
FRAGMENTS OF MANY-VALUED STATEMENT CALCULI

BY

ALAN ROSE AND J. BARKLEY ROSSER

1. Introduction. In 1930 (see [l]), Lukasiewicz and Tarski discussed the

axiomatization of many-valued logics of a more general sort than originally

axiomatized by Post in 1921 (see [2]). We propose to develop these ideas a

bit further.

In particular, let us consider statement calculi based on a set, 3, of truth-

values. We make the following assumptions about 3. If x is in 3, then 0 ^ x ^ 1.

3 is nonempty. 3 is closed under application of the functions c and n, where

(1.1) c(x, y) =min (1, 1— x-\-y),

(1.2) n(x) = l-x.

Obviously 3 must contain 0 and 1, and may perhaps contain only these.

If 3 contains M members, then 3 must consist of the rational numbers

1 2 M - 2
0,-> -1 • ■ •  >-> 1,

M - 1    M - 1 M - 1

as one can conclude by an analysis like that given by McNaughton (see [3]).

A similar analysis shows that if 3 has an infinite number of members,

then these must be everywhere dense in the interval [0, l]. Possibilities are

that 3 might consist of all rationals in this interval, or of all reals in this

interval. Many other possibilities exist, such as that of choosing an irrational

6 and letting 3 consist of all reals of the form a+bO with O^a+60^1; here

one may set such requirements as that a and b should be integers, or that a

and b should be rationals.

The members of 3 are commonly called truth-values; we shall usually

refer to them just as values.

It is common to separate 3 into designated and undesignated values. This

is done as follows. One chooses a real number S with 0 ^ S ̂  1. All members of

3 less than S are undesignated and all members greater than S are designated.

If S is itself a member of 3, one must also specify whether S is designated or

undesignated; however we set the requirement that 0 shall always be un-

designated and 1 shall always be designated. If there are M values of which

5 are designated, then l^S<M, and the designated values are just

M-S   M-S+l M - 2

M - \'     M - \     ' ' M - l'
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An obvious linear transformation will identify this case with that considered

by Rosser and Turquette (see [4]).

In many of the later sections, we leave 3 and S quite general. In other sec-

tions, we impose special conditions, such as that 3 have M members or that

8 = 1.
In various sections, we shall make use of selected ones of the statement

functions, C, N, J, T, and D. With each of these, we associate truth-value

functions c, n,j, t, and d, as follows:

(1.1) c(x, y)=min (1, 1— x+y),

(1.2) n(x) = l-x,

(I if x = 1,

d-3) J(«) = L .,       . /{0   if   X 9^  1,

M - 2
(1.4) l(x) =-,

M - 1

Can undesignated value if x is designated,
(1.5) d(x) = <

(a designated value if x is undesignated.

In the above, x and y are restricted to lie in 3.

Since 3 contains both 0 and 1, it is closed under application of j. We will

use T only when 3 has M members, in which case 3 is closed under application

of/. Clearly (1.5) does not define d uniquely, but only puts certain restrictions

on it. For our uses, it suffices that d be some specified one of the functions

satisfying (1.5). Clearly 3 is closed under application of d. Not uncommonly,

d is made precise as follows

CO if x is designated,
d(x) =  <

(1 if £ is undesignated.

However, we do not need to be so specific.

Of these functions, we shall take C, N, and T as undefined if we use them

at all. If 3 has M members, then / and D can be defined in terms of C and N

(see [3] or [4], for example) and we shall consider them as so defined. Note

that the definition depends on M, and in the case of D on 5 also. If 3 has an

infinite number of members, then / and D are taken as undefined if they are

used.

In various places, we will make use of certain of the functions A, K, B,

L, I, &, and E defined as follows:

(1.6) APQ for CCPQQ,
(1.7) KPQ for NANPNQ,
(1.8) BPQ for CNPQ,
(1.9) LPQ for NCPNQ,
(1.10) IPQ (or ADPQ,
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(1.11) &PQ for DADPDQ,
(1.12) EPQ for LCPQCQP.

Then each of these has an associated truth-value function as follows:

(1.13) a(x, y) =max (x, y),

(1.14) k(x, y) =min (x, y),

(1.15) b(x, y) =min (1, x+y),

(1.16) l(x, y) =max (0, x+y — 1),

(1.17) a{x, y) is designated if either of x or y is designated,

(1.18) a(x, y) is undesignated if both of x and y are undesignated,

(1.19) i(x, y) is designated if x is undesignated or y is designated,

(1.20) i(x, y) is undesignated if x is designated and y is undesignated,

(1.21) &(x, y) is designated if both of x and y are designated,

(1.22) &(x, y) is undesignated if either of x or y is undesignated,

(1.23) e(x, y) = min (1 — x+y, 1— y+x).

In particular, e(x, y) = 1 if and only if x = y.

Note that A and 2? are analogous to the inclusive "or" function of the

usual two-valued statement calculus. Each will be seen to have some, but not

all, of the familiar properties of the two-valued "or." Similarly K, L, and &

are analogous to the two-valued "and," C and I are analogous to the two-

valued "implies," iV and D are analogous to the two-valued "not," and E

serves as an equivalence relation.

If a is a non-negative integer, we allow ourselves to indicate a repetitions

of a block of symbols by enclosing the block in parentheses and adjoining

the exponent a. Thus we may write

(CP)0Q   for   Q,

(CPYQ   for    CPQ,

{CPYQ   for    CPCPQ,

(CPYQ FOR CPCPCPQ

etc.

Then with (CP)aQ, (BP)aQ, and  (LP)aQ there are associated truth-value

functions as follows:

(1.24) ca(x, y)=min (1, y+a(l-x)) (O^a),

(1.25) ba(x, y) = mm (I, y+ax) (O^a),

(1.26) la(x, y)=max (0, y-a(l-x)) (Oga).

We define

(1.27) BaP for {BPYNCPP (O^a),
(1.28) LaP for {LPyCPP (O^a),
(1.29) VaP for EPNB^P (1^«),

(1.30) WaPQ for EPBaQ (O^a).
These have associated truth-value functions as follows:

(1.31) ba{x)=mm (1, ax) (O^a),
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(1.32) /„(*)= max (1, l-a(l-x)) (O^a),

(1.33) va(x) = 1 if and only if ax=l (l^a),

(1.34) wa(x, y) = 1 if and only if x = min (1, ay) (O^Sa).

As in [4], we define a chain symbol V by the following recursion:

(1.35) If j3<a, then r?_a P{Q denotes Q.

(1.36) If j3^a, then Tf=a PtQ denotes CPfTfrJ P^.
The associated truth function is:

y (a^p+1),

(1.37) yi=a(xi;y) = \ / '      \
minf 1,0+1 -« + ?-!><) (a ^ 0).

We note that if all the P/s are identical with P, then

(1 • 38) rtaP,Q is (Cp/+1~aC (a g j8 + 1).

We also define a generalized summation by the following recursion:

(1.39) If /? = «, then £)f=« P< denotes Pa.

(1.40) If /3>a, then X)f=« P< denotes ̂ P^f..-,,1 P<-
The associated truth-value function is

(1.41) max (xa, xa+i, • • • , */j).

A perennial problem is to make some choice of 3, S, and of a set of un-

defined functions, and then to ask for a set of axioms and rules from which

one can derive exactly those statement formulas (in the sense of [4, pp. 13—

14]) whose corresponding truth-value functions take only designated values.

We shall present some fragments of a general theory, and then enlarge these

to give complete solutions in a number of special cases.

In [l], it is stated that Lukasiewicz conjectured that if 3 has an infinite

number of members and S = l, then the following rule and set of axiom

schemes give a solution when C and N are chosen as the undefined functions.

Rule C. If P and CPQ, then Q.
Axiom schemes:

CPCQP.

CCPQCCQRCPR.

CAPQAQP.

ACPQCQP.

CCNPNQCQP.

In §13 we shall prove this conjecture. Incidentally, we note that C. A.

Meredith and C. C. Chang have recently shown how to derive the fourth of

these axioms from the rest.

In [8], on p. 240, M. Wajsberg announced that he had a proof of Luka-

siewicz's conjecture. However, apparently Wajsberg's proof was never pub-
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lished, since in [9], on p. 51, Tarski refers to Wajsberg's proof but cites only

[8].
When S = 1 and 3 has an infinite number of members, then the set of

formulas based on C and N which take designated values exclusively is inde-

pendent of the further details of the composition of 3. This enables us to as-

sume that 3 consists of the rationals in the interval [0, l] when dealing with

axiomatization in the case when S = 1 and 3 has an infinite number of mem-

bers and C and N are the undefined functions.

If S<1, the situation is not so simple. For instance, take 8 = 1/2, take 3

to consist of the rationals and take 1/2 as not designated; then C(CP)iQCPQ

can take an undesignated value, namely 1/2. Alternatively, take 8 = 1/2

again but take 3 to consist of all reals of the form a+bO with O^a+bd^l,

where 9 is a fixed irrational and a and b are integers. As 1/2 is not a member

of 3, we need not specify if it is designated or not. In any case, whatever we

decide about making 1/2 designated, we conclude that C(CPYQCPQ must

take only designated values, since its minimum possible value is 1/2 and it

cannot take that value since (with this specification of 3) the only rational

value that C(CP)2QCPQ can assume is 1.

We do not make an effort to furnish an axiomatization for any of the

cases where S < 1 and 3 has an infinite number of members. We mention that

if S<1, then Rule C is not acceptable. Possible alternatives are:

Rule JC. If JP and JCPQ, then JQ.
Rule I. If P and IPQ, then Q.
When one considers the case where 3 has a finite number of members, the

situation changes a bit. Even when S = 1 the set of statement formulas

which take designated values exclusively depends on the number of members

of 3. In particular, if 8 = 1 then CiCPYQiCPY^Q takes only designated

values if and only if 3 has a or fewer members.

In [4] have been given systems of axioms for each case in which 3 has a

finite number of members. These axiom systems are very general with regard

to which statement functions are taken as undefined. If C and N, or C and N

and T, are taken as undefined, one can get systems of axioms with fewer

axioms than are used in [4]. This we do, and the results are summarized here-

with.

If C, N, and T are taken as undefined and 3 has M members, then:

(a) Rule C and six axiom schemes suffice if 8 = 1 (see §5),

(b) Rule I and eight axiom schemes suffice if S<1 (see §8).

If C and N are taken as undefined and 3 has M members, then:

(a) Rule C and five axiom schemes suffice if 8= 1 (see §14). However, in

§6 we give an alternative treatment involving Rule C and seven axiom

schemes because the alternative development seems of interest and is fairly

short. Also the alternative development is far simpler than the development

depending on five axiom schemes, and avoids the excessive metamathematical

difficulties of the more sophisticated development.
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(b) If n is the number of axiom schemes required when S = 1, then Rule I

and 3+ra axiom schemes suffice if S<1 (see §9).

2. A fragment of the C-calculus. In this section, we derive a number of

consequences of the following rule and axiom schemes.

Rule C. If P and CPQ, then Q.

Al. CPCQP.

A2. CCPQCCQRCPR.

A3. CAPQAQP.

We introduce the usual yields sign, I—, (see [4, p. 34]) and let its significa-

tion depend on the current set of axioms and rules. Thus throughout this

section, we shall use I— as depending on Rule C and axiom schemes Al,

A2, A3. As we change axioms or rules, we shall make the corresponding

change in the signification of h without comment.

We introduce the special notation

Pu-'-,P.\-Q-R

to denote that both of

Pi, • • • , P„ h CQR,

Pi, • • • , P„ h CRQ

are valid. Obviously we have Pi, • • • , P„\-Q = R if and only if we have

Pi, • • • , Pn\-R = Q; also, from A2 and Rule C, we infer that if Pi, • • • , P„

\-Q = R and Pi, • • • , Pn\-R = S, then Pu ■ • • , Pn\-Q = S. We shall use

these properties without comment.

Another principle which we shall usually use without comment is

(2.1) CPQ, CQR\-CPR,
which follows from A2 and Rule C.

By interchanging P and Q in A3, we infer:

(2.2) \-APQ=AQP.
Since A2 gives CPQhCCQRCPR and CQPhCCPRCQR, we infer:
(2.3) If Si, ■ • • , Sn[~P = Q, then Su ■ • ■ , Sn\-CPR = CQR.
By taking Q to be CQP in Al, we infer

(2.4) ^CPAQP,
whence we get

(2.5) Y-CPAPQ
by A3. Consequently, we infer |— CQAQR, from which by A2 we get

hCCAQRCPRCQCPR.

