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1. Introduction. The Hausdorff moment problem [9, pp. 1, 8-9] asks for

necessary and sufficient conditions on the numbers fin in order that there

exist a distribution function $ on [0, l] such that

(1) for all nEI,        M» =   f  tnd<f>(t).
J o

Here /= JO, 1, 2, • • • }. The reduced Hausdorff moment problem [9, p. 77]

asks the same question where / is a proper subset of {0, 1, 2, • • • }, usually

a finite subset. If / is allowed to be any subset, this includes the first problem.

It is known (cf. [ll, Theorem 10.30]) and easy to prove that one condi-

tion is the existence of a matrix A = ((^4.y))i"-o> such that 0^.4 ^1 and

(2) for all nEI,       Mn = (An)0o-

The matrix A may be chosen to be a Jacobi matrix, that is, Ai,= 0 lor

| i—j\ > 1; and Ant„+i^0 may be required. If / is {0, 1, 2, ■ • • }, A is then

determined uniquely, assuming the convention that any invariant subspace

of A orthogonal to the 0th coordinate subspace will be ignored. (Assuming,

that is, that if Ak,k+i=Ak+iik = 0 then in A = ((Aij)) indices will be let run up

to k only.) For finite /, A is not in general determined uniquely.

This paper gives a convenient canonical form for A. There is little trouble

in including in this result the generalized sort of moment problem introduced

by Nagy [6], where /xn above are in (B, the set of bounded self-adjoint oper-

ators on a Hilbert space 3C. One virtue of the generalized problem is its ap-

plication to the classical problem; see Proposition 4 below. Accordingly some

of the facts outlined in the preceding paragraph may as well be proved for

the generalized problem; this is done in §2, which in fact is essentially a recita-

tion in the wider setting of the proof for the classical case. The main result

is in §3. The following sections mostly examine the classical problem in light

of it. I have found the canonical form handy for getting numerical bounds on

moments, but will not discuss this use further.

Throughout the paper I use the notation 6t = l— a, where a may be a

number or an operator. If it is an operator this requires some understanding

as to the space on which it operates, but I think I have avoided ambiguity.
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2. Jacobi matrices.

Theorem 1. Let ptnE<S> for nEI, where P£{0, 1, 2, • • • }. The following
are equivalent:

(i) There exists a function $ on(l) [0, l] to <$> such that $(0")=0g$(d)

^(t2)^(l) = l for 0^h^t2£l, and such that (1) holds.

(ii) There exists a matrix A = ((4,y))<"_0, with 4,yG03, -4,-y^O, and 4<y = 0

for | i—j\ > 1; such that 0^4 ^ 1 and (2) holds.

Proof. Take /= JO, 1, 2, • • • }, because from this the result for any sub-

set of indices will follow.

Neumark's theorem [7](2) says that $(t) with the properties described

in (i) can be expressed as <b(t)=PE(t)P, where E(t) is a resolution of the

identity in a Hilbert space 3C containing 3C, and P is the projection on X

onto 3C. That is, (i) is equivalent to the existence of such 3C and an operator

4 on 3C, O^A gl, such that for nEI, fJ.n = PAnP. Now it is straightforward

to define orthogonal projections Pi, P2, • • • such that relative to the sub-

spaces PiK the matrix of 4 has the desired form; as follows.

The Pi and 4,-y will be defined inductively together with operators P,-

such that Et maps P,3C isometrically onto 3C, and P,Py = 0 for ii*j, Pi

= E?E{. Let Eo = Po = P above, that is, 3C is identified by the identity map-

ping with P0JC; 4oo = Po4Po. Suppose 4,-yG® and P,-, satisfying all require-

ments, have been defined whenever i, j = k. Let Ak+i,kE($> and P*+i satisfy

the following:

(3) PkAPk = Ek+iAk+1,kEk;

Ak+i,k = 0; Et+1Ek an isometry on the range of E*Ak+i,kEk^0. (This is a polar

resolution, for which see e.g. [8, §110].) As noted above, P*+1 is zero on SC1.

But also (3) may fail to define Ej+1 because E*Ak+i,kEk as an operator on

PkX. may have a nullspace. If so, let E*+1Ek map it isometrically onto a sub-

space of the nullspace of 4 orthogonal to EoP<3C; this is always possible

because 3£ is a space being constructed and can be augmented if desired by

a new orthogonal subspace on which A is defined to be 0. Last, of course,

define Pfc+i = P*+1P*+i and Pa+i^P*+i = P*+i4a;+i>*+iPa+i.

It is now clear that (i) implies (ii). The converse deduction is the same

only easier.

I left the facts on uniqueness out of the statement of the theorem. The

operator 4 given by Neumark's theorem is unique up to isomorphism if we

require (as we clearly may) that there is no subspace of 30. invariant under 4

and orthogonal to 3C [7]. But the construction above introduced such in-

(') With the usual understanding that *(0~) is denned. We may as well assume *(<) =*(/+).

