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1. Introduction and summary. In this paper we study some analytic con-

tinuation properties of the mapping function of a region B with an analytic

boundary. We are interested in relating the continuability properties with

the set of moments

(1) fim.n =  I  I xmyndxdy (m, n = 0, 1, • • • )

which is an easily obtained set of geometric quantities related to the region

B. It is considerably more convenient to deal with the complex "moments"

(2) am,n =   I   I  zmzndxdy; z = x + iy.

In view of the relationships

m, n

(3a) am,n =     E   (i)m~'(iY~kCm,jCn,ktXj+k,m+n-j-k,

j=0,4=0

m. n

(3b) flm,n  =   ( — i)n2~m~n      E      Cm,jCn,kO-j+k,m+n-j-k,

i=0,k=0

we are at liberty to pass from one set of moments to another.

The relevance of the moments (1) to plane sets 51 is that they form a

"complete set" of domain functionals when the domains 5 have been suitably

restricted. We may define this notion as follows: Let © designate a family of

sets S and let Fn = Fn(S) (w = l, 2, • • • ) be a sequence of set functionals

each of which is defined for all 5£©. The sequence {Fn) will be called com-

plete for © if

Fn(S) = Fn(T), (n = 1, 2, 3, • • • ), S, T, E, ©

implies S= T. The equation S=T may hold a.e., or it may hold in the stronger

sense that each point of S is a point of T and vice versa.

A relationship between complete sets of domain functionals and complete

sets of functions is easily found.

Theorem. Let © designate the family of plane sets which are measurable

and which lie in a fixed circle C. Let L(C) designate the class of functions which
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are defined over C and are integrable. Let f„(x, y)EL(C). A necessary and suffi-

cient condition that

I  I   fn(x,y)dxdy =   I  I   /„(x, y)dxdy,   (n = 1,2,3, ■• •)
«/   •/ ^[ J  */   j*

imply S— T a.e., is that the sequence \fn\ be complete in L(C).

Proof. Sufficiency. Designate the characteristic function of a set 5 by

Cs(x, y). Assuming the above equality,

I   I   Cs(x, y)fn(x, y)dxdy =   I   I   fn(x, y)dxdy =   I   I   /n(x, y)dxdy

=   I   I  Cr(x, y)/n(x, y)dxdy.

Thus,

J J (Cs - CT)fndxdy = 0 (» = 1, 2, 3, • • • ).

Since {/„} is complete in L(C), and Cs~Ct is in L(C), this implies that

Cs~Cr = 0 a.e. Hence, 5=Pa.e.

Necessity. Let S£© and let 0 be a set of measure 0. Then,

jffndxdy = 0 (»= 1, 2, 3, • • •),

implies

I   I  /„<fxdy =11 /n^xrfy (n = 1, 2, 3, • • •)•

But this implies that S = d a.e. Hence, Cs = 0 a.e. Therefore, {/„} is complete

for the set of characteristic functions. Since linear combinations of character-

istic functions are dense in L(C), it follows that {/„} is complete for L(C).

We may restrict membership in <S further and eliminate the necessity for

writing "almost everywhere" by producing a family for which S, T, E, ©, S

= P a.e., implies S=T. For instance, the following family has this property.

Let © designate the family of open sets S lying in a fixed circle C and such

that there are exterior points of S in any neighborhood of any boundary

point of S.

By way of proof, suppose that S—T, a.e. We wish to show S=T. Suppose

there were a point P in 5 but which is not in P. Such a point cannot be an

exterior point of P. For then, we could find a neighborhood N oi P which is

contained in 5 and in the exterior of P. Thus 5 and P would differ by more

than a set of measure 0. Such a point P cannot also be a boundary point of
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T. For in such a case we could, by hypothesis, find a neighborhood N of P

which is interior to S and which contains a point P' which is in the exterior of

T. Then we could find a neighborhood N' of P' which is interior to S and ex-

terior to T. This again is impossible since S and T would differ by more than

a set of measure 0. The assumption that P is not in T is therefore false.

Similarly, if P is in T, we may prove it is in 5. Therefore S=T.

Corollary. Let S and T be bounded open sets which possess exterior points

in any neighborhood of any boundary point. Then

j   |  xmyndxdy =   I   I   xmyndxdy        (m, n = 0, 1, • • • )

implies S=T.

Proof. This is now a consequence of the completeness of the powers in

L(C).
Before we proceed with the general exposition, we shall give a short sum-

mary of the methods and results. For this purpose, we shall think of a simply-

connected domain B with an analytic boundary; some of the results in the

body of the paper, however, are for multiply connected regions.