However, by putting CQR for Q in A2, we get

h CCPCQRCAQRCPR.
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By these two formulas we get

(2.6) hCCPCQRCQCPR.
Interchanging P and Q gives

(2.7) \-CPCQR = CQCPR.
By applying (2.6) to A2, we get

(2.8) hCCQRCCPQCPR.
Using this, we may reason as in our derivation of (2.3) to infer:

(2.9) If Si, ■ ■ ■ , SnhP = Q, then Su • • • , SnhCRP=CRQ.
In (2.6) take R to be P and use Al. This gives \-CQCPP. By taking Q

to be any proved result, we get

(2.10) hCPP,
(2.11) \-P = P.
By use of (2.3), (2.9), and (2.11), we can prove the standard type of

equivalence and substitution theorems to the effect that if Si, • • • , S„h-P

= Q, then under the hypotheses Si, • • • , S„ one can replace occurrences of

P by Q at will in statement formulas built up by use of C alone. We shall

make such substitutions without comment. In particular, because of (2.2),

we now have full commutativity of A, and will use it freely.

Theorem 2.1. Let Qi, ■ ■ ■ , Q, denote an ordered set of statements among

which each of Pi, • ■ • , Pp occurs at least once. Then

(2.12) r-CTt1PiPr?_1<2iP.

We can use the proof given for Lemma 3.1.4 on p. 35 of [4].

Similarly, by using the proof given for Lemma 3.1.3 on p. 35 of [4], we

can infer:

(2.13) h ccpQcrt-1 RiPft i Pi<2-
Suppose we have rf=i SiCPQ. Then we get CPrf=J StQ by Theorem 2.1,

and then CT?_i RiPT^ P,Tf=l StQ by (2.13). Consequently
(2.14) rf., RtP, rf_, SiCPQhTf.1 RtTl, S,Q.
By means of this, we can prove a generalized version of the familiar De-

duction Theorem.

Theorem 2.2. If Ru • • • , P„, P\-Q, then there is a non-negative integer

a such that Ru ■ ■ ■ , Rn\-(CP)aQ.

As we have h CQCPQ by Al and PhCCPQQ by (2.5), we infer
(2.15) P\-Q=CPQ.

Taking P to be CQQ and using (2.10) gives

(2.16) Y-Q^AQQ.
ByA2,

\-CCCQRCPRCAPRAQR.

Combining this with A2 itself gives

(2.17) hCCPQCAPRAQR.
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Commutativity of A gives

(2.18) \-CCPQCARPARQ.
These give

\-CCPRCAPQARQ

\-CCQSCARQARS.

From these last two by (2.14)

1- CCPRCA PQCCQSA RS.

Then by (2.7)

(2.19) hCCPRCCQSCAPQARS,
from which by (2.16)

(2.20) CPR,CQR\~CAPQR.

Theorem  2.3.  If Pu ■ ■ • , Pp, R\-T and Qu • • • ,  Qt,  ShT, then
Pi, • • • ,P„,Qi, ■ ■ ■ ,Qq,ARShT.

Proof. From Pu ■ ■ ■ , Pp, Rh T and Qlt • • • , Q„, S\-T we get

(a) Pu ■ ■ ■ ,PP\-{CRYT,

(b) Qu ■ ■ ■ ,QV\-(CSYT
byTheorem2.2. Forany W, wewritefi,^4i?5h IF as shorthand for Pi, • • • ,PP,

Qu - • • i Qq,ARS\-W. We now prove by induction on y the following lemma:

If 7 is a positive integer, and y ga+/3, and Ui, • • • , Ua+p-y are formulas

each of which is either R or S, then

(c) S, ARShT£f-y UiT.
First let 7 = 1.
Case 1. There are fewer thanccR's among Z7i, • • ■ , Ua+e-i- Then there are

at least j3 S's. So by Theorem 2.1

S a+S—l
\-c(cs) 2T«   £/,r.

Then (c) holds by (b).
Case 2. There are at least a R's among Ui, • • • , Ua+g-\. Then we can get

(c) from (a) by similar reasoning.

Now assume the lemma for 7. Using this and (1.36) we get both of

8, ARS V- CRTti~y~1UiT,

S, ARS h CSrZi'^UiT.

From these by (2.20) we get

<*+0—T— 1

8, ARS h r,_!       UiT,

so that the induction is established.

Finally, we conclude our theorem by taking 7 = a+/3 in the lemma.
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We can prove the associative law for A, namely

(2.21) \-APAQR=AAPQR,
by the methods used to prove Formel (14) and Formel (15) of §11 of Chapter

1 of [5].
We close with some miscellaneous results that will be needed later.

By (2.7)

\-CCPQCRQ = CRAPQ.

Consequently, commutativity of A gives

(2.22) \-CCPQCRQ=CCQPCRP.
By (2.5)

(2.23) hCCPQCCCPQRR.
Taking R to be Q gives

\-CCPQCAPQQ.

Also, by (2.5) and A2

\-CCAPQQCPQ.

Thus we have shown

(2.24) \-CPQ = CAPQQ.
By A2

h CCCPQRCCRQAPQ.

Using commutativity of A followed by (2.7) gives

(2.25) h CCCPQRCCQPCCRQP.
By (2.8) and (2.7), hCCRSCPCCPRS. So by (2.14)

CCCPRSQ I- CCRSCPQ.

Thence we infer

(2.26) CCQSCPR, CSQ\-CCRSCPQ
by putting Q, S, and CPR respectively for P, Q, and R in (2.25).

3. A fragment of the C—N-calculus. In this section, we add one more

axiom scheme, namely

A4. CCNPNQCQP,

to the three considered in the preceding section, and derive a number of con-

sequences involving N.

By Al, h-CNNPCNNQNNP. By two uses of A4, we get successively

\-CNNPCNPNQ and \-CNNPCQP. Then (2.7) gives V-CQCNNPP. Tak-
ing Q to be any proved result gives

(3.1) \-CNNPP.
From this, by A2, we get \-CCPNQCNNPNQ. Using A4 gives

(3.2) V-CCPNQCQNP.
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Interchanging P and Q gives

(3.3) hCPNQ = CQNP.
Putting NP for Q in (3.3) and using (2.10) we get h CPNNP, so that by (3.1)

(3.4) \-P = NNP.
Using \-Q = NNQ with (2.9) gives hCPQ=CPNNQ. Putting NQ for Q in
(3.3) gives hCPNNQ^CNQNP. Thus

(3.5) \-CPQ = CNQNP.
Consequently

(3.6) If Ru • • • , Rn\-P = Q, then i?i, • • • , Rn\-NP = NQ.
This enables us to extend the equivalence and substitution theorems to

formulas involving TV as well as C. We can thus get many results by familiar

transformations involving (3.4) and (3.5). We list a number of such, leaving

the details to the reader. The first three are

(3.7) \-APQ = NKNPNQ.
(3.8) \-BPQ = NLNPNQ.
(3.9) hLPQ = NBNPNQ.
By applying (3.6) to (3.3), we get

(3.10) \-LPQ = LQP,
whence we get

(3.11) \-BPQ = BQP.
From the corresponding results for A come

(3.12) \-KPQ = KQP,
(3.13) hCKQPP,
(3.14) hCKPQP,
(3.15) hQ^KQQ,
(3.16) \-CCPQCKPRKQR,
(3.17) hCCPQCKRPKRQ,
(3.18) hCCPRCCQSCKPQKRS,
(3.19) CPQ,CPR\-CPKQR,
(3.20) h-KPKQR = KKPQR,
(3.21) \-CQP = CQKPQ.
Since \-CPCQP by Al, we can use (3.21) to infer

(3.22) hCPCQKPQ.
By (2.8)

(3.23) \-CCPQCBRPBRQ,
whence we get

(3.24) \-CCPQCBPRBQR,

(3.25) Y-CCPRCCQSCBPQBRS,
(3.26) \-CCPQCLRPLRQ,
(3.27) h CCPQCLPRLQR,
(3.28) hCCPRCCQSCLPQLRS.
Putting 7VP and A^<2 for P and <2 in (2.7) gives

\-BPBQR= BQBPR.
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Interchanging Q and R gives

\-BPBRQ = BRBPQ.

Then commutativity of B gives

(3.29) \-BPBQR=BBPQR,
whence we get

(3.30) \-LPLQR=LLPQR.
Putting NQ for Q in Al gives

(3.31) Y-CPBQP,
whence we get

(3.32) hCPBPQ,
(3.33) hCLQPP,
(3.34) \-CLPQP.
By (3.5)

Y-CPCQR = CPCNRNQ.

Then by (2.7)

\-CPCQR = CNRCPNQ.

Finally by (3.11)

(3.35) \-CPCQR = CLPQR.
Applying this to h CLPQLPQ, we get

(3.36) hCPCQLPQ.
By this and (3.33)

(3.37) PhQ^LPQ.

Theorem 3.1. Pi, • • • , Rn\-P = Q if and only if Ru ■ ■ • , Rn\-EPQ.

Proof. By (3.36)

CPQ, CQP \- EPQ,

and by (3.34) and (3.33)

EPQ^ P^ Q.

By use of this theorem, we can get

(3.38) r-PPP,

(3.39) EPQ, EQRl-EPR
directly, and

(3.40) EPQhENPNQ,
(3.41) £P<2, ERShECPRCQS

by appealing respectively to (3.6), and to both of (2.3) and (2.9). By (3.10),

we have

(3.42) \-CEPQEQP.
With both A and B serving as disjunctions and both K and L serving as



12 A. ROSE AND J. B. ROSSER [January

conjunctions, one can write a number of possible distributive laws. Some are

not valid, and of the valid ones we have been able to prove only two from

axiom schemes A1-A4. We now give the proofs.

By (2.5) and the commutativity of L

Y-CLQPALPQLPR.

Then by (3.35)

hCQCPALPQLPR.

Similarly

hCRCPALPQLPR.

Then by (2.20)

Y-CAQRCPALPQLPR.

Finally by (3.35) and the commutativity of L

(a)   hCLPAQRALPQLPR.
By (2.5) and (3.26)

\-CLPQLPAQR.

By (2.4) and (3.26)

hCLPRLPAQR.

Then by (2.20)

\-CALPQLPRLPAQR.

From this and (a) we get

(3.43) \-LPAQR=ALPQLPR.
By replacing P, Q, and R by NP, NQ, and NR, we get

(3.44) \-BPKQR = KBPQBPR.
By (2.15)
(3.45) NP\-Q = BPQ.
By (2.10) and Al, t-CPCRR. So by (3.36)

hCCCRRPEPCRR.

But by Al, \-CPCCRRP, so that
(3.46) hCPEPCRR.

Then by Theorem 3.1,

(3.47) P\-P = CRR,
whence, by the transitivity of =,

(3.48) P, QhP = Q.
By (3.47), (3.6), and (3.4)

(3.49) NP\-P = NCRR,
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whence

(3.50) NP, NQhP = Q.
We close with some miscellaneous results that will be needed later.

Negating all variables of (2.22) and applying (3.5) gives

(3.51) \-CCQPCQR = CCPQCPR.
We raise the question if this can be proved from Al, A2, and A3 alone.

By (3.32) and A2

hCCBPQQCPQ.

This is

(3.52) hCANPQCPQ.
By Al, \-CNSCNRNS, so that by (3.5)
(3.53) hCNSCSR.
A simple application of (3.4) gives

(3.54) hBLPQR = CCPNQR.
If we put NQ and NS for Q and S in (2.26) and use (3.5), we get

CQS, CCSQCPR \- CCRNSCPNQ.

Another use of (3.5) gives

(3.55) CQS, CCSQCPRhCLPQLRS.
By (3.32), PY-BPR, so that by (3.36) P, QhLBPRQ. However, by (3.52)

ANPQ, Ph Q.

So

(3.56) ANPQ,P\-LBPRQ.

Theorem 3.2.

(3.57) ANPQ\-LBPRQ = BPLQR.

Proof. By (3.37)

Q V- BPR = BPLQR,

Q \- LQBPR = BPR.

So by the commutativity of L

(a) QY-LBPRQ^BPLQR.
By (3.45)

NP h LQR = BPLQR,

NP \- LBPRQ = LRQ.