(2) This is an appropriate occasion to acknowledge in print my mistake in announcing this

theorem as new [l]. My method, it happened, was different from Neumark's, being an ex-

tended version of a device of E. A. Michael [4, Thm. 2].
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essential subspaces of X. Before uniqueness can be asserted X must be pared

down to that subspace which actually plays a part. This is done (at the cost

of some clumsiness of statement) in Theorem 3 below.

3. The canonical form.

Theorem 2. Let (3) A = ((Ai,))"j-0,Ai,bounded operators on 3C; A =A*;and

Aij = Q for \i— j\ >1. If A has any invariant subspace orthogonal to the Oth

coordinate Hilbert space, assume A annihilates it. In order that O^A :S1, it is

necessary and sufficient that there exist rjiG® (i=l, 2, • • • ) with 0^77,^1,

and partial isometries f,- defined on X, into 3C, such that

(4) Au = fiiWiu-iW + (ifoV'WOiM)1'*)*-*,

(5) Ai-Ui  =   Ati-!   =  ftl(^2,-2)1/2('72l--l^,--l)1/2('?2,-)1/2f,-.

Here the convention is t?o = 0, ifo = l.

Some general facts about matrices will be given as lemmas. In the lemmas,

let each 3C,- be a Hilbert space; let each a,-,- be a bounded operator on 3Cy to 3d;

let aji = a* and au^O.

Lemma 1. In order that

/an     ai2\

( ) = °'\a21       022/

it is necessary and sufficient that a^iaii1 be bounded on the range of an and that

b = a22 — a2ian ai2^0.

Proof. Case I. ana^1 is densely defined but unbounded.

Then there is a sequence {x„} of unit elements of 3Ci such that ||aiix„||

approaches zero but ||a2i*>-|| does not. Selecting a subsequence if necessary

gives that for some 5>0 and for all v, ||ffl2i*»|| > 8. As a temporary convenience,

identify 3Ci with 3C2, in such a way that C2i=^0. (This may always be done, by

enlarging one or the other 3Cj if needed.) Then, by expanding ||(||a2i|| — a2i)*>.||2

g||a2i||2, one easily computes that (a2\X„ x„)>5' = 52/2||a2i|| >0. Now con-

sider

(6) P(x, y) = (anx, x) + (any, x) + (a2ix, y) + (a22;y, y).

I must show that, for some choice of x, yG3Ci, P(x, y) <0. This is accom-

plished by letting v be so large that ||anx,|| <5'2/||a22||; whence

P(||a22||a:„ -8'xy)<0

may be readily verified.

(3) The assumption Ai,^0 has been dropped. Keeping it would not obviate the nuisance

of mentioning "phases" f; anyhow.
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Case II. an has a nullspace. Then a2i may be assumed to be zero there, and

a2iar1I may be defined to be zero there. (The proof is like the preceding one,

but simpler.) Granted this, Case III applies.

Case III. a2iau1 exists as a bounded operator on 3Ci to 3C2. From this follow

the existence and boundedness of ai^au, a2iafi 2, and afi 2ai2.

Now (6) may be rewritten, by making the substitution a22=a2ia1"11ai2+A

and simplifying, as

II    1/2 —1/2 || 2
P(x, y) = || an x + an   anyW   + (by, y).

Clearly b^O implies P(x, y)^0; half of the lemma is proved. In case 6^0,

choose yG3C2 so (by, y) <0, and let x= — anlai2y. For this choice, P(x, y) <0.

Lemma 2. In order that

an    ai2    0

(7) a2i    a22    a23   ^ 0,

0 a32      «33,

it is necessary and sufficient that

(an    aii\ (c        a23\
(8) o22 = b + c, with ( 1^0, I ) ^ 0.

\02i     b   / \a32     a33I

The definite matrix is being expressed as a sum of simpler definite matrices. .

Proof. (8) is equivalent to

(9) o22 ^ anaiian + a23a33a32 s£ 0.

This results by applying Lemma 1 to 3Ci and 3C2, then to 3C3 and 3C2.

But Lemma 1 may also be applied to the pair of spaces 3Ci©3C3 and 3C2.

This says (7) is equivalent to

Jan     0   VYai2\
a22 = (an  a23) I II        I = 0,

\0        a33/     \a32/

which is the same as (9).

Lemma 3. In order that there exist a22 such that

\o2i     a22/

it is necessary and sufficient that O^an^l and a2ian1a'[11ai2^ 1.

Proof. Although I have chosen to state Lemma 3 in this simple form, a

slight generalization is needed below. What I will prove is the generalization.

Impose as upper bound on the matrix
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/on     ai2\

\a2i     a22/

not 1, but instead

(b    0\
I ),    with    0 < b.
VO    1/

This requires O^an^b, or, what is equivalent, the existence of c such that

Ogc^l and an = bll2cbin. The problem is to find a condition which, together

with Ogc^jl, is necessary and sufficient for the matrix to satisfy the in-

equalities.