To begin with the methods, let us see briefly why the moments of the

domain B and the continuability of various mapping functions ought to be

related to one another. We start by considering the transform

/w-w--ff l-^^,
■K   J  J B Z   —  IV

where z is outside the closure of B. On the one hand, many properties of f(z)

are contained in the coefficients of the expansion

/(«) = - E 4t f f w'k(«0b^-
X   ,_0   Z,+ 1 J   J B

In the special case in which g(w) =w", the coefficients are just moments of B.

On the other hand, Green's theorem gives

If   [h(w)]~dw
'(2) - — I ;

ITTI J b      Z   —   W

where h=fgdw. ll wc define h(w) = [fe(w>)]_ for wEb, then

1    r h(w)dw       1    r  h(S(w))dw
/(*) = —-= —-'

Iwl J b    z — W Iwl J b        z — w

where S(w) is what we have called the Schwarz function of b, i.e., the func-

tion on b such that w = S(w). If b is analytic, then S(w) is, of course, analytic

in a neighborhood of b, and
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S(w) = m<->
\M(w))

where M is any function mapping b onto the circumference of the unit circle,

with m as its inverse. If we pick for M a particular mapping function of B,

this procedure gives, then, relationships between the continuability of m,

through the continuability of S, to the moments of B.

Another important tool is the inversion formula for the transform P,

given by

[«(«0]- = - f KB(z, w)f(z)dz,

where Kb is the Bergman kernel of B.

Theorem 4 states that if m(z) maps the unit circle onto B such that m(0)

= 0, then a necessary and sufficient condition for h(m(z)) to be an entire

function is that

I r r 1'n
lim    I  I zn[g(z)]~dA       = 0.

n—.oo I J J r

Here, as defined previously, h is an indefinite integral of g. If we choose g(z)

= z*, we obtain that a necessary and sufficient condition for (m(z))k+1, and

hence (m(z))k+1, to be entire is that

I r r i'n
lim I  I   I  znzkdA       = 0.

n—* oo ; J  J r

Other choices of g give further theorems about m. Later theorems discuss the

possibilities for h(m(z)) to be polynomial, and to be an entire function of a

specified order a.

Finally, we study the meaning of

I   C C 1'n

lim sup    I   I   zn[g(z)]~dA
n—* oo      I J J r

itself. For regions with an analytic boundary, this may be identified as the

parameter on the furthest curve of a family to which a certain function con-

tinues; for domains with a nonanalytic boundary, this limit has not been

identified thus far.

2. Preliminary identities and expansions. We shall assume that we are

dealing with a finite region B (see Fig. 1) lying in the complex z = x+iy plane

and bounded by A+l analytic Jordan curves bo, bi, ■ • • , by. It is assumed

that bo surrounds the others. The finite simply connected region which each

bk, AjSl, bounds is designated by Bk. Bo will designate the infinite region

whose boundary is bo- The following notation will be employed: for a point
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\        jl
Bo

Fig. 1

set S, S will designate its closure, S will designate its complement with respect

to the Riemann sphere, and 5 will designate the conjugate of 5. That is, S

is the reflection of 5 in the line y = 0. Our grasp on the moments (2) (or (1))

is through the transform

1    r r   [g(w)]~
(4) f(z) = T(g(w)) = - ^-^- dAw.

X J J R   z — w

Here dAw is the area element in the w variable. Certain aspects of the related

transform

l   r r   [g(w)]~
(5) f(z) =~ f—±-dAu

■k J J R (z — w)L

have been studied by S. Bergman and M. Schiffer [l], I.E. Block [2] and

A. Beurling [unpublished]. Our interest in this transform lies in an alto-

gether different direction.

We shall restrict the functions g to which T is applied to those with the

following properties: (a) they are regular in B and continuous in B, (b) they

possess an integral

(6) Kz) = r g(t)dt

which is a single-valued analytic function throughout P.

By the complex form of Green's theorem, (4) may be rewritten in the

form
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If    [Kw)Y 1   f   r   [h(w)]~dw
(7) f(z) = —       -dw = — E-

Z« ./ &      Z —  W 2m k=o   J bk     Z —  W

It is clear from (4) or from (7) that, starting from a given g(w), the transform

T defines A^+l analytic functions in B0, Bi, ■ ■ ■ , Bm- It is clear, moreover,

from (7), that it also defines an analytic function in B itself. These N-\-2

analytic functions are not continuations of one another. Nevertheless, the

set of functions defined in this way will be designated simply by/(z). To avert

any possible ambiguity, we shall also use/o(z), • • • ,/v(z), to designate the

"components" olf(z).