So by the commutativity of L

(b) NPh LBPRQ = BPLQR.
Our theorem follows from (a) and (b) by Theorem 2.3.

4. Special results for use in the finite-valued case. We continue with the

same four axiom schemes as in the preceding section.
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By (2.10) and (3.4)

(4.1) \-NBoP.
Then by (3.50)

(4.2) h-B0P = 73o<2,
and by (3.45) and the commutativity of B

(4.3) \-P = BPBQQ.
Taking Q to be P in this gives

(4.4) \-P = BiP.

Theorem 4.1. If a and /? are non-negative integers, then

(4.5) \~Ba+1P^BPBaP,

(4.6) hBa+1P = CNBaPP,

(4.7) hBa+BP^BBaPBBP.

Proof. We infer (4.5) by (1.27), and then deduce (4.6) by the commutativ-

ity of B. To prove (4.7), we use induction on a. When a = 0, use (4.3) and

the commutativity of B. For the induction step, use (4.5) and the associativ-

ity of B.

Theorem 4.2. If a and /3 are non-negative integers, then

(4.8) \-BaBP = BaBBP.

Proof by induction on a. When a = 0, use (4.2). For the induction step,

use (4.7) and (4.5).

Theorem 4.3. // a and /3 are non-negative integers, then

(4.9) \-CBaPBa+sP.

Proof. By (3.32)

\-CBaPBBaPBeP.

Now use (4.7).

Theorem 4.4. If a and /3 are positive integers, then

(4.10) CBaPNBePhCB—iPNBe+iP.

Proof. Assume

(a) CBaPNBBP.

By A2

CCNBpPPCBaPP.

So by (4.6)
(b) CBB+1PCBaPP.

By (a) and (3.3)

(c) CBBPNBaP.

By (4.4) and (4.9)

(d) CPBBP.
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By (4.9) and (3.5)

(e)  CNBaPNBc-iP.

By (c), (d), and (e)

CPNBa^P.

By (2.24), this gives

CAPNBa-iPNBa-iP.

By the commutativity of A

CCCNB^PPPNBo-iP.

Then by (4.6)

CCBaPPNB^P,

whence by (b)

CBfn.iPNBa-.iP.

By (3.3), we conclude our theorem.

Theorem 4.5. If a and ft are positive integers, and y is a non-negative inte-

ger, and y^a, then

(4.11) CBaPNBpP \- CBa_yPNBB+yP.

Proof by induction on y, using Theorem 4.4 for the induction step.

Theorem 4.6. If a and ft are positive integers, then

(4.12) CPNBa+e^PhCBePNBeP,
(4.13) CBaPNBaP^CPNBa+a-tP.

Proof. First assume CPNBa+^P. By (3.3) and (4.4), CP«+3_iPA^PiP, so

that by (4.11) CBa+B-x-yPNB1+yP. Then we get (4.12) by taking -y=/3-l.

To get (4.13), we take 7=0:— 1 in (4.11) and use (4.4).

Theorem 4.7. // a is a positive integer, then

(4.14) VaP\-BaP.

Proof. This follows by (3.33) and (4.6).

Theorem 4.8. If a and ft are positive integers, then

(4.15) Va+BP\-EBaPNBBP,

(4.16) EBaPNBBPh-Va+BP.

Proof. First assume Va+BP. Then by (3.34) and (3.33), we get CPNBa+B-iP

and CNBa+S-iPP. From the first, we get CBaPNBBP by (4.12), and from the

second we get BBBPBaP by (4.6) and (4.7). Then we get EBaPNB8P by
(3.36). To get (4.16), we merely reverse the steps just given.
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Theorem 4.9. If a is a positive integer, and y is a non-negative integer, and

y^a, then

(4.17) VaP\-EByPNBa-yP,
(4.18) VaP\-EBa_yPNByP.

Proof. We note that if (4.17) can be proved for all y with O^y^a, then

(4.18) follows by replacing y by a—y. If 0<7<a, then both (4.17) and

(4.18) follow from (4.15). To handle the remaining cases, we note first that

by (4.14) and (3.46)

(a)   VaPhEBaPCPP.
By (3.4), this gives

VaP \- EBaPNBQP,

which gives (4.17) for the case 7 = a. By applying (3.40) and (3.42) to (a), we

get

VaP h EB0PNBaP,

which gives (4.17) for the case 7 = 0.

Theorem 4.10. If a is a positive integer, and y is a non-negative integer, and

y^a, then

(4.19) VJi, WyPR\-Wa_yNPR.

Proof. By (3.40)

WyPR \- ENPNByR

and by (4.18)

VaR h EBa_yRNByR.

Combining these by (3.39) and (3.42) gives (4.19).

Theorem 4.11. If a is a positive integer, and /3 and 7 are non-negative

integers, and /3^a, then

(4.20) VaPhWa-B+yCEBPByPP.

Proof. By (4.17) and Theorem 3.1

VaP h BBP = NBa-BP.

Then by (2.3) and Theorem 3.1

VaP h ECBBPByPBBa-BPByP.

Finally we use (4.7) and (1.30).

Theorem 4.12. If a is a positive integer, and j3 and 7 are non-negative inte-

gers, and jS^a, and ?7 = min (a, a—18+7), then

(4.21) VaR, WBPR, WyQR\-W,CPQR.
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Proof. Assume V„R, WBPR, and WyQR. As we have

WBPR h P = BBR,

WyQR \- Q = ByR,

by Theorem 3.1, we infer

(a) Wa_B+yCPQR
by (4.20), and we infer

(b) BaR

by (4.14). If a—ft-\-ySa, then (a) gives the desired result. So assume

a<a—ft+y. Then by (b) and (4.9) we get Ba_B+yR, while by (a) and (3.33)

we get CBa-B+yRCPQ, so that we can conclude

(c) CPQ.
Then we conclude

(d) WaCPQR
by (b), (c), (3.48), and Theorem 3.1. In this case, (d) gives thedesired result.

Theorem 4.13. Let a be a positive integer, let n be a non-negative integer,

and let ftr (O^r^w) be non-negative integers such that ftr^a (O^r^n). Let

<j>(Po, • ■ ■ , Pn) be a statement formula built up from Po, • • • , P„ by means

of C and N. Let n be that non-negative integer with m = a such that if Pr is assigned

the value ftr/a (Q^r^n), then <j>(Po, • • • , Pn) takes the value ix/a. Then

(4.22) VaR, WB<tP0R, • • • , WB„PnRhWrf(Po, -', P»)R.

Proof by induction on the structure of <f>, using Theorem 4.10 and Theo-

rem 4.12.

Theorem 4.14. // a and ft are positive integers and ft^a, and y and 5 are

non-negative integers, then

(4.23) LVBSWSPS, W^Ph'Zr-oiWrRS).

Proof. Assume LVBSWSPS and WyRP. By (3.33), (3.34), Theorem 3.1,
(4.8) and (4.14)

(a) WySRS,

(b) BBS.

If yS^a, then we have
a

WySRS h- £ (WTRS)

by (2.4) and (2.5), so that our theorem follows by (a). So let a<75. Then

ft<yb~, so that by (b) and (4.9) we get BySS, while by (a) and (3.33) we get

CBysSR; thence we get

(c) R.

Then we conclude

(d) WBRS

by (b), (c), (3.48), and Theorem 3.1. As ft^a, we have
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«

WfRS h X) (WrRS)

by (2.4) and (2.5), so that our theorem follows from (d) in this case.

Theorem 4.15. If a is a positive integer, then

(4.24) VaB0P\-Q.

Proof. By (4.1) and (3.53)

(4.25) hCBoPQ.
By (4.8),  \-B0P = BaB0P, and by (4.14),  VaB^P\-BaB0P, so that our

theorem follows.

Theorem 4.16. If a is a positive integer and B is a non-negative integer, then

(4.26) VaP, VaQ, WBPQY-EPQ.

Proof. Case 1. /3 = 0. Then by Theorem 3.1

VaP, WBPQ \- VaB0Q.

Then by Theorem 4.15,

VaP, WBPQ h EPQ.

Case 2. 0=1. Then by (4.4),

WBPQ 1- EPQ.

Case 3. a = l. Then by (1.29) and Theorem 3.1

VaP I- P = NBoP,

VaQ\-Q = NB0Q.

Then by (4.2), (3.6), and Theorem 3.1, VaP, VaQhEPQ.
Case4.a^2 and|3^2. Then (a-l)B^a, so that by (4.9) and (4.14)

VaQ h 5(«-iWe.

However, by (4.8)

WBPQ h £*-iP = 5(«-i)fle.

The last two results give

(a)   VaQ, WBPQhBa-,P.
By (4.18) and (4.4)

(b)     VaPhEBa-lPNP.
Then by (a), (b), and (3.34),

VaP, VaQ, WBPQ h NP.

From this by (3.49)

VaP, VaQ, WBPQ h- P = £„£•
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Thus

VaP, VaQ, W„PQ h VaB0R,

so that by Theorem 4.15

VaP, VaQ, WBPQ h EPQ.

Theorem 4.17. If a is a positive integer and ft is a non-negative integer, then

(4.27)  VaP, VaQ, T,lo(WrPQ)hEPQ.

Proof. Use Theorem 4.16 and Theorem 2.3.

5. The case when 3 has M members, S = 1, and C, N, and T are taken as

undefined. We make the assumptions just listed, and use Rule C, axiom

schemes A1-A4 and also the two following axiom schemes:

ATI.   Vm-iNTP.
AT2.   X^-o1 (WrPNTQ).
Since M^2, we get by (4.27), Theorem 3.1, ATI, and AT2

(5.1) VM-xP\-P = NTQ,
whence by ATI, (3.6), and (3.4)

(5.2) \-TP = TQ.
By ATI, (3.40), and (3.4), we get h WM-iTPNTP, whence we get

(5.3) \-Wm-zTPNTQ
by (5.2). By (5.2) we can extend the equivalence and substitution theorems

to the case where T is used as well as C and N.

Theorem 5.1. Let n be a non-negative integer, and let ftr (O^r^n) be non-

negative integers such that ftr^M—l (O^r^n). Let </>(Po, • • • , Pn) be a state-

ment formula built up from P0, • • • , P„ by means of C, N, and T. Let /x be

that non-negative integer with n^M—l such that if Pr is assigned the value

ftr/(M-l)  (O^r^n), then <j>(Pa, • • ■ , Pn) takes the value n/(M-l). Then

(5.4) WBoP0NTQ, ■ ■ ■ , WBnPnNTQhWMPo, • • • , Pn)NTQ.

Proof by induction on the structure of <j>, using ATI, Theorem 4.10,

Theorem 4.12, and (5.3).

As a temporary definition, we introduce a generalized product by the

following recursion:

(5.5) If ft = a, thennf-aPi denotes Pa.
(5.6) If ft>a, then JJf-a Pi denotes iP/Hf-i p«-
By (3.33) and (3.34), we can rewrite (5.4) as

(5.7) n?-o (WBrPrNTQ)hW,<t>(P°, • • • . Pn)NTQ.
By (4.14) and ATI,
(5.8) \-BU-iNTQ.
Therefore, by (3.33)

(5.9) Wm-iPNTQ\-P.

Theorem 5.2. Let </>(Po, • • • , P„) be a statement formula built up from
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-Po, • • • , Pnby means of C, N, and T. Then \-<f> if and only if the correspond-

ing truth-value function takes only designated values.

Proof. For the "only if" part, we use the standard type of proof. So as-

sume that the truth-value function corresponding to 4> takes only designated

truth-values. As 1 is the only designated truth-value, we infer from Theorem

5.1 that for each set of non-negative integers Br with Br^M— 1 (O^r^n)

II (WBrPrNTQ) r- WM-i*NTQ.

Then by (5.9)

II {WfrPrNTQ) h <t>.

From this, by Theorem 2.3, AT2, and the distributive law for A and L, we

can infer |— <j>.

6. The case when 3 has M members, 8 = 1, and C and N are taken as

undefined. With these assumptions, it follows from a theorem of McNaughton

(see [3]) that one can define a function F whose corresponding truth-value

function/(x, y) has the following property:

Let b and d be divisors of M—l. Let x = a/b and y = c/d, where (a, b)

= (c, d) = l (we regard 0 as being 0/1 for this purpose). Then f(x, y)

= l/{b, d], where \b, d} denotes the least common multiple of b and d.

Clearly the definition of F depends on the value of M.