Use Lemma 1 twice: for the matrix to be ^0, a222;ana^au; and for the

matrix to be

(b    0\
~ \n    1 /'       &22 ~ ^-°21^* — a")_1(-«i2)-

Such a22 can exist if and only if

1 = a22 + d22 ^ o2i(an + (b — an)    )ai2

= a2lb-l'2(c-1 + c-l)b~l>2al2 = anfr^e-^Hr^an.

(As in Lemma 1, the formula makes sense even though some inverses may

fail to exist everywhere.) When 6 = 1, e = an, giving Lemma 3 as stated.

Proof of Theorem 2. To say that O^A gl is to say that .4^0 and A£0.

Both A and A are given as Jacobi matrices with operator elements; (A)a

= C4«)~, (A)i-i,i= -At-i,i.
According to (4), A 0o = 171; so all the theorem says about A 00 is 0 ^ A 0o ̂  1.

This is evidently necessary and sufficient for the existence of A01, An, ■ ■ •

such that 0^.4^1.

Proceed by induction on k. Inductive hypothesis: That ^4oo, -4oi, • • ' >

4*-2,*-i, -4*_i,t_i satisfy (4) and (5), with 17,- and J\- as described, is necessary

and sufficient for the existence of Ak-i,k, Akk, • • • , such that the A in the

statement of the theorem will satisfy 0 ^A f£ 1.

The theorem will have been proved (4) once the following is deduced from

the inductive hypothesis: Given Aoo, A01, • • • , Ak-2,k-\, Ak-i.k-i expressed

in the prescribed form. That Ak-\,k (and of course its adjoint ^4*,j;_i) and Akk

be expressible in the prescribed form, consistently with the preceding An, is

necessary and sufficient for the existence of Ak,k+i, Ak+i,k+i, ■ ■ ■ such that

0^,4^1.
Furthermore we may simplify the discussion by assuming in the proof

that  Akik+l=Ak+i,k+i=  • • • =0,   or  that  the   matrix  expression   of  A   is

(4) To speak strictly, I must invoke the second sentence of the statement of Theorem 2 in

order to guarantee that the induction's succeeding proves the Theorem.
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(A + 1)X(A + 1). To see this, use P,-, the projections on the coordinate Hilbert

spaces, as in the proof of Theorem 1. In general 0^4^1 implies 0

^(Po+ • • • +P*M(Po+ • • • +P*)^1; while this relation, though it does

not imply 0^4 ^1, does imply the existence of some choice of Ak,k+i,

Ak+i<k+i, • • ■ such that 0^.4^1—namely, the choice that all be zero. So

takeP*+i = P,fc+2= • • • 0.

As another simplification, we may assume fo = • • ■ = f*_i=l hereafter.

(The most that could possibly be involved here is replacing one replica of

Po3C by another. If ff annihilates some of the range of an operator it premulti-

plies, either that operator or f; may be redefined.)

Consider X, the Hilbert space where 4 is defined, as the sum of the follow-

ing three spaces: 0Ci = (P0+ • • • +P*_2)3C, aC2 = P*-i3C, 5C3 = PkX. Decom-

pose 4 in this way: aa=Ak-i,k-i, etc.

Now to derive conditions on Ak-i,k and Ak,k-i= (Ak-i,k)*, apply Lemma 2.

By the inductive hypothesis, the g.l.b. (in the poset of bounded Hermi-

tian operators) of allowable values for Ak-i,k-i is »72*-2'?2*-3'72*-2- Hence, for

4 j^O the requirement on a23 is

(d       a23\

032        033/

with d=Ak-i,k~i — !?a-2^»-«'7»-2 = ri»-a>J»-iTi»-2- The same reasoning derives

a requirement from the condition 4^0. The g.l.b. of allowable values for

4t_i,A_i is »72*-2'?2*-3'?2!t2-2> so the condition on a23 is

(d'    — a23\

— a32       a33/

with ^' = 4*_i,t-i —7?2t-27/2*-3'?2i-2 = %t-2^2*:-i%jfe2-2- Combining the two condi-

tions on a23,

(d       a23\      /vik-i    0\

a32     a33J      \0 1/

because d-\-d'= r]2k-2. By the generalization of Lemma 3 (or, when A = l,

Lemma 3 itself), this is equivalent to

(10) 1   ^   ^4jfc,fc—15J2A—2172A—1^2*r—l''72fc—2^4fc—1,*;-

(Remember that a23 = Ak-llk.)

Ak_ifk may be written in the form (5) for some bounded 772*^0 and partial

isometry f*, just by virtue of the fact, contained in (10), that

-1/2.-1/2  -1/2

Igfc-rftt-tfZfc—2<4ffc—1.*

is bounded. The closure of the range of r\2k may be assumed contained in that

of fi. But when (5) is substituted in, (10) reduces readily to fif?^f*f?ij2»f*f*,
which is equivalent to r\2kgl.
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It remains to consider Akk=a&.