Our first object is to obtain some representations for T(g). Let Dk

(k = 0, 1, ■ ■ ■ , N) be a region which contains bk. In particular, Dk may be

an annulus-like strip which contains bk. Let the function

(8) f = Mk(w) with inverse w = mk(£)

be regular and schlicht in Dk and map bk onto | f | = 1. Then from (7) we have

1    *    f        h(mk({))
(9) /(*) = — E "   mi (m-

1m k=0 J |f |_i z — mk(<;)

We now employ the following notation: let t(z) be regular in a region 5.

By t(z) we shall mean the "reflection" of t(z), that is, t(z) is that function regu-

lar in S and defined by

(10) t(z) = [<(*)]-.

Since f f = 1 on | f | = 1, we have

(11) [«*(f)]_ = [»*]-(—) on | r|   = 1.

Hence, (9) can be written in the form

(12) /W=~L -—mk($)d$.
2m k-oJ \k\~i 2 — W4(f)

The paths of integration in (12) may now be deformed provided that no

singularities of the integrand are encountered. If the inverse transformations

f = Mk(w) are applied to (12), there results

Iff        h(mk~(l/Mk(w)))
(13) f(z) =—2. -dw.

2m 4=0 J bk z — w

3. The Schwarz function for an analytic curve. The representation (13)

may be simplified. Let us examine the function which appears in the integrand

of (13): S(w)=m(l/M(w)). (We have deleted the indexing). This function

is, first of all, analytic in an annulus-like region which contains b in its inte-
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rior. It ostensibly depends upon the particular pair of mapping functions

(M, m) which have been selected. But we can show that, in reality, it is inde-

pendent of these and depends solely upon the analytic Jordan contour b. To

show this, observe that for zEb, we have | Af(z)| =1, hence by (11),

(14) m(l/M(z)) = [m(M(z))]~ = z; z E b.

That is, S(z) is an analytic function of z which at the points zEb takes on the

values z. But, an analytic function is uniquely determined by its values along

a curve. Thus, m(l/M(z)) depends only upon b.

An analytic curve may be characterized by a mapping function onto the

unit circle. However, such a function is not unique, while the function S(z)

ior which

(15) S(z) = z; z E b

is unique. We call this function the Schwarz function for the analytic curve b.

(16) S(z) =m(l/M(z)).

Thus, for the unit circle,

(17) S(z) = 1/z.

However, it can also be obtained explicitly in many cases where a mapping

function is not immediately available. Thus, e.g., consider the algebraic curve

C:

(18) x4 + y4 = 1.

Writing x = (z+z)/2, y = (z—z)/2i, we have on C,

(19) (z + z)4 + (z - z)4 = 2z4 + 12z2z2 + 2z4 = 16;

whence, solving for z,

(20) S(z) = (-3z2 + 23'2(z4 + l)1'*)1'*.

In §10, we indicate some additional properties of the function S(z).

4. Further representations for T(g). For each contour bk (A = 0, 1, • • • , N)

let us introduce its Schwarz function Sk(z). Then, (13) becomes

l   *   r h(Sk(w))
(21) f(z) = — E        ±~^J1 dw.

2iri k=oJ bk   z — w

This representation can be obtained directly from (7) and (15).

Let a designate a point of the finite plane which does not lie on b. Let

da = dist(a,b).  Then,   for   |z — a\ <da  we  have

(z — w)"1 = (a — w)~x E ((2 — a)/(w — a))'
j=0
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uniformly for wEb and so

1   A A  C     RSk(w))
(22) f(z) = - — E (* - «)' E I , '   ^-

2« J=0 k=oJ bk   (w — «)'

By expanding (z —w)_1 in negative powers of z, we obtain a representation of

/(z) valid in a neighborhood of z =  <» ;

(23) /0(z) = —- E 2-'-1 E f ^(S*(w))<to.
2« ;=0 A=0 J bk

If the point a, \a\ < °o, is located in 50, 5i, • • • , or Bn, then a similar proc-

ess applied to (4) yields

" 1   /■/■   [g(w)]~dAw
(24) f(z) = -Y,{z-aY-\\     ( .m >

y_o it J JB   (w — a)>+1

and when o= »,

(25) /0(z) = E z-''"1 - f f a»'kW]-d4.
3=0 "K  J   J B

By comparing (22) and (24), (23) and (25), there are obtained the identities

Iff bMm.__Lj.f   ««■»
xJJB   (10-0)'+'       2«£jJi, (w-a)""1

(27) — j j w>[g(w)]-dA = —.11 \   w'h(Sk(w))dw.
IT  J  J B 2m A«o " bk

These identities can also be established by applying Green's theorem directly

to the left hand members and using (16). By passing to the plane of the unit

circle, and using (8) and (16), we have

._.    i rr [g(w)]-dAw     i   r    f jwi/f))