We use Rule C, axiom schemes A1-A4, and also the three following axiom

schemes:

AF1.  CFPQFQP,
AF2.   E^-o1 (WrPFPQ),
AF3.   j:UAVaU)FPQ),

where d denotes the number of positive divisors of M— 1 and a(j) denotes the

jth positive divisor of M—l, starting with the least and counting up.

Interchanging P and Q in AF1 gives

(6.1) \-FPQ = FQP,
so that by AF2

(6.2) h X^1 (WrPFQP).

Theorem 6.1. If y is a non-negative integer, then

(6.3) WyRPh Zf^1 (WrRFQP).

Proof. If 1 Sj-^d, then by (4.23)
M-\

LVaU)FQPWsPFQP, WyRP h E (WrRFQP).

From this by Theorem 2.3, AF3, (6.2) and the distributive law for A and L,

we can infer (6.3).

Let us define ^ by the following recursion:
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(6.4) If a = B, then <S>f=a Pt denotes Pa.

(6.5) If a <B, then *f=a P,- denotes FPfita Pi-

Theorem 6.2. Let 8 and n be non-negative integers with B^n. Then

(6.6) hE'o1 WW-o.Pi).

Proof by induction on n. By (3.38) and (4.4),

(6.7) \-WtPP.
Taking P to be P0, and using (6.4), (2.4), and (2.5), we conclude that (6.6)

holds when » = 0. Assume (6.6) for n.

Case 1. j8 = « + l. Then (6.6) holds for w + 1 by AF2 and (6.5).
Case 2. /3 = m. By (6.5) and (6.3).

Af-l

WW&oPi h   E  (WrPfl*wP0.
r-0

Then by Theorem 2.3

M-\ M-\

Z (IFrP^"_oP.) h Z (WW^-oP,).
r-0 r=0

Thus, since we are assuming (6.6) for n, we get (6.6) for w + 1.

Theorem 6.3. Let a be a positive integer and let B and n be non-negative

integers with B^n. Then

(6.8) Va$>U P&- Z?=o (WrPfiU Pi).

Proof. In Theorem 4.14, take/3 = a, S = l, P and S to be$, and R to be PB.

Then by (6.7), we have

a

Va<f>,  WyPB3> \~   X (WrPfi).
r=0

Then by Theorem 2.3 and (6.6), we infer (6.8).

Theorem 6.4. Let a be a positive integer, let y be a non-negative integer with

y^ka, and let n be a non-negative integer. Let 4>{Po, • • ■ , Pn) be a statement

formula built up from P0, ■ • • , P„ by means of C and N. Suppose that when-

ever Br (O^r^n) are non-negative integers with Br^a, and PT is given the value

8,/a (O^jr^w), the corresponding value of <j>(P0, • • • , Pn) is greater than or

equal to y/a. Then

(6.9) Va^UPu By$UP<\-<f>(Po, ■ ■ ■ , Pn).

Proof. Using the product notation of (5.5) and (5.6), we get by (4.22)

Fa$,II (WfrPr*) h Wrf*.

Thus by (3.33)
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(a) Va^,YlU{WBrP^)^CBM-
By the hypothesis of the theorem, y^/u. So by (4.9)

By3> (- Bfi>.

So by (a)

(b) VJS>, By$,TJ?-o (WfirP&) r-</>.
Since this holds for each choice of ftr with O^ftrt^ct (O^r^n), we can use

Theorem 2.3, Theorem 6.3, and the distributive law for A and L to infer

(6.9).

Theorem 6.5. Let <t>(Pi, • ■ ■ , Pn) be a statement formula built up from

Pi, • • • , Pn by means of C and N. Then h-<j> if and only if the corresponding

truth-value function takes only designated values.

Proof. Assume that the truth-value function corresponding to <j> takes

only designated truth-values. Write6(P0, • ■ ■ , Pn) for CCPoPo<£(Pi, • " ' »Pn).

Then 8 takes only designated truth-values for any assignment of values to

Po, Pi, • • • , Pn- Let a(j) be a divisor of M—\. Then we may take both a

and y equal to a(j) in Theorem 6.4, so that by (4.14)

Va(l)f>toPi h 8(P0, ■ ■ ■ ,Pn).

Since «2i 1, we may use (6.5), AF3, and Theorem 2.3 to infer

h-0(Po,   •   ■   •   ,  Pn).

Finally, by (2.10) and the definition of 0, we conclude !—<£.

7. A fragment of the C-N-J-D calculus. In this section we take C and N

as undefined, and we assume that J and D are either undefined or are defin-

able in terms of C and N. We use Rule I and the axiom schemes:

AJ1. JCPCQP.
AJ2. JCCPQCCQRCPR.
AJ3. JCAPQAQP.
AJ4. JCCNPNQCQP.
AJ5. IJCPQIJPJQ.
AJ6. IJCPQIPQ.
AJ7. IIQRIAPQAPR.
By Rule I and AJ5, we infer the following rule:

Rule JC. If IP and ICPQ, then JQ.
Using this and AJ1-AJ4, we can easily prove the following theorem.

Theorem 7.1. If Pu ■ ■ ■ , Pn\-Q can be derived on the basis of Rule C and

axiom schemes A1-A4, then JPi, • • • , IPn\~JQ.

From this by (2.16) and (2.5) we get
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\-JCAPPP,

hJCPAPQ.

From these and AJ3 we get

(7.1) hIAPPP,
(7.2) h-IPAPQ,
(7.3) \-IAPQAQP,

by means of AJ6.

Theorem 7.2. If we count I, D, A, and & as the two-valued implication,

negation, disjunction, and conjunction, we have the full two-valued statement

calculus.

Proof. Rule I is the standard rule, and (7.1), (7.2), (7.3), and AJ7 are

the standard axiom schemes for the two-valued calculus (for example, see

[5])-
In particular, we can get such results as the two-valued commutativity

and associativity of &, and we can get the two-valued distributive laws for

& and A. Moreover, we can get such standard results as the following.

Theorem 7.3. If Pu ■ • ■ , Pp, R\-T and Qlt ■ • • , Qt, S\-T, then
Pi, ■ • • ,PP,Qi, ■ ■ ■ ,QQ,ARShT.

By Theorem 7.1, (2.4), and (2.5), we have for a^y^B

jpy \-1X Pi.
i=a

Then by Theorem 7.3, we can infer the following theorem.

Theorem 7.4. //a and B are integers with a^B, then

(7.4) Yfi=AJPi)^JHlaPi-

By Rule J C and AJ1

JP \- JCIPP.

Then by Rule I and AJ6

JP h IJPP.

So by Rule I

(7.5) JP\-P.
8. The case when 3 has M members, 8 < 1, and C, N, and T are taken as

undefined. Let / and D be defined in terms of C and N (see [3] or [4]). Let

H be the least integer such that H/(M—1) is designated. We use Rule I,

axiom schemes AJ1-AJ5 and also the three following axiom schemes:

ATJ1. JVm-iNTP.

ATJ2. JX-o1 (WrPNTQ).
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ATJ3. IICBhNTQPP.
Inasmuch as only Rule I and axiom schemes AJ1-AJ5 were used in prov-

ing Theorem 7.1, we see that we can prove a theorem analogous to Theorem

7.1 except that it refers to results derivable on the basis of Rule C and axiom

schemes A1-A4 and axiom schemes AT1-AT2.

We now prove a theorem whose statement is identical with that of Theo-

rem 5.2. We assume that <f> is a formula whose truth-value is always desig-

nated. Then Theorem 5.2 tells us that we can derive CBhNTQ4> from axiom

schemes A1-A4 and AT1-AT2 by Rule C. So by our generalized Theorem

7.1, we get

\-ICBHNTQ<t>.

Then \—(j> by axiom scheme ATJ3.

9. The case when 3 has M members, S < 1, and C and N are taken as un-

defined. As in §§6 and 8, we let F, J, and D be defined in terms of C and N.

We also take d and a(j) as in §6, and if 1 Sjfkd, we take y(j) to be the least

integer such thaty(j)/a(j) is designated. We take Jn(P) as defined in [4] and

use G(P) to designate
d

2j   KIM-aU)(P)Byti)P.
3-1

We use Rule I, axiom schemes AJ5-AJ6, the following axiom scheme

AG. G(FPQ),

and a set of auxiliary axiom schemes built up as follows:

Choose a set of axiom schemes such that from them by means of Rule C one

can derive exactly those statement formulas built up by means of C and N

whose corresponding truth-value functions take only the truth-value 1. Then

prefix a J to each of these axiom schemes. The resulting set of axiom schemes

is the set of auxiliary axiom schemes.

In view of Theorem 6.5, the auxiliary axiom schemes could be got by

prefixing a J to each of A1-A4 and AF1-AF3. Alternatively, the auxiliary

axiom schemes could be got by prefixing a / to each of the five axiom schemes

appearing in §14.

By Rule I and AJ5, we infer Rule JC. By Rule JC and the auxiliary

axiom schemes, we can prove:

Theorem 9.1. Let </>(P0, • • • , Pn) be a statement formula built up from

Pa, • • • , Pn by means of C and N such that the corresponding truth-value func-

tion takes only the truth-value 1. Then

h/<KPo, • • • ,Pn).

We now prove a theorem whose statement is identical with that of Theo-

rem 6.5. We assume that </>(Po, • • • , Pn) is a formula whose truth-value is

always designated. Then
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CG(PPo$".oP,)<^(Po, ■ ■ • , Pn)

always takes the value unity. So by Theorem 9.1

r-/CG(PP0$"_oP<)</>(Po, • • • , Pn).

Now by axiom scheme AJ6,

hIG(FPa$toPi)<t>(Po,   ■   ■   ■  ,Pn)

so that we get h<£ by axiom scheme AG.

10. Special results for use in the infinite-valued case. We adjoin an addi-

tional axiom scheme A5 to the four used in §§3 and 4. Actually, C. A. Mere-

dith and later independently C. C. Chang discovered that axiom scheme A5

is a consequence of Rule C and axiom schemes A1-A4, so that it would suffice

to assume the latter. The proofs of Meredith and Chang appear in notes after

the end of the present paper, but for the present it is convenient merely to

refer to the result in question as the fifth one of our axiom schemes. For the

reader's convenience, we state in full the axiom schemes we will be using.

In this section, we use Rule C and the following axiom schemes:

Al. CPCQP.
A2. CCPQCCQRCPR.
A3. CAPQAQP.
A4. CCNPNQCQP.
A5. ACPQCQP.

Theorem 10.1.

(10.1)  \-LCCPQRCQP=LCCRQPCQR.

Proof. Temporarily let us write

(a) V for LCCPQRCQP
and

(b) WTor LCCRQPCQR.
By (2.25), (3.35), and (a)

\-CVCCRQP.

So by (3.37), the commutativity of L, and (b)

(c) CQRhCVW.
Interchanging P and R in (3.51) gives

h CCCQRCQPCCRQCRP.

Then by (2.7)

(d) CRQhCCCQRCQPCRP.
By A2, we have CPRhCCRQCPQ, whence, by A2 again, we get

CPR h CCCPQRCCRQR.
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Using this and hCCRPCRP in (2.14) gives

CPR h CCCPQRCCRQCCRPP,

whence by two uses of (2.7) we get

CPR h CCRPCCCPQRCCRQP.

Using this and (d) gives

(e) CPR, CRQ\-CCCQRCQPCCCPQRCCRQP.
By (2.8)
(f) CPRY-CCQPCQR.
By (f), (e), (3.55), (a), and (b)

CPR, CRQ \- CVW.

By this, (c), A5, and Theorem 2.3

(g) CPRY-CVW.
By (3.51) and (2.7)

(h)  \-CCPCCPQRCCQPCQR.
By Al, we have h-CPCCRQP, whence by A2

\- CCCCRQPCCPQRCPCCPQR.

By this and (h)

(i)   Y-CCCCRQPCCPQRCCQPCQR.
By (2.25) and (2.7)

(j)  CQPh CCCPQRCCRQP.
By Al, CRPhCCRQCRP, so that by (2.7)

CRP \- CRCCRQP.

Also by (2.5)

CPQ Y- CCCPQRR.

By the last two results

CPQ, CRP h CCCPQRCCRQP.

By this, (j), A5, and Theorem 2.3

CRP h CCCPQRCCRQP.

By this, (i), and (3.55)

CRP h CLCQPCCPQRLCQRCCRQP.

By the commutative law for L and (a) and (b)

CRP h CVW.