By Lemmas 2 and 1, the condition equivalent to A 2:0 is this:

(an     ai2\
a22 = b + c,    with    I 1^0,    and    <z33 2: a32c~la23.

\a2i     b   /

The existence of some choice for c which will allow a solution, is ensured by

the argument just concluded about a23. The g.l.b. of acceptable values for

a32C_Ia23, hence for a33, is attained when c attains its l.u.b., hence when b

attains its g.l.b.; this is not hard to prove. Also any a33 satisfying the resulting

inequality will be consistent with ^4 2:0. Now the g.l.b. of b under the restric-

tion

( ) = °
\a2i     b   /

is, by the inductive hypothesis, ri\l2__2ri2k_sri\l2_2; the corresponding value for c

is vli^^ik-iv-ik-^ Using this, and using (5) for a23 and <z32, the condition on a33

equivalent to A 2:0 becomes

(11) <*33  ^   f^A-)"2^-!^)1'2^.

By similar reasoning, the condition on a33 equivalent to A 2:0 becomes

(12) 533 22 ^k(V2kYl2V2k-i(v2kyl2h-

Assuming(5) as in analogous situations above that a33 = fk$*a3i, we see that

the only effect of f/t?^l is to oblige us to deal with $*as£k in the rest of this

paragraph, so assume f* = 1. Now a^ — yltvw-ivlk is an operator which when-

ever (11) holds is 2:0 and which whenever (12) holds is Smk. Hence it may

be written in the form gj* i/2*+iTi» lor some 7j2*+i with 0^rj2it+i^l. This ex-

presses a& = Akk in the required form (4).

The proof is complete.

Next I combine Theorems 1 and 2, in a somewhat superior formulation.

Definition. Let X = Xo^.Xi^_X2^ ■ ■ ■ be Hilbert spaces; let A{j be a

bounded operator on Xj to Xi, for i, j = 0, 1, 2, • • • . Then A = ((Ai,)) is an

operator with domain in X= E'"©^*' where Xi is a replica of Xi, defined in

the natural way: denoting x= E®-Ti an^ Ax= E©(Ax),, then (Ax)i

= E; AijXj. Evidently A need not thereby be everywhere defined. This is

called an expression of A as a pruned matrix with respect to the given de-

scending sequence of subspaces. The usual rule for matrix multiplication of

course applies to pruned matrices.

Theorem 3. Let ixnE<$> for nEI, where JCJO, 1, 2, • • • }. The following

are equivalent:

(5) See footnote 4.
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(i) There exists a function <& on(l) [0, l] to ($> such that $(0~) = 0=:&(h)

^$(t2) ^$(1) = 1 for 0£ti£h£l, and such that

(1) for all nEI, »n =   I   tnd$(i).

(ii) For i=l, 2, ■ ■ ■ , there exist subspaces 3d, 3C,'+iCI3C,C3Co = 3C; and

there exist r]nE(&, with 0^tj„^1, with the closure of the range of r)2i being 3d,

the range of r72«+i being C3C,, and the range of r;2;_ir]2;_i being 23CiI such that

the pruned matrix A = ((4,-y)) defined by

(4') An  =   (r,2iyi2V2i-l(V2iy12 +   (v2iyl2V2i+l(V2i)m,

(5') ii*.!., = ii*.v-i =  (vti-i)1"(r|i^lV«-l)1't(r|li)l|,,

4a = 0 for \i—j\ > 1, satisfies

(2) for all nEI,        M» = (An)oo-

Here the convention is r?o = 0. Necessarily 0^4 ^1.

// /= (0, 1, 2, • • • }, then the 7]n and the ptn uniquely determine each other.

In fact, r\n is determined by those lip with p^n, and conversely, /x„ is determined

by those -qv with p^n.

No detailed proof need be given. The unsightly conditions put on the 3d

and the t/„ bar the introduction of inessential subspaces to X, and the unique-

ness assertion of Neumark's theorem can be invoked(6). The strong unique-

ness statement of the last sentence of Theorem 3 now involves no ideas not

already enlisted in the proof of Theorems 1 and 2. A full proof may be

supplied by the reader immune to tedium.

Note. Since tj2, is always zero on 3£f, it might be suggested that it and ij2i

be defined only on 3C,-. However, it turns out to be more natural to define

?72; = 0 and 7J2i = l on K.^. Odd subscripts are different: r72,+i and ?72l+i enter

just as symmetrically as A and A do. We may reasonably stick to 7724+1

= ^2i+i = 0 on 30,1.

4. The classical case. Here the Hilbert space 3C is 1-dimensional, so mem-

bers of (B are real numbers. In particular, /j„G [0, l]. In (4') and (5'), every-

thing commutes, and ^4;_i,;=i0. It may be that 3d = 3Q. ior all i, in which case

A has rows and columns indexed 0, 1, 2, ■ • • ; or, from i = k on, 3C,- may be

zero, in which case A is AX A.

