PROOF OF AN AXIOM OF LUKASIEWICZ(${ }^{1}$)

BY
C. C. CHANG

In this note we prove that axiom A5 (cf. $\S 10$ of the preceding paper by Rose and Rosser [1]) is derivable from the axioms A1-A4. We use the notation of [1] and the formulas of [1] are referred to by their numbers. In order to make some of the longer formulas more easily readable, we shall separate blocks of letters by a space. We shall use formulas only from the first three sections, which depend only on axioms A1 to A4.

It easily follows from (1.6), (3.5), (1.8), (3.4), and (1.9), in that order,

$$
\begin{aligned}
\vdash A R S & \equiv C C R S S \\
& \equiv C N S N C R S \\
& \equiv B S N C R S \\
& \equiv B S N C R N N S \\
& \equiv B S L R N S .
\end{aligned}
$$

Hence, by the commutativity of L, expressed in (3.10),

$$
\begin{equation*}
\vdash A R S \equiv B S L N S R \tag{1}
\end{equation*}
$$

Now, by (1) and the commutativity of A, expressed in (2.2),

$$
\begin{equation*}
\vdash B R L N R S \equiv B S L N S R . \tag{2}
\end{equation*}
$$

(3.1) and (1.8) give

$$
\vdash B N P P
$$

By repeated applications of (3.32) we get

$$
\begin{equation*}
\vdash B B B B N P P \text { NBPNQ LNBPNQNP LLBPNQPNQ. } \tag{3}
\end{equation*}
$$

By (3) and the commutative and associative laws for B, expressed by (3.11) and (3.29),

$$
\begin{equation*}
\vdash B B B B N B P N Q N P \quad L L B P N Q P N Q ~ L N B P N Q N P P . \tag{4}
\end{equation*}
$$

By de Morgan's law, derived from (3.9) and (3.4),

$$
\vdash B N B P N Q N P \equiv N L B P N Q P .
$$

So by (4),
Received by the editors August 20, 1956.
${ }^{(1)}$ The preparation of this paper was supported in part by the United States Navy under Contract No. NONR 401 (20)-NR 043-167 monitored by the Office of Naval Research; reproduction in whole or in part is permitted for any purpose of the United States government.

In (2) take R to be $N L B P N Q P$ and take S to be $N Q$ and use (3.4). (5) now leads to
(6)
$\vdash B B B N Q L Q N L B P N Q P$ LNBPNQNP P.
By the associative and commutative laws for B, (6) leads to
$\vdash B B B P N Q L N B P N Q N P L Q N L B P N Q P$.
In (2) take R to be $B P N Q$ and S to be $N P$ and use (3.4). (7) now gives
$\vdash B B N P L P B P N Q L Q N L B P N Q P$.
By the associative and commutative laws for B and (8),

$$
\begin{equation*}
\vdash B B L P B P N Q \quad L Q N L B P N Q P N P . \tag{9}
\end{equation*}
$$

By the commutativity of L, and (9),

$$
\begin{equation*}
\vdash B B L B P N Q P \quad L N L B P N Q P Q N P . \tag{10}
\end{equation*}
$$

In (2) take R to be $L B P N Q P$ and S to be Q. This gives by (10),

$$
\begin{equation*}
\vdash B B Q \quad L N Q L B P N Q P \quad N P . \tag{11}
\end{equation*}
$$

From (11) and the commutativity and associativity of L, we get
$\vdash B B Q L L N Q P B P N Q N P$.
By (1.9) and (1.8)

$$
\vdash L N Q P \equiv N C N Q N P \equiv N B Q N P
$$

So by (12),

$$
\begin{equation*}
\vdash B B Q \quad L N B Q N P B P N Q N P . \tag{13}
\end{equation*}
$$

Using (13) and the commutativity and associativity of B,

$$
\begin{equation*}
\vdash B B Q N P \quad L N B Q N P B P N Q . \tag{14}
\end{equation*}
$$

So by (1) and (14),

$$
\vdash A B P N Q B Q N P .
$$

By (1.8), (3.5), and the commutativity of A, this gives

$\vdash A C P Q C Q P$.

References

1. Alan Rose and J. Barkley Rosser, Fragments of many-valued statement calculi, Trans. Amer. Math. Soc. vol. 87 (1957) pp. 1-53.

Cornell University, Ithaca, N. Y.