By this, (g), A5, and Theorem 2.3
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\-CVW.

Interchanging P and R in this gives (10.1).

Theorem 10.2.

(10.2)  \-LBLPQRBQP=LBLRQPBQR.

Proof. Replace Q by NQ in (10.1) and use (3.54).
In the succeeding theorems of this section, the letter T will not denote

the Slupecki operator characterized by (1.4), but will take the place of an

unspecified statement, in the same role as P, Q, R, ■ ■ ■ .

Theorem 10.3. If

(a) \-ANVW,
(b) \-R=LBVZW,
(c) \-T=LBVYW,

then

(d) h LBRYBWZ = LBTZBWY.

Proof. By (3.45)

NV h Z = BVZ,

so that by (b)

(e) NVhLBRYBWZ=LBLZWYBWZ.
Interchanging F and Z in the above reasoning gives

(f) NVhLBTZBWY^LBLYWZBWY.
From (e) and (f) by (10.2), we get

(g) NVhLBRYBWZ = LBTZBWY.
By (3.37), (b), and the commutativity of L

W \- R = BVZ.

Thus

W \- BRY = BBVZY,

so that by the associativity of B

(h) WhBRY=BVBZY.
By (3.32), WY-BWZ, so that by (3.37) and the commutativity of L

W \- LBRYBWZ = BRY.

Thus by (h)

(i)   W\-LBRYBWZ=BVBZY.
If we interchange Y and Z in the proof of (i), we get

(j)   WY-LBTZBWY^BVBYZ.
By (i), (j), and the commutativity of B,

(k)  W\-LBRYBWZ = LBTZBWY.

By (g), (k), (a), and Theorem 2.3, we conclude (d).
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Theorem 10.4. //

(a) \-ANVW,
(b) \-R=LBVZW,
(c) h-S=LBWZX,
(d) Y~T=LBVYW,
(e) \-U=LBWYX,

then

(f) hLBRYS=LBTZU.

Proof. By Theorem 10.3, we have

Y-LBRYBWZ = LBTZBWY.

So

Y-LLBRYBWZX = LLBTZBWYX.

Now use the associativity of L, and (c) and (e).

Theorem 10.5. If
(a) Y-ANRS,

(b) Y-ANST,
(c) \-P = LBRXS,
(d) \-Q = LBSXT,

then

(e) Y-ANPQ.

Proof. By (3.56), (b), and (d), S\-Q. So by (2.4)
(f) ShANPQ.

By (c) and (3.33), h- CPS, so that by (3.5), NShNP. Then by (2.5)

(g) NShANPQ.
By (3.45) and (c)

NR\- P = LXS,

while by (3.37) and the commutativity of L

TV- Q = BSX.

Then (using (3.4)),

NR, T h ANPQ = ACXNSCNSX.

So by A5
(h) NR, TV-ANPQ.

Now by (f), (h), (a), and Theorem 2.3, we get

(i)   T Y-ANPQ.
By (g), (i), (b), and Theorem 2.3, we get (e).

Theorem 10.6. If

(a)  Y-ANSM,
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(b) Y-ANUV,
(c) V-ANVW,
(d) Y-ANYZ,
(e) Y-Q=LBUXV,
(f) Y-T=LBVXW,

(g) Y-R = LBYXZ,
(h) SY-CVCBPUY,

(i)   SY-CWCBPVZ,
(j)   AfhCFCPSt/Z,

then

(k) SY-CTCBPQR.

Proof. By (a) and (3.52), hCSAf. So by (j) and (3.32), S, VY-Z. Then by
(3.37), (g), and the commutativity of L

(1)   S, FhP = PFX.
By (e) and (3.34), Y-CQBUX. Then by (3.23), Y-CBPQBPBUX. So by the
associativity of B,

(m) Y-CBPQBBPUX.
By (h) and (3.24)

S, V Y- CBBPUXBYX.

So by (1) and (m),

S,V Y- CBPQR,

whence by Al

(n) S, VY-CTCBPQR.
By (e), (3.33), and (3.5), NVY-NQ. So by (3.45) and the commutativity of B,

(o) NVY-P = BPQ.
By (3.45) and (f)

(p) NVY-T = LXW.
By (3.31), (3.27), and (g)

(q)  Y-CLXZR.
By (i) and (2.7), SY-CBPVCWZ, so that by (3.32), SY-CPCWZ. Then by
(3.26) and (2.7)

S Y- CLXWCPLXZ.

From this by (o) and (p)

S, NV h CTCBPQLXZ,

so that by (q) and (2.14)

(r)  S, NVY-CTCBPQR.
By (3.45) and (e)

(s)   NUY-Q = LXV.
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By (3.37), (g), and the commutativity of L

(t)  Z\-R = BYX.
By (3.45), (h), and the commutativity of B

(u) S, NUhCVCPY.
Then by (3.35) and the commutativity of L

S, NU \- CLPVY.

Then by (3.24) and (t)

S,Z, NU \- CBLPVXR.

Then by (3.34)

S, Z, NU \- CLBLPVXBVPR.

Then by (10.2)

S, Z, NU \- CLBLXVPBVXR.

So by (s) and the commutativity of B

S, Z, NU 1- CLBPQBVXR.

Then by the commutativity of L and (3.35)

S,Z,NU\- CBVXCBPQR.

Finally by (3.34) and (f)

(v) 5, Z, NUhCTCBPQR.
By (i) and the commutativity of B

(w) S, WhCBVPZ.
By (u), (3.5), and (2.7)

S, NU, NY h- CVNP.

Then by (2.5)

S, NU, NY \- CCCVNPXX.

Then by (3.4) and the commutativity of L

S, NU, NY V- CBLPVXX.

By applying (3.28) to this and (w), we get

S, W, NU, NY \- CLBLPVXBVPLXZ.

Then by (10.2)

S, W, NU, NY\- CLBLXVPBVXLXZ.

Then by (s) and the commutativity of B

S, W, NU, NY (- CLBPQBVXLXZ.
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Then by the commutativity of L and (3.35)

S, W, NU, NYY- CBVXCBPQLXZ.

Then by (q) and (2.14)

S, W, NU, NY Y- CBVXCBPQR.

Finally by (3.34) and (f)

(x) S, W, NU, NYY-CTCBPQR.
We now make a succession of uses of Theorem 2.3. In particular, if we write

0 for CTCBPQR, then by (v), (x), and (d), S, W, NUY-<f>. Then by (r) and
(c), S, NUY-<i>. Then by (n) and (b), S\-<f>, which is the result we wish.

Theorem 10.7. If
(a) Y-ANUV,
(b) Y-ANYZ,
(c) Y-APW,
(d) Y-Q=LBUXV,
(e) \-R=LBYXZ,
(f) Y-CYBPU,

(g) Y-CZBPV,
(h) WY-CZCCPYV,

then

(i)   Y-CRBPQ.

Proof. By (f) and (2.7), Y-CNPCVU. Then by (3.24), Y-CNPCBYXBUX.
Finally by (2.7)

(j)   Y-CBYXBPBUX.
Then by (e) and (3.34)

Y-CRBPBUX.

However, by (d), (3.37) and the commutativity of L, we have VY-BUX = Q,

so that

(k)  VY-CRBPQ.
From (g), by reasoning like that used to derive (j), we get

Y-CLXZBPLXV.

However, by (3.45) and (e), NYY-R = LXZ, so that

(1)   NYY-CRBPLXV.
By (3.31), Y-CXBUX, so that by (3.27) and (d)

Y-CLXVQ.

By applying (2.14) to this and (1), keeping (1.8) in mind, we get

(m) NYY-CRBPQ.
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From (f) by the commutativity of B and (2.7), we get

(n) NUhCYP.
By (3.45) and (d)

(o) NU\-Q = LXV.
By (h), (n), and (2.25)

(p) W,Z, NUhCCVYP.
By (2.8)

\-CBXYCCVNXCVY.

By this, (p), and (2.14)

W, Z, NU h CBXYCCVNXP.

Then by (3.4)

W, Z, NU \- CBXYBLVXP.

Then by (o) and the commutativity of L and B

W, Z, NU \- CBXYBPQ.

Finally by (e), (3.34), and the commutativity of B

(q)  W, Z, NUhCRBPQ.
By (3.32) and Al

(r)  PhCRBPQ.
We now use Theorem 2.3 with (a), (b), (c), (k), (m), (r), and (q) in order

to infer (i).

Theorem 10.8.

(10.3) hLBLXQNXBQX = Q.

Proof. Temporarily let us write

(a) V for LBLXQNXBQX.
By (a), (3.37), and the commutativity of L

BQX \- V = BLXQNX.

Then commutativity of L gives

BQX h V = BLQXNX.

By (3.54)

BQX h V = AQNX.

Then commutativity of A gives

BQX \- V = CBXQQ.

Finally by commutativity of B and (2.15)

(b) BQX\-V=Q.
By (3.4)
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CXNQ h NLXQ.

Thus by (a) and (3.45)

CXNQ \- V = LNXBQX.

By commutativity of L,

CXNQ \- V = LBQXNX,

whence (3.4) gives

CXNQ h V = NCCNQXX.

Then commutativity of A gives

CXNQ h V = NAXNQ,

which is the same as

CXNQ h V = LCXNQQ.

Finally by (3.37)

(c)   CXNQ\-V=Q.
Now we use Theorem 2.3 with (b), (c) and A5 to infer I— V=Q, which by

(a) gives (10.3).

Theorem 10.9

(10.4) ANPQ, ANQR\-LBLBPXQNXLBQXR = Q.

Proof. Let us temporarily write

(a) W for LBLBPXQNXLBQXR.
By (3.45) and (a)

(b) NP\-W=LBLXQNXLBQXR.
By (3.37) and the commutativity of L, R[-BQX = LBQXR, so that by (b)

NP, Rh W = LBLXQNXBQX.

So by (10.3)
(c) 7VP, R\-W=Q.

By (3.5) and (3.33)

NQ \- NLXQ.

Then by (b) and (3.45)

NP, NQY-W = LNXLXR.

By (3.4), this reduces to

(d) NP, NQ\-W=NCNXCXNR.
By (3.53) and (3.4)

\-NNCNXCXNR.
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Then by (3.50)

NQ Y- NCNXCXNR = Q.

So by (d)
(e) NP, NQY-W=Q.

By Theorem 2.3, (c), and (e)

(f) NP,ANQRY-W=Q.
By (3.52),

Q, ANQR Y- R.

Then by (3.32) and (3.36)

Q, ANQR Y- LBQXR.

Consequently, by (a), (3.37), and the commutativity of L

Q, ANQR Y- W = BBPXNX.

Commutativity and associativity of B gives

Q, ANQR Y- W = BNXBXP,

which is the same as

(g) Q, A NQR Y-W= CNNXCNXP.
By (3.53) and (3.48)

Q Y- CNNXCNXP = Q.

So by (g)
(h) Q, ANQRY-W=Q.

By Theorem 2.3, (f), and (h)

ANPQ, ANQR Y- W = Q,

which gives (10.4) by use of (a).

11. Some properties of inequalities for nonhomogeneous polynomials

over the field of rationals. The results of this section were derived for us by

Theodor Motzkin. They are based on a special case of the transposition theo-

rem (see [6, §13]); we now state this special case.

Theorem 11.1. Let A and B be matrices of m rows, with rational components.

Let x be a row vector of m components, each of which is a variable over the ra-

tionals. Let y\ and yi be column vectors, each component of which is a variable

over the rationals; let y\ have as many rows as A has columns, and y2 have as

many rows as B has columns. Define two sets of conditions, as follows:

(I) Every component of xA is positive, and every component of xB is non-

negative.

(II) Ayi + By2 = 0, every component of yi or y2 is non-negative, and at least

one component of yi is positive.
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Then we have the result that there is an x satisfying (I) if and only if there is

no yi and yi satisfying (II).

To prove this, one merely follows the development of [6], noting that this

development holds over any ordered field, and hence over the rationals.

Theorem 11.2. Let

n

(11-1) fi = at + X hjXj (1 = i = m),
j-i
n

(11.2) g = c+J^djxj,
y-i

where the a's, b's, c, and d's are rationals. Suppose that there are sets of rational

values of the x's for which

(11.3) /i = 0 (1 £»_»),

and that g>0 for all such sets of values of the x's. Then there is a positive ra-

tional constant n such that whenever the x's are rationals for which (11.3) holds,

then

(11.4) g^M.

