra S since S = S'-+). By Theorem 4, 5 is an associative, commutative

subalgebra of A. Since the components of A(+) form orthogonal subspaces of

A by Lemma 1 we have that S is an ideal of A.

The following theorem is a conjecture of R. Schafer [7].
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Theorem 6. Let A be a finite power-associative ring without elements of

additive order 2, 3 or 5. If every element a of A satisfies an equation of the form

an(o) =a< n(a) an integer greater than 1, then A is a vector space sum A =Ai+A2.

The subspace Ai is an ideal of A and a direct sum of finite fields. The subspace

A2 is bonded to A and A2+) is a direct sum of classical 3-dimensional central

simple Jordan algebras without nilpotent elements 5^0.

Schafer has proved [7] that under these hypotheses ^4(+) is a direct sum

of finite fields and such 3-dimensional Jordan algebras. Since the center of

each component of A^+) is a finite field, A^+) is a separable semi-simple Jordan

algebra; hence it is of class SJ. By Theorem 3 there is an algebra G such that

A =B(G, S, T). Write A = Ai+A2 where A[+) is a direct sum of finite fields

and A2+) is a direct sum of 3-dimensional Jordan algebras. By Theorem 5,

A{+) =Ai is a direct sum of finite fields.
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