Theorem 1 is more closely related than it might appear to the standard

solution [9, Theorem 1.5] of the Hausdorff moment problem. One considers

the mapping M on polynomials defined by

M(aJn + • ■ • + ao) = an nn + • • • + a0.

The condition put on the /in is that Ath order differences all be non-negative

(6) See the last paragraph of §2.
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for all k. This is proved equivalent to the positivity of M as a mapping on

polynomials on [0, l]. Neumark's theorem [7] may be regarded as asserting

that such M is obtainable as a homomorphism to another C*-algebra fol-

lowed by a projection [10, §l]. But any C*-algebra which is a homomorphic

image of the C*-algebra of continuous functions on [0, l], is generated by a

single operator A, the image of the polynomial I. There must be an operator

A and a projection P such that n„P = M(t")P = PAnP. As above, if E(t) is

the spectral resolution of A and $(t) =PE(t)P, then fxn=fltnd^(t). Tools

used in [6] extend this to the case where the ixn are operators.

The foregoing remarks are not advanced as an improved or even an alter-

nate proof of the Hausdorff moment theorem. They avoid no difficulty of the

standard proof, and they entail new ones. The aim is merely to make the

relation explicit.

But now, the operator homomorphism having been introduced, the

canonical form of Theorem 3 above is made available. I will apply this to the

classical case.

5. Relation between the parameters and the distribution. Throughout the

rest of the paper, except where otherwise stated, yt„ are numbers, A is the asso-

ciated matrix in the sense of Theorem 3, with numerical parameters wn, and $(t)

is the associated distribution.

Proposition 1. The set of points of nonconstancy of$(t) is exactly the spec-

trum of A.

This is obvious from Theorem 1.

Definition (cf. [12; 5, §9]). A distribution on [0, l] is of degree m, with

m = l/2, 3/2, ■ • • , provided it is concentrated in w + 1/2 distinct points

ao<c<i< ■ ■ ■ <am-i/2, and either a0 = 0 or am_1/2=l (but not both). In the former

case the degree may be written m*, in the latter case m*.

A distribution on [0, l] is of degree m, with m = l, 2, ■ ■ ■ , provided either

it is concentrated in m distinct points a,-, 0<ao<«i< • • • <«m-i<l, in

which case the degree may be written m*; or

it is concentrated in w + 1 distinct points a,-, 0=«o <ai< ■ ■ • <am = l, in

which case the degree may be written m*.

Proposition 2. Let the sequence {»/„} terminate at t]2m, where m = l/2, 1,

3/2, 2, • • • . That is, let ?7ii}i>0, ■ ■ • , n2«-i^2m-i>0, r]2mfi2m = 0. If r]2m = 0,

<J? is of degree m*; if rj2m = 1, $ is of degree m*. Conversely, all $ of finite degree

arise in this way.

Proof. Let k = l, 2, ■ ■

If r]2k = 0, A is kXk and can have at most k distinct eigenvalues. Then by

Proposition 1, $ has at most k points of nonconstancy. Similarly if 172,1-1 = 0,

?72*-l = 1, Or 772t-2 = 1.

Conversely, suppose the distribution <£ concentrated in exactly k distinct
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points. The construction of Neumark's theorem in this case(7) yields an 4

which is AX A. By the last paragraph of Theorem 3, no different 4 will do.

Therefore {r]„} terminates at r)2k = 0, 7724-1 = 0, r;2t_1 = l, or r/at_s=l.

If 1724-1 = 0, Ak-i,k-i is 772*_3T72fc_2, and, by Theorem 3, diminishing 4t_i,t_i

while leaving other matrix elements unchanged would make 4 = 0 cease to

hold. But if there was a positive lower bound to the spectrum of 4, a suffi-

ciently small positive multiple of any positive semidefinite matrix could be

subtracted from A keeping the result = 0. Therefore 0 is an eigenvalue of A.

Similarly, if r;24_i = 1, 1 is an eigenvalue of 4 ; and if 772^—2 = 1,0 and 1 are eigen-

values of 4.

Conversely, let $ as above have 0 as a point of nonconstancy. Now it may

seem that the corresponding eigenspace of 4 could be orthogonal to the

(A —l)th coordinate space; suppose this, and let the/th coordinate space be

the highest to which it is not orthogonal. Then reduction of 4yy would be

inconsistent with 4^0. It follows that either rj2y+i = 0 or iy2y=l (otherwise

diminishing of 7723+1 would be an available way of diminishing 4yy). If/<A —1,

this is a contradiction. For/ = A — 1, it gives the desired conclusion that either

7?2fc-i = 0 or 772,b_2 = l. Similarly, if $ has 1 as a point of nonconstancy, either

7724—1 = 1 or 772fc—2 = 1 •

The statement of Proposition 2 is exactly the expression of the facts just

proved in terms of the preceding definition.