Proof. Assume the hypothesis of the theorem. Then (11.3) is inconsistent

with —g^O. Define

n

Ji   ==   di%0   ~T~    / .  UijXj)

3 = 1

71

g = cxq + X djXj.

Then in the field of rationals, the set of inequalities

-g^ 0,

xo > 0

has no solution. Let us take x to be the row vector with components

(xo, Xi, • • • , xn), A to be the matrix of one column and w + 1 rows with a 1

in the first row and 0's elsewhere, and B to be the matrix of w + 1 columns

and w + 1 rows, whose last column consists of —c and the —dj's, and whose

ith column (l^i^m) consists of a; and the fr,/s. Then condition (I) of

Theorem 11.1 cannot be fulfilled, so that condition (II) must be fulfilled. That

is, there is a positive yi and non-negative y2, • • • , ym+2 such that

(11.5) yx + X Ji+iai — ym+2C = 0,
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m

(11.6) Z yi+iba - ym+2dj =0 (1 g j £ n).
t=i

If we multiply (11.6) by x„ sum, and add (11.5), we conclude

m

(11 -7) ym+ig = yi + X) y*+i/<
i=i

as an identity in the x's. As yi>0, and Tj+i^O, and there is a set of x's for

which (11.3) holds, we may substitute this set of x's into (11.7) and conclude

ym+2>0. So, writing

(i = yi/ym+2,

X« = yi+i/ym+2

we have

m

(11-8) j=M+E^,
1=1

(11.9) ai > 0.

From these two results, our theorem follows.

Theorem 11.3. Letfi and g be as in (11.1) and (11.2), with rational coeffi-

cients. Suppose that there are sets of rational values of the x's for which (11.3)

holds, and that g^O for all such sets of values. Then there are non-negative ra-

tional constants fi, Xi, • • • , Xm such that

m

(n.io) j = m+E^
i-l

is an identity in the x's.

Proof. We modify slightly the proof of Theorem 11.2. We first note that

the set of inequalities

h ^ 0,
-I > 0,

xt, > 0

has no solution. Then we use corresponding reasoning to conclude that (11.7)

holds, except that now we have that all y's are non-negative and at least one

of yi or ym+2 must be positive. As before, we conclude that ym+2?*0, and con-

clude (11.8), which is just the same as (11.10). We also have the required

result that the /j, and X,'s are all non-negative.
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12. Polynomial formulas. We shall make much use of linear polynomials

such as

(12.1) f=a+YJbjxj.
r-i

Here a and the b/s are constant real numbers, and the x/s are variables.

Since we permit some or all of the b/s to be zero, we cannot say unambigu-

ously how many variables really occur in /. Indeed, for our purposes, it is

useful to consider the number of variables as indeterminate, but always

finite. Thus if &,=0 for w + 1 ̂ j^N, then we consider the polynomial

g = a + X M*
y-i

to be identical with the/ given by (12.1). Perhaps a better way to look at

the situation is to say that we are considering forms such as

CO

a + X bjXj,
j=i

where there is always to be a non-negative K such that &, = 0 for j>K. Then

we allow ourselves the convenience of using the form (12.1) as a shorthand

provided that bj = 0 for j>n. We assume that x,- is distinct from x, if i^j.

We now make some definitions.

Whenever we use the word "polynomial" throughout the remainder of the

text, we shall mean a polynomial of the form (12.1) for which the constant

term a and the coefficients bj are integers.

We shall write a(f) for the sum of the absolute values of the coefficients

of the variables in/. That is, with/as in (12.1),

(12.2) <K/) = X|*y|-
y-i

If x is a real number, then we define

T if 1 < x,

(12.3) t(x) = ■ x if 0 ^ x ^ 1,

.0 if x < 0.

Let / be a polynomial. With / we wish to associate a class of statement

formulas PF(/), called the polynomial formulas of/. If/involves variables

xi, ■ • • , xn, and P is in PF(/), then P is to depend on distinct statements

X\, • • • , Xn, correlated with the x/s. Just as/ may not really depend on xj

(for instance, one may have bj = 0), so P may not really depend on X,; indeed

there need not even be occurrences of Xj in P in some cases. The definition of

PF(/) is by induction on <r(/).
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First let<r(/)=0.

Case 1. o^l. Then P is in PF(/) if and only if P is CXjXj, where xy is

one of the variables "occurring" in /.

Case 2. flgO. Then P is in PF(/) if and only if P is NCXjXj, where Xy is

one of the variables "occurring" in /.

Since a is an integer, these cases cover the situation when a(f) =0.

Now let a be a positive integer and assume that PF(/) has been defined

for each / for which a(f) <a. Let/ be a polynomial for which <r(/) =a. There

are two ways in which a statement formula P can be in PF(/).

Case 1. For some j,bj>0. Choose a Q in PF(/—xy) and an Pin PF(/+1—x,),

and take

(12.4) P = LBQXjR.
Case!. For some/, bj<0. Choosea()inPF(/+Xy — 1) and an Pin PF(/+xy),

and take

(12.5) P = LBQNXjR.
These two cases are intended to exhaust all P's in PF(/). Note that in

Case 1, we allow ourselves to take any j for which bj>0, any Q in PF(f-Xj),

and any P in PF(f+l— xj). Clearly, in this case <r(/—x;) =<r(/) — 1 and

<r(/+l — Xj) = er(/) — 1, so that the classes from which we are to select Q and

P have already been defined. Similar remarks hold relative to Case 2.

We say that P is a polynomial formula if there is a polynomial/such that

P is in PF(/). More precisely, we take PF to be the logical sum of all the

PF(/)'s.
Clearly each P in PF is a statement formula of Xi, X2, • • • . If we assign

the values x,- to Xit then there will be a value assigned to P, which we shall

denote by v(P).

Theorem 12.1. If P is in PF(f), then

(12.6) v(P)=r(f)
whenever 0 ^xy5= 1 (l^j^n).

Proof by induction on o-(f). Clearly the theorem holds if <r(f)=0. Let a

be a positive integer, and assume that the theorem holds for each / for which

a(f) <a. Let/ be a polynomial for which <r(f) =a. Let P be in PF(f).

Case 1. 6y>0, Q is in PF(/-xy), P is in PF(/+l-xy), and P = LBQXjR.
Subcase 1. 1 </— xy. Then r(f—Xy) =r(/+l —Xy) =r(f) = 1. So by the hy-

pothesis of the induction, v(Q) = l=v(R). Then by (12.4), v(P)=l=r(f).

Subcase 2. 0 g/-xy g 1. Then »(£>) =r(/-xy) =/-xy, andw(P) =r(/+l -xy)

= 1. Since the value xy is assigned to Xj, we see by (12.4) that v(P)

= max (min (/, 1), 0)=min (/, 1)=t(/).

Subcase 3. -l^/-x,<0. Then i/((?) =r(/-Xy) =0, and i;(P) =r(/+l -Xy)

=/+l -xy. Then v(BQXj) =xy, so that »(P) =max (0, /) =r(/).

Sw&co^e 4. /-xy<-l. Then r(/-Xy) =r(/+l-Xy) =x(/) =0. So v(Q)=0

= v(R), whence v(P) =0=r(/).
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Case 2. bj<0, Q is in PF(/+x,— 1),R is in PF(f+xi),a.ndP = LBQNXiR.
This case proceeds similarly to Case 1, by considering the subcases 2 </+Xy,

lS/+*y£2, 0£/+Xy<l,/+*y<0.
It will be noted that Theorem 1 of [3] follows immediately from Theorem

12.1, so that we have incidentally furnished an alternative proof for Theorem

1 of [3]. This is probably just as well, inasmuch as the proof given in [3] for

Theorem 1 is much more complicated than our proof of Theorem 12.1.

13. The case when 3 has an infinite number of members, 8 = 1, and C

and N are taken as undefined. As in §10, we use Rule C and axiom schemes

A1-A5. We remind the reader that Meredith and Chang have shown that

axiom scheme A5 can be derived from the others.

Theorem 13.1. (a) If P and Q are both in PF(f), then \~P = Q. (b) If P is
in PF(f) and Q is in PF(f+l), then \-ANPQ.

Proof by induction on <r(f). First let cr(/)=0. If/2^1, then we infer part

(a) by (2.10) and (3.48), while we infer part (b) by (2.10) and (2.4). If/^0,
then we infer part (a) by (2.10), (3.4), and (3.50), while we infer part (b) by

(2.10), (3.4), and (2.5).
Let a be a positive integer and assume that the theorem holds if a(f) <a.

Lemma. Part (a) holds for every f with a(f) =a.

Let <r(f) =a, and let both P and Q be in PF(/).

Case 1. bj>0, R and T are both in PF(/—xy), 5 and U are both in

PF(/+l-xy), P = LBRXjS, and Q = LBTXjU. Then by the hypothesis of
the induction, \—R = T and 1—5= U, so that we easily get \-P = Q.

Case 2. bj<0, R and T are both in PF(/+Xy—1), 5 and U are both in

PF(/+Xy), P = LBRNXjS, and Q = LBTNXjU. Similar to Case 1.
Case 3. 6y>0 and bk>0, R is in PF(/-x3), S is in PF(/+l-xy), T is in

PF(f-xk), U is in PF(f+l-xk), P is LBRXjS, and Q is LBTXkU. Let V,
W, and X be in PF(/-xy-xA), PF(/+1 -Xj-xk), and PF(/+2-xy-x*)

respectively. By part (b) of our theorem for a —2

[-ANVW.

Also LB VXkW is in PF(/—Xy) so that by part (a) of our theorem for a— 1

\-R = LBVXkW.

Similarly

\-S = LBWXkX,

h T m LBVX/W,

h U m LBWXjX.

Then f-P = (2 by Theorem 10.4.
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Case 4. bj>0 and bk<0, R is in PF(/—Xy), S is in PF(/+1—Xy), T is in

PF(/+x*-l), U is in PF(f+xk), P = LBRXjS, and Q = LBTNXkU. Let
V, W, and X be in PF(/-l-xy+xA), PF(/-xy+x*), and PF(/+l-xy+x*)

respectively. By part (b) of our theorem for a —2

Y-ANVW.

By part (a) for a— 1

Y-R = ZPFA^IF, h T = LSFXylF,

hS = LBWNXkX,        \-U= LBWXjX.

Then hP = (? by Theorem 10.4.

The two remaining cases, namely &y<0 and bk>0, or &y<0 and bk<0, are

handled similarly.

This still leaves part (b) to be handled. So let a(f) =a, and let P be in

PF(/) and Q be in PF(/+1).
Case 1. There is a &y>0. Choose P, S, and T in PF(/—xy), PF(/+1 —xy),

and PF(/+2—x;) respectively. Then by part (b) for a —I

Y-ANRS,

Y-ANST.

Also LBRXjS is in PF(f), so that by our lemma

Y-P = LBRXjS.

Similarly

\-Q = LBSXjT.

So |-^AAP<3 by Theorem 10.5.

Case 2. There is a 5y<0. Proceed as in Case 1.

Theorem 13.2. If P is in PF(f) and Q is in PF(l -/), then Y-P = NQ.

Proof by induction on <r(f). First let a(f) =0. If 1 ̂ /, then Y-P by (2.10)

and Y-NQ by (2.10) and (3.4). So Y-P = NQ by (3.48). If/^0, then Y-NP
and p-AWC? by (2.10) and (3.4). So Y-P = NQ by (3.50).

Let a be a positive integer and assume the theorem holds if <r(f) <a. Let

<r(/) =a and let P be in PF(/) and Q be in PF(1 -/).

Case 1. There isa &y>0. ChooseP, S, T, and (7in PF(/-xy), PF(/+1 -x,),

PF(xy—/), and PF(xy—/+1) respectively. By our induction hypothesis

(a) Y-R = NU,

(b) Y-S = NT.

By Theorem 13.1(a),
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(c) \-P= LBRXjS,

(d) \-Q = LBTNXjU.

By Theorem 13.1(b),

(e) \-ANRS.

By (3.37)

S\-BRXj = BRLSXj,

and by (3.37), the commutativity of L, and (c)

S\- P= BRXj.

So

(f) S\- P= BRLSXj.

By (3.45)

NR h LSXj = BRLSXj,

and by (3.45) and (c)

NR \- P = LXjS.

So by the commutativity of L

(g) NR \- P = BRLSXj.

Then by Theorem 2.3, (e), (f), and (g)

\-P = BRLSXj.

By the commutativity of J5,

h-P = BLSXjR.

Then by (3.8)

h-P=: NLNLSXjNR,

so that by (3.9)

HP = NLNNBNSNXjNR.

Then by (a), (b), and (3.4),

\-P = N LBTNXjU.

Thus we conclude finally by (d)

h-P= NQ.
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Case 2. There is a bj<0. Interchange P and Q and replace/by 1 —/. Then

we are back to Case 1, and can conclude Y-Q = NP. Then by (3.6) and (3.4),

Y-P = NQ.

Theorem 13.3. If P is in PF(f) and Q is in PF(2-f), then Y-APQ.

Proof. Take R in PF(1-/). Then \-P = NR by Theorem 13.2 and

Y-ANRQ by Theorem 13.1(b).

Theorem 13.4. If a is a non-negative integer, P is in PF(f) and Q is in

PF(a+f),then Y-CPQ.

Proof by induction on a. If a = 0, use Theorem 13.1(a). So assume the

theorem for a. Let P be in PF(/) and Q be in PF(a+l+/). Choose P in

PF(a+/). Then h CPR by the hypothesis of the induction, and Y-ANRQ by

Theorem 13.1(b). Then Y-CRQ by (3.52), so that we can infer Y-CPQ.

Theorem 13.5. If a is a non-negative integer, P is in PF(f) and Q is in

PP(1 — a— /), then for each formula R, Y-CPCQR.

Proof. Take S in PF(1 -/). Then h CQS by Theorem 13.4 and Y-P = NS
by Theorem 13.2. Then Y-CCSRCQR by A2 and Y-CPCSR by (3.53). Com-
bining these gives the theorem.

Let/ be a polynomial in which the coefficient of xk is zero, and let P be

in PF(/). It is possible for P to contain occurrences of Xk. The simplest in-

stance of this would be if f=\ and P is CXkXk. However, in any such case,

the values of P will not depend on Xk. This is proved in the next theorem.

Theorem 13.6. Let f be a polynomial in which the coefficient of xk is zero. Let

$>(Xk) be in PF(f). Then Y-$(Xk)=$(R).

Proof by induction on <r(/). First let <r(/)=0. If Xk does not occur in

&(Xk), then the theorem follows trivially by (2.11). If Xk does occur in

Q(Xk) it must be because &(Xk) is either CXkXk or NCXkXk. In this case our

theorem follows either by (3.48) or (3.50).

Assume the theorem for <r(/) <a, and let a(f) =a.

Case 1. Some &y>0. Then j?±k. Choose a $i(Xk) in PF(/— xy) and a

*i(X») in PF(/+1-Xy). Then by Theorem 13.1(a), Y-$(Xk)

= LB^(Xk)X/P2(Xk). So Y-^(R)=LB^1(R)X1^2(R). However, by the hy-

pothesis of the induction Y-^i(Xk)=^i(R) and r-<bi(Xk)=$2(R). So Y-$(Xk)

-#(je).

Case 2. Some bj<0. Proceed similarly.

Theorem 13.7. Let f be a polynomial in which the coefficients of Xy and xk

are both zero. Let be be a non-negative integer. Let $(Xk) be in PF(f-{-bxk) and

Q be in PF(f+b-bxj). Then Y-3>(NXj)=Q.

Proof by induction on b. First let 6 = 0. Then Y-3>(Xk) =^(NXj) by Theo-

rem 13.6, while h*(XA)=(2 by Theorem 13.1(a).
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Assume the theorem for b, and let $(Xk) be in PF(f-\-(b + l)xk) and Q be

in PF(/+& + l-(6 + l)xy). Choose a *i(Z») in PF(f+bxk) and a $t(Xk) in

PF(f+l+bxk). Then by Theorem 13.1(a),

So

(a) h $(WXy) = LB^iNXj) NX,$2(NXj).

Similarly we choose an R in PF(f+b — bxj) and an S in PF(t"+1+6 —6x,-)

and have

(b) \-Q = LBRNXjS.

By the hypothesis of the induction

(c) r-*i(/V*/) - -R,

(d) r-*»(My)B5.

Then by (a), (b), (c), and (d), we get \-&(NX,)=Q.

Theorem 13.8. Let f be a polynomial in which the coefficients of Xy and xk

are both zero.  Let  b  and c be non-negative integers. Let &{Xj, Xk)  be in

PF(f+cxj+ (b + c)xk)

and Q be in PF(f+b+c-bXj). Then l-<f>(X,, NXf)=Q.

Proof by induction on c. When c = 0, our theorem reduces to Theorem 13.7.

Assume the theorem fore. Let $(X,,Xk) beinPF(/+(c + l)xy+(&+c+l).v4)

and Q be in PF(/+6+c + l -bx/). Choose *i(Xy, Xk), ^(X,, Xk), and

$,(X,, Xk) in PF(/ + exj + (b + c)xk), PF(f + 1 + ex, + (b + c)*»), and

PF(/+ 2 + exy + (6+c)xk) respectively. Also chooseP and R in PF(/+6+c— 6xy)

and PF(f-\-b-\-c-\-2—bXj) respectively. By the hypothesis of the induction

(a) r-*i(Xy, NX,) = P,

(b) r-$2(Xy, iVZy) = Q,

(c) r-$3(Xy, WXy)  = 22.

Now LB^X&t is in PF(/+ (c + l)xy + (6 + c)x*), and Z,5<t>2Xy$3 is in

PF(/ + 1 + (c + l)xy + (b + c)*t). So LBLB$1X&sXkLB$iX&, is in
PF(/+(c + l)xy + (6+c + l)x4). So by Theorem 13.1(a)

h$(Xy, X») = LBLBQtiX,, Xk)Xj$2(Xj, Xk)XkLB*t(X,, Xk)Xfr(X,, Xk).

Then by (a), (b), and (c)

(d) r-$(Xy, NX,) = LBLBPXjQNXjLBQXjR.

Also, by Theorem 13.1(b)

(e) l-^/VPg,

(f) i-^iVQie.
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By (d), (e), (f), and Theorem 10.9, we conclude h*(Xy, NX3)=Q.

Theorem 13.9. Let P, Q, R, S, and T be in PF(f),PF(g), PF(f+g),
PP(/+1), and PP(g + l) respectively. Then

(13.1) S Y-CTCBPQR.

Proof by induction on a(g). First let <r(g)=0. If g=^l, then ShP by

Theorem 13.4. So by two uses of Al, SY- CTCBPQR. If g = 0, then \-NQ by
(2.10) and (3.4), and hCPP by Theorem 13.1(a). So Y-CBPQR by (3.45)
and the commutativity of B. Then SY-CTCBPQR by Al. If g^ -1, then
h-A^P. So Y-CTCBPQR by (3.53).

Assume the theorem for a(g) <a. Let a(g) =a. Let

n

(a) / = a + X) bjXj,
j-i

n

(b) g = c + X) djxt.
j-i

Case 1. There is a j for which <2y>0 and &y+dy>0. Let C/, F, W, Y, Z,

and if be in PF(g-xy), PF(g + l-Xy), PF(g + 2-xy), PF(/+g-xy),
PF(/+g + l-Xy), and PF(/+2) respectively. By Theorem 13.1(a)

Y-Q = LBUXjV,

Y-T= LBVXjW,

Y-R= LBYXjZ.

By Theorem 13.1(b),

Y-ANSM,

Y-ANUV,

Y-ANVW?

Y-ANYZ.

By the hypothesis of the induction,

S Y- CVCBPUY,

S Y- CWCBPVZ,

M Y- CVCBSUZ.

Then SY-CTCBPQR by Theorem 10.6.
Case 2. There is a/ for which dj>0, but no j for which both dj>0 and

bj+dj>0. Take a/ for which dj>0. Then —bj^dj>0. Take a & for which

bk = dk = 0. If necessary, take k > n. Take $i(Xjt Xk), $2(X3, Xft), and $3(A^y, X*)

in    PF(/+&y-6yXy-&yX*),    PF(f+g + bj-bjXj-bjXk),    and    PF(/+l+&y-&yXy

— bjXk) respectively. By Case 1,
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$3(Xy, Xk) h CTCB^(Xj, Xk)Q^(Xj, Xk).

So

(c) *3(Zy, NX,) h CTCB^(Xj, NX,)Q$2(Xj, NX/).

li T or Q contains occurrences of Xk, we can appeal to Theorem 13.6 to infer

(c) from the preceding formula. Also by Theorem 13.8

h*i(Xy, NX,) m P,

\-^(X,,NXj) = R,

\-*>(X,,NX,) = S.

Thus by (c), ShCTCBPQR.
Case 3. For each/, d,^0. Then we can proceed as in Cases 1 and 2 if we

replace xy by 1 — xk and Xj by NXk throughout; we conclude by appealing to

Theorem 13.7.

Theorem 13.10. Let P, Q, R, S, and T be in PF(f), PF{g), PF{l-f+g),
PF(2-f), and PF(g + l) respectively. Then

(13.2) ShCTCCPQR.

Proof. Take U to be in PF(1 -/). Then \-P = NU by Theorem 13.2. Also

ShCTCBUQR by Theorem 13.9. So (13.2) follows.

Theorem 13.11. Let P, Q, and R be in PF(f), PF(g),and PF(f+g) respec-
tively. Then

(13.3) \-CRBPQ.

Proof by induction on a(/+g). First let <r(/+g)=0. Then/+g=/3, where

B is an integer. If /3g0, then hNR by (2.10) and (3.4). So \-CRBPQ by
(3.53). Now let 8^ 1. Then g = 8-f. Take 5 in PF(1 -/). Then \-P = NS by
Theorem 13.2. As \-BNSS by (3.1), we have \-BPS. But |- CSQ by Theorem
13.4. So \-BPQ by (3.23), whence h-CRBPQ by Al.

Assume the theorem proved if <r(J-\-g) <a. Let <r(/+g) =a. Let

n

(a) / = a + X M*.
y-i

n

(b) g = c + X ^*;-
y-i

Case 1. There is a j such that b,+d,>0. Then either &y>0 or dj>0. Be-

cause of the commutativity of B, we can interchange P and Q if desired

without affecting (13.3). So there is no loss of generality in assuming that

d,>0. Choose U, V, W, Y, and Z in PF(g-xy), PF(g + l-xy), PF(2-/),
PFif+S—Xi), and PF(/+g + l— x,) respectively. By Theorem 13.1(a),
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Y-Q = LBUXjV,        Y-R = LBYXjZ.

By Theorem 13.1(b),

Y-ANUV,        Y-ANYZ.

By Theorem 13.3,

Y-APW.

By Theorem 13.10,

WY-CZCCPYV.

By the hypothesis of the induction

Y-CYBPU,        Y-CZBPV.

Then Y-CRBPQ by Theorem 10.7.
Case 2. There is a/ such that bj+d,<0. Proceed as in Case 1.

Theorem 13.12. Let P, Q, and R be in PF(f), PF(g), and PF(l-f+g)
respectively. Then

(13.4) Y-CRCPQ.

Proof. Take S in PF(1-/). Then Y-P = NS by Theorem 13.2, and
Y-CRBSQ by Theorem 13.11.

Theorem 13.13. If a is a positive integer and P and Q are in PF(l +/) and

PF(\-\-af) respectively, then Y-CQP.

Proof by induction on a. If a = l, use Theorem 13.1(a). So assume the

theorem for a, and let P and Q be in PF(1+/) and PF(l + (a + l)/) respec-

tively. ChooseR and Sin PF(1 +«/) and PF(1 —af) respectively. By Theorem

13.3,

(a) Y-ARS.

By Theorem 13.12,

(b) Y-CSCQP.

By our induction hypothesis, Y-CRP. But Y-CPCQP by Al, so that

(c) Y-CRCQP.

Then we conclude Y-CQP by (a), (b), (c), and (2.20).

Theorem 13.14. If m is a positive integer, P, is in PP(1+/,) (l^i^m)

and Q is in PF(l + £E-i/0. then

(13.5) Pi, • • -,PmY-Q.
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Proof by induction on m. If m = l, use Theorem 13.1(a). So assume the

theorem for m. Let Pt be in PF(1 +/;) (1 ^ i ^ m + 1), and Q be in

PF(l + Xr=V/i)- Choose R in PF(1 + Xti/*)- By the hypothesis of the in-
duction,

(a) Pl7 • • • , Pm \- R.