In this proof I bypassed the question of whether in general an eigenvector

of 4 can be orthogonal to the last coordinate space. The question is worth

settling, though. To begin with, no eigenvector of 4 can be orthogonal to the

0th coordinate space, as already remarked. But also any admissible finite-

dimensional A remains admissible when the order of rows and columns is

reversed. (The proof of this fact is omitted; it involves retracing some of

Theorem 2, in the classical case. Of course, reversing the order of rows and

columns does not merely reverse the sequence of parameters t)„, but replaces

them by an entirely new sequence.) Therefore no eigenvector of A can be

orthogonal to the last coordinate space. This is used in Proposition 4 below.

Proposition 3. PAe other t]p being held constant, fin is a strictly increasing

linear function of r\n.

Proof. I mean to imply by granting the existence of vn that the earlier

parameters do not have extreme values. The later parameters, on the other

hand, are without effect on jxn, so 77n+i = 0 may be assumed.

Let B differ from 4 only in having ijn = 0.

Case I. n = 2i-\-l. Then 4 is (t + l)X(* + l) with last entry .4 ,-, = 7721-1772,

+ 7?2iT)2l+i. The only entry in which B differs is Bu = 772,-1772,. Therefore

(7) Alternative constructions exist in this simple case and even somewhat more generally,

e.g., [3].
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M2.+i = U2i+1)oo = ((B +(A- B))2^)oo

= (B2t+1)oo + BoiB\2 • • ■ Bi-i,i(A — B)uBij-i ■ ■ ■ B2iBio

=   (B2i+1)oO + '7l^l'?2'?2   •   •   •  ^2i-l»)2i'72t172»+l,

and only the last term involves 1721+1-

Case II. n = 2i. Since A is (i + l)X(* + l) and B is iXi, adjoin to B a zero

last row and column.

0 0 0

A   —   B   =      0 0 (i72i-2»72i-1^2x-l1?2<)1/2    ,

.0       (^2i-2'72i-li?2i-l'721)1/2 V2i-lV2i

where the zero initial row stands for i — 1 such, and likewise for columns.

{A2i~l)oi = ((B +(A - B)Y'-')oi

= GB2i-')oi + BnB» ■ ■ ■ Bi-2.i-i(A - B)i-ui{A - B)i,^1Bi-1,i-2 ■ ■ ■ B21

=  (-B2l-1)oi+ (r)iriir]2yl2ri2V3 '   '   ' >?2»-3»j2i-2^2i-2l?2i-1^2t-l»72»,

and by a similar argument (^42'_1)0o = (B2i~1)oo- Therefore

M2i = (A2i)00 = (B2i)oo + U""1 - B2i~l)oiB10

= (B2i)oo + rtiViViVi • • ■ ri2i-ihi-iV2i,

and only the last term involves 172,-.

The following proposition, suggested naturally by the last two, is much

harder to prove.

Proposition 4. Let the sequence \v„} terminate at rj2m, where m = l/2, lj

3/2, 2, • • • . Let ao<«i< ■ • • be the eigenvalues of A, and let i be such that

0<a;<l. If 772m = 0, di is a monotone strictly increasing function of r\2m_\; if

W2m = 11 cti is a monotone strictly decreasing function of r)2m-i.

Proof. Let k = l, 2, ■ ■ ■ .

Case I. t?2*+2 = 0. Then A is (k + l)X(k + l), and 7724+1 appears only in

Akk = 7}2k-ii)2k+fj2ky2k+i. Therefore to increase 7724+1 is to add to i a positive

semidefinite matrix having a strictly positive eigenvalue in a subspace not

orthogonal to any eigenspace of A (see the remark following Proposition 2).

The conclusion follows in this case, by virtue of the following general

property of matrices [8, p. 236].

Lemma 4. Let a0<ai< • • ■ <an be the eigenvalues of the (« + l)X(« + l)

Hermitian matrix A ; let a0' <a{ < ■ ■ • <«„' be the eigenvalues of A+B, where

5 2:0. Then <Xi^a'(, with equality if and only if the eigenvector corresponding to

«i is annihilated by B.

Now the remaining cases of Proposition 4 will be proved by reducing them

similarly to Lemma 4.
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Case II. 772^+1 = 0. Again 4 is (A + 1)X(A + 1). For any value of 7724 it has 0

as a simple eigenvalue, so it is natural to change basis and restrict attention

to the complementary A-dimensional invariant subspace.

Now in order to do this I will in a formal sense reduce the case of

arbitrary A to the first case, 773 = 0. Keep the given 4, but regard it as a 2X2

matrix, whose top left entry 400 is itself a AXA matrix (in contrast to the

former .400), and whose bottom right entry An is the former 444- In the ter-

minology of Theorem 3, 3Co is A-dimensional, 3d 1-dimensional. Also by 771 we

shall now mean the matrix 4oo; and 401 = 4^= (771771) 1/2772/2, 4n = ?72/277i772/2.

The new 772 is the former 7724—on the subspace 3Ci, not on the whole space;

772 is zero on 3CJ-, so 772 does not commute with 771.

So regarded, 4 has as its domain 2-vectors with components x0G3Co and

XiG^C]. The range consists of those of the form

/      0h)1/s*o      \
y = I , xq e 3Co.

I have to consider the eigenvalues of A acting on such y, that is, to consider

minimax values of (Ay, y)/|(y||2. This can be replaced by a minimax problem

on 3Co- Set G = rn-\-rjY2jri2ii\/2. Then ||y||2 reduces to (Gx0, x0); or ||y|| =||wo|| if

w0 = Gll2Xo. A further computation gives (4y, y) = (G2x0, x0) = (GwQ, w0). The

problem is therefore to find the dependence on 772 of each eigenvalue of G.

To increase 772 to a new value 772' is to add to 771 -|— 77i/277277i/2 a positive semi-

definite matrix, hence no eigenvalue can be decreased, by Lemma 4. But can

the iih eigenvalue be unchanged? Only if the ith eigenvector Woi is anni-

hilated by 77}/2(t72' — 772)t71/3. This operator is a numerical multiple of 7Ji}/277277}/2;

hence Wm would have to be an eigenvector of 771, hence of tj[/2; hence w0,

would have to be annihilated by 772. Suppose this is the case. Adjoining to Woi

a zero last component gives an eigenvector of 4 which is orthogonal to the last

component subspace—a contradiction (see again the remark following Propo-

sition 3). Hence all eigenvalues are strictly increasing.

Case III. 7724+1 = 1. Apply Case II to 4.

Case IV. 7724+2= 1. This time A is (A+ 2) X(A + 2) and has 0 and 1 as simple

eigenvalues. The proof copies Case II.

Rewrite A, letting 771 now be AXA (3C0 A-dimensional), letting 772 be the

former 7724 (on the 1-dimensional 3Ci only), and letting 773 be the former

7724+1 (on OCi). Since 772<->77s,

771 (viVi)1'2^)1'2 0

A =   (my^vivi)11*   Mmm(v2)1/2 + vm   (ijivm)1'2 ■

0 (772773773)1/2 773

The range oi AA consists of those vectors of the form(8)

(8) This expression is justified only by using the convention in the last paragraph of §3:

772 acts on all 3C. It is nonsingular there, for jj8<1, and 7% is 1 on 3Cf.
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' (™i)1/2(t)2)1/2X0

y =   (v2Yn(h - vs)(h)inx0 , x0 E x0.

- (7727737)3) 1/2*o

I have to consider (Ay, y)/||y||2 for such y. Set ff = t)2/2 77 i7k/2 +77277V Then(8)

||y||2=(ffffx0, ^o)=||w0||2 if w0=(HH)ll2x0. A longer computation yields(8)

(Ay, y) = (H2Hxo, x0) = (Hw0, w0). The problem is therefore to find the de-

pendence on 773 of each eigenvalue of ff.

To increase 773 to a new value 77/ is to subtract from % 771 rj22-\- 7727)3 a posi-

tive semidefinite matrix which is 0 on Xi. The ith eigenvalue must be strictly

decreased; justifying the word "strictly" is even easier here than at the end of

Case II.
From Theorem 3 and Propositions 1-4, involving the 77,,, some familiar

relationships between the At„ and $> are immediate. (In the following state-

ments, m = l/2, 1, 3/2, 2, • • • .)

From Theorem 3 and Propositions 1 and 2—■// jui, • • • , n2m-i are the

first 2m —1 moments of any distribution, they are the first 2m —1 moments of a

distribution of degree at most m.

From Theorem 3 and Propositions 2 and 3—Consider the set of all distribu-

tions having jui, • • • , fj.2m-i as the first 2m —1 moments. Assume the set contains

no distribution of degree less than m. Then the maximum value of the 2mth

moment within the set is attained for just one distribution: the unique one with

degree m*. Similarly the minimum is attained just for the unique disribution

with degree m*.

From the foregoing with Proposition 4—If $1 and $2 are different distribu-

tions, both of degree m* (or less), or else both of degree m* (or less), and having

the same first 2m —2 moments, then their points of nonconstancy are interlocking

sets of real numbers; except that they may have 0 and-or 1 in common.

6. Relation between the parameters and associated determinants. If

aij=fii+j lor i, j = 0, 1, • • • , k, then define det (a,j) =A*2k. If ay=/t,+y+i for

i, / = 0, 1, ■ • • , k, then define det (a^) =A*»+i- If a,-,=ju,+y+i— /t»+y+2 for

i, j = 0, 1, • • • , k — 1, then define det (a;y) =A*jt. If o,/ = ju,+y— M«+y+i for

i,j = 0, 1, ■ ■ ■ , k, then define det (a.y) =A2k+1.