By Theorem 13.12,

(b) \-CRCPm+1Q.

By (a) and (b), we readily infer (13.5).

Theorem 13.15. If P is in PP(l+xy), then \-P.

Proof. If P is in PF(l+xy), then there must be a Q and R, in PF(1) and

PF(2) respectively, such that \-P = LBQX,R. But Y-Q and hi? by (2.10).
Then hP by (3.32) and (3.36).

Theorem 13.16. If P is in PF{2-x/), then \-P.

Proof is similar to that of Theorem 13.15.

Theorem 13.17. Let m be a positive integer. Let fi and g be as in (11.1) and

(11.2) with integer coefficients. Suppose that there are sets of rational values of the

x's for which

(13.6) fi^O (l^i^m),

(13.7) xy^O (lSiJSn),

(13.8) 1 - xj ^ 0 (1 =i ^ n).

Suppose that whenever (13.6), (13.7) and (13.8) hold and the x's are rational,

thengtO. Let P,- be in PF(l+fi) (l^i^m), and Q be in PF(l+g). Then

(13.9) P1,---,Pn\-Q.

Proof. Let R, be in PF(l+xy) and S, be in PF(2-Xy). Then by Theorem
13.15 and Theorem 13.16

(a) \-Rj (lg/g»),

(b) \-S, (l^j^n).

By Theorem 11.3, there are non-negative rationals Xi, • • • , Xm+27l, H such that

m n n

g = M + ^ hfi + X ^m+jXj + X W"+y(l - */)•
t-i y=i y-i

Multiplying through by the LCM of the denominators of the X's and fj,, we

find non-negative integers L\, • • • , Lm+2n, M, and a positive integer K such

that
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m n n

(c) Kg = M + X Wi + X £m+yxy + X £m+n+y(l - Xy).
i=i y-i y-i

Take T and Z7 in PF(l+PJg-M) and PF(1+i£g) respectively. By Theorem

13.14, using eachP.Zj times, eachPyLm+y times, and each SyPm+„+y times, we

conclude by (c)

Pi,   "   "   "  , Pm, Pi,  -   '   '  , Pn, Si,   ■   '  ' | J, h   J,

so that by (a) and (b)

(d) Pi, • • • , PM Y- T.

By Theorem 13.4,

(e) Y-CTU.

By Theorem 13.13

(f) Y-CUQ.

Then we infer (13.9), by (d), (e), and (f).

Theorem 13.18. Let m and the fi be as in Theorem 13.17, but suppose that

there is no set of rational values of the x's for which (13.6), (13.7), and (13.8)

all hold. Let Pi be in PF(1 +/,•) (l^i^m), and let Q be any statement whatever.

Then

(13.10) Pi, • • •,Pm\-Q.

Proof. Let a be the least integer for which there is no set of rational values

of the x's satisfying (13.7), (13.8) and

fi ^ 0 (1 ^ i ^ a + 1).

Then there is a rational set of x's satisfying (13.7), (13.8), and

(a) fi ^ 0 (1 ^ i ^ a).

Also, for each such set of x's, — /„+i>0. Then by Theorem 11.2 there is a

positive rational ju such that —fa+i^fi whenever the x's are rational and

satisfy (13.7), (13.8), and (a). Let [i = M/K, where M and K are positive

integers. Then ~M —Kfa+i^0 whenever —/„+i^ju; that is, whenever the

x's are rational and satisfy (13.7), (13.8), and (a). Choose P and S in

PF(1-M-Kfa+1) and PF(l+Kfa+1) respectively. By Theorem 13.17

(b) Pi, • • • , Pa Y- R,

by Theorem 13.14, using Pa+i K times,

(c) Pa+i Y- S,

and by Theorem 13.5
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(d) Y-CRCSQ.

Then we infer (13.10) by (b), (c), and (d).

Theorem 13.19. Let m be a positive integer. Letfi and g be as in (11.1) and

(11.2) with integer coefficients. Suppose that g=^0 whenever the x's are rationals

in the range O^xjSl such that eachfi^O. Let Pi be in PP(1+/,-) (l^i^m) and

Q be in PP(l+g). Then

(13.11) Pw-,P.t-Q.

Proof. If there are sets of rational x's in the range 0 ^x^ 1 for which each

/i^O, use Theorem 13.17. Otherwise, use Theorem 13.18.

Definition. If P is a statement, and / is a polynomial, we define VfP

as follows. Choose Pi, P2, and P3 in PF(/), PF(2-/), and PF(1+/) respec-

tively. Then we set

(13.12) VfP = LLEPPiPiPt.

By Theorem 13.1(a), the exact choice of Pi, P2, and Pz is immaterial.

Theorem 13.20. Let P be a statement formula of X\, X2, • • • . Then there

is a non-negative integer p, there are PF's Pi, • • • , Pv, P*, • • • , P*, and there

are polynomials fi (l^i^2p), with the following properties:

(13.13) Y-APiPt (l^i^p).

If ju ' " " i jm constitute some subset (possibly empty) of the positive integers

Sp, and jm+i, ■ ■ ■ , jp constitute the remaining positive integers ^p (if any),

then there is a k (1 ̂ k^2p) such that

(13-14) Py„ •  •  • , Pym, P*m+1,  • • • , P*p h  VfkP.

Proof by induction on the number of occurrences of symbols in P. First

let P have a single symbol. Then it must be Xj. We take£ = 0, and/i = Xy. Let

us take Pi, P2, and P% in PF(xy), PF(2—Xy), and PF(l+xy) respectively. By

Theorem 13.15 and Theorem 13.16

(a) Y-P2,

(b) Y-Pz.

Also, by Theorem 13.1(a)

h-Pi = LBNCYYXjCYY.

That is

hPi = LBNCYYPCYY.

By (2,10), (3,37), and the commutativity of L
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I-Pi = BNCYYP.

So by (2.10), (3.4), and (3.45)

hPi = P.

Then \-EPPi by Theorem 3.1, whence we get 1— Vf\P by (a), (b), (3.36), and

(13.12).
Assume the theorem for all P's with fewer than a symbols, and let P have

a symbols.

Case 1. P is of the form NQ. Then there are q, Q's, Q*'s, and g's for Q with

the stated properties. We take p — q, Pi = Qi, P* = Q*, and fi=l—gi. Now

consider any set of j's. We have by the hypothesis of the induction

(c) P/u • • ■ , Py„, P*m+v ■ • • , P*h I" VgkQ.

Now Qu Q%, and Q% are in PF(g*), PF(2— gk), and PF(l+g*) respectively.

Take Pu Pi, P3 in PF(/»), PF(2-/*), and PF(1+/*) respectively. Since

gk = l —fk, we have

(d) r-P2 = Q„

(e) \-P3 = Q*

by Theorem 13.1(a), and

I- Pi ■ NQ,

by Theorem 13.2. As EQQ.Y-ENQNQ, by (3.40), we have EQQ^V-EPPu
Then by (d), (e), (3.33), (3.34), and (3.36), VgkQ\-VfkP. Then (c) gives

(13.14).
Case 2. P is of the form CQR. Then there are q, Q's, Q*'s, and g's for Q

with the stated properties, and there are r, P's, R*'s, and h's for P. with the

stated properties. We take

(f) p = q + r + 2'+'.

For l^/^2« and l^w^2r, take 5!m and S*m to be in PF(l-gi+Am) and

PF(l+g( — hm) respectively. Then

—     *
(g) r~ ASlmSlm

by Theorem 13.3. We take the P's to consist of the Q's, P's, and S's, and we

take the P*'s to consist of the Q*'s, R*'s, and S*'s. Then (13.13) holds. We

choose the /'s as follows. Let ji, • ■ • , jm be some subset of the positive inte-

gers ^p. Among the formulas

._ _        * *

will be a subset Q of the ^'s and Q*'s, corresponding to which there is an I

such that
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(i) Q h VgiQ.

Also among the formulas of (h) there will be a subset (R of the P's and P*'s,

corresponding to which there is an m such that

(j) <R Y- VhmR.

By (i), (j), (13.12), (3.33), and (3.34),

(k) Q, (R Y- W

where W is any of EQQU Q2, Q3, ERRi, R2, or P3. Then by (3.41), (k) also
holds when W is EPCQiRi. By Theorem 13.12

(1) Y-CS^CQiRl

By Theorem 13.10

(m) Q2 Y- CRzCCQiRiSin.

Then by (k) with Q2, P3, and EPCQiRi successively for W, we infer

(n) Q,(Rh EPSlm.

We still have to define fk and prove (13.14).

Subcase 1. Sim is among the formulas of (h). In this case, we take/t=l.

By (2.10) and (3.48),

Slm Y- ESlmCYY.

Then by (n) and (3.39)

e, <R,Sim\- EPCYY.

As fk = l,  we have by Theorem   13.1(a),   Y-Pi = CYY,    Y-P2 = CYY,  and
Y-Pz = CYY. So we easily conclude by (2.10) and (3.36) that

Q, (R, Slm Y- VfkP,

so that (13.14) holds.

Subcase 2. Sim is not among the formulas of (h), so that Sfm must be

among the formulas of (h). In this case we take fk = 1 — gi-\-hm. Then by

Theorem 13.1(a), we have Y-Pi = Sim and r-P2 = Sj*,. So by (n) and (3.36),

(o) Q, (R, S*m Y- LEPPiPz.

By Theorem 13.14

Qt, P3 h P3-

So by taking W to be Q2 and P3 in (k), we conclude from (o) that

Q, (R, S*m Y- VfkP,

so that (13.14) holds.
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Theorem 13.21. If \-P, then P takes only the value unity.

Usual proof.

Theorem 13.22. If P takes the value unity exclusively, then I-P.

Proof. Clearly it suffices to restrict attention to statements P which are

statement formulas of X\, X2, ■ ■ ■ , since any other formula P can be

handled by changing the X/s to the constituents of P. By Theorem 13.20,

there are p, P's, P*'s, and /'s such that

(a) \-APiP* (l^i^p)

and for each choice of j\, ■ ■ ■ , jm there is an fk such that

(b) Ph, ■■-, P,m, PLu • • * , P\ h CPuP,

(c) Ph, ■•■ , P,m, P*mW • • • , P*,, P h Pu

where Pi is in PF(fk). Let gi, • • ■ , gv be the polynomials such that Pji

is in PF(g.) (l^i^m) and P* is in PF(gi) (m + l^i^p). Since P takes the

value unity exclusively, we may apply to (c) the same sort of reasoning used

in the proof of Theorem 13.21, and conclude by use of Theorem 12.1 that

whenever the x's are rationals in the range 0 5S x ^ 1 such that each g< ̂  1, then

fk^l. Then by Theorem 13.19,
_ _ % %
Pjl, ,    "jm,  Pj,n+V >   PJp  *~~   *  !•

Then by (b),

(d) Pn, • • • > Pim, P*m+l, ■ • • , P% I- P-

Since (d) holds for each choice of ju • • • , jm, we may use Theorem 2.3 and

(a) to conclude that \-P.

14. The case when 3 has M members, 8 = 1, and C and N are taken as un-

defined. It suffices to add a single axiom scheme to those used in the preceding

section. To describe this axiom scheme, we make some definitions.

Let i be a non-negative integer, and take $<(Xi) and ^i(Xi) to be in

PF(l+*'-(Af-l)xi) and PF(l-i+(M-l)xi) respectively. Define

Af-l

(14.1) M{P) = £L*<(WCP)-
i=0

We take M(P) as the sixth axiom scheme.

We note that M(P) takes the value 1 if and only if Pis assigned one of the

values a/(M—l), where a is an integer with O^a^M—1. As these are the

only values in 3, M(P) takes the value unity exclusively.

Let Q be a statement formula of Pi, • • • , P„, and let Q take the value

unity whenever each of the P's is assigned a value a/(M— 1). This says that
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if we assign rational values between 0 and 1 inclusive to the P's, then Q

takes the value unity whenever

ft m(Pj)
3=1

does. Then by Lemma 1 of [7], we conclude that there is a non-negative

integer ft such that

(a) (ClI M(Pj)YQ
3-1

takes the value unity whenever we assign rational values between 0 and 1

inclusive to the P's. So by Theorem 13.22, we can derive (a) from A1-A5

by means of Rule C. But since each of M(Pj) is an instance of our sixth

axiom scheme, we can deduce Q from (a).
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