It is known (see e.g. [5, Chap. 4]) that a finite sequence of numbers

fin, Mo = 1, can be the beginning of a nonextreme Hausdorff moment sequence

if and only if all the An which can be formed from them are positive. Also

it is clear from the definitions that each An depends only on iii, • • • , m„; and

that A*n is linear strictly increasing in /jn but A* is linear strictly decreasing

in iin. The facts concerning the 77,, proved in Theorem 3 and Proposition 3

show a strong resemblance. Indeed it is a matter of elementary algebra

(which I omit) to deduce from the cited facts that

* / *
771171772 • ■ • 77„_i77n_i77„ = A*„/A*n_2,       77117J772 • • • 77n_i77„_i7;n = A„/An_2,

which may alternatively be expressed
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*
Vn A*nA„_2

7J„ AnA*„-2

This is simple enough, yet I do not know how to prove it any more directly.

7. Subsidiary remarks.

Remark 1. The representation of operators in Theorem 2 is in a sense in

close analogy to their representation by the spectral theorem. Consider only

the classical case (i.e., the P.- of Theorem 1 are 1-dimensional). The spectral

theorem puts operator 4, if it has only point spectrum, in the form of a sum

of multiples of orthogonal projections. Theorem 2 puts 4 in the form of a

sum of multiples of 1-dimensional projections Qit i = l, 2, 3, • • • , where the

QiQi are required to be zero(9), not for i&j, but only for \i—j\ > 1. I specify

the Qi\ QiPj = 0 unless/ = i— 1 or j = i, while in the coordinate system adapted

to Pj_i and Pi,

_ / 772j_2772,-_l (772,_2772l-_l772i-l7?2x)1/2\

(7721—2772»—1 + V2i-lV2i)Qi  =  1 _ _ )■
\(772i-2772,-l772,_l772,)1/,i r]2i-l'>l2i /

Then 4 = E» ('fci-si/ai-i+Tfe.-ifftOG*-
From this point of view Theorem 2 is not in its most general form, to be

sure, because of its second sentence. Removing this limitation is no problem.

Remark 2. Suppose the questions taken up in this paper are asked for

distributions on some other set than [0, l]? In order for the same considera-

tions to apply immediately, that set must be a finite interval [a, b]. The

parametrization of a Jacobi matrix B, a^B^b, deserves to be given ex-

plicitly. It is in terms of £1, i72, £3, 774, • • • , with a^£2,+i^6, O^rja^l. These

parameters may be operators in (B, that is, this is not restricted to the classical

case. Define |=a+6— £. Instead of (4'), (5'), we have

(4") Ba  =   (»?2,)1/2I2i-l(772,)1/2 +   (Viiy^2i+l(V2i)m,

(5") 73,_M = P*,_i = (r72,_2)1/2(£2i-ii2,-i - abyi*(v*i)llt,

i,j = 0, 1, 2, • • • ; and P,y = 0 for I i—/| >1. (Again, 770 = 0 is the convention.)

For a = 0, 6 = 1, this reduces to (4'), (5'), with the obvious notational equiva-

lences.

Remark 3. The canonical form of Theorem 3 suggests as a byproduct still

another parametrization of all Hausdorff moment sequences. Define Xi

= 7/1 — 7/1, and for n > 1,

(13) X„  =   2"-1{77i7li   •   •   •  77„_l7^ra_1} 1/2(77n  —  TJn).

Alternatively, this could be written in terms of angles 6nE [0, tt] defined by

cos 6n — Vn — r\n\ the advantage would be the more "geometric" formulas

Xi = cos $1, and for n > 1, x„ = sin di • • ■ sin dn-i cos 0„.

(9) In the unconventional terminology of Guttman [2], the (), (or rather vectors in their

respective ranges) must form a "perfect simplex."
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In any case, the facts are easy to prove: By Theorem 3, Hausdorff

moment sequences correspond 1-1 to sequences of numbers ?7n£ [0, l],

n = l, 2, • • • , provided any sequence is regarded as terminating at the first

77„ which is equal to 0 or 1. But (13) gives for each such sequence a unique

sequence of real numbers xn, » = 1, 2, • • • . It is easy to verify from the

identity (77— fi)2A-4r]rj = 1, that Ex«=l- Conversely, xn real and Exn=l

imply that (13) may be solved successively for 77,, until some rjn is 0 or 1. The

unit ball (unit sphere and its interior) in real Hilbert space of countably

infinite dimensionality has been put in 1-1 correspondence with Hausdorff

moment sequences, hence (see e.g. [13, Theorem 6.1 ]) with distribution

functions on [0, l].

77„ = 0 or 1 if and only if x„+i = x„+2 = ■ • • =0. Such points lie on, but are

far from exhausting, the unit sphere in the space. The corresponding dis-

tributions are exactly those concentrated in a finite number of points.

The distribution $ corresponding to the center of the sphere may be shown

(using [5, §25]) to be given by

dt
d$(t) =-

T(t(l-i)Y'2
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