■k J J B   (w — a)'+l        2m J \t\-i ;.=o (w*(f) - a)'+l

(270 - r rwi[g(w)]-dA=—r e M^fmY-ywcn#.
IT  J   J B ZmJ |f|_l t=o \ \f//

As a special case of (27'), we select g(w) = W. This yields

(28) - Cfwiw'dA = f E k)]'[«.(l/f)]rtW(fVf.
t J J B 2m(n + lj^ifi^i   i=0

5. Representation of T in terms of polynomials of Faber type. Assume

that the origin lies in B and consider the set of functions

(29) [*»(*)]" =-Kb(S, w) (n = 0, 1, • • • )
dw" „_o



206 PHILIP DAVIS AND HENRY POLLAK [January

where KB(z, w) is the Bergman kernel function^) for the region B. If the

functions $„ are orthonormalized with respect to the inner product (/, g)

=ffBfgdA, then there is obtained a set of functions $*(z) which are complete

and orthonormal for the class L2(B). For simply connected regions, the func-

tions "3?* reduce to

*      /n+iy2
(29') $„(*) = (——J    M'(z)[M(z)Y

where M(z) is the interior mapping function of P(2). For a fixed z in the ex-

terior of B, l/(z — w) is a regular function of w, wEB and hence, we have

i ™        * r r  [$*(w)]~
(30)       -= 2-i ctn<bn(-w); an = an(z) =  I  I    -dAw.

z — W       n=0 J J r       z — w

The convergence of (30) is uniform and absolute in B. The coefficients an(z)

may, in view of the 2nd equation of (30) and (29), be written in the form

(31) an(z) = — Pj—\
z       V z /

where Pn(z) is a polynomial^) of degree n. Thus, we may write

1 "1        /1\    *
(32) -    =    £   -Pn l-)*n(w).

Z —  W n-0     Z \ Z /

In the equation (32), it is not necessary for z to lie exterior to B. Take any

z^O, then there is a region Cr: G(z, 0)> —logr>0, 0<r<l containing the

origin such that z is exterior to Cr. G(z, 0) designates the Green's function

for the region B with pole at z = 0. For such a z, (z — w)~l as a function of w

is regular in Cr. Hence the series (32) converges(") uniformly and absolutely

for w in Cr. We may conclude further, that if 5 is any point set which is

bounded away from z = 0, then (32) converges absolutely and uniformly for

all z in 5 and for all w in a sufficiently small neighborhood N of the origin.

Take 5 as b. Then for any function t(z) which is regular in B and continuous

in B we have, for wEN,

(33) 1(W)   =   —   f    —- dz   =   T,(—.   f    —  Pn(—)t(z)dz)-^n(w).
2in J (,  z — w ,=o\ 2m J b    z        \z / /

But, in view of the orthogonality of the set $*, we must have, in addition,

0) S. Bergman, [3, p. 21].
(2) Bergman [3, p. 10]. See also Walsh and Davis [7] where the functions have been gener-

alized and their convergence properties extended.

(3) These polynomials are of Faber type. See Davis and Pollak [4, p. 661 ].

(4) Walsh and Davis [7, p. 9].
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(34) t(w) = E ( JJ t(w)$l(w)dA\ €(w).

By comparing (33) and (34), we obtain

(35) f f t(w) [£(w)]-dA = —: f  — Pn (—) t(z)dz.
J J r 2m J b   z       \ z /

Take now, t(w) =$*(w). These functions are, in view of (29) and the stated

hypotheses on b, regular on b. Hence we have

(36) f f *I(w) [**n(w)]-dA =8mn = ~ f  — Pn (—) $l(z)dz.
J J r 2m J b    z        \ z /

From (32), the transform (4) can be written as

(37) f(z) = —Y.( f f [g(w)]-$*n(w)dA)-Pn(-)   zEBo,Bi,---,BN.
IT   n=0\J  J B /    Z \ Z /

6. An inversion formula for P. We now derive an inversion formula for

T(g) under the assumption that g is analytic in B. Under this assumption,

h is also regular in B, and hence, we may find contours A* (A = 0, 1, ■ • • , N),

b* lying in B, b*, ■ • ■ , b% surrounding bi, • • • , btr respectively, and b* sur-

rounded by bo, and such that

l   *   r  h(Sk(w))
(38) /«- — E I    -±-^dw.

2m k=o J bk    z — w

(Cf. (21)). Hence,/(z) may be continued analytically across bk. (That is, each

of the A+l analytic components of/,/a, can be continued across its appropri-

ate bk, (A = 0, 1, • • • , N)). Consider now,

*,^s,^        *-<*)  ^   f      ̂ WK(39) *»(*)/(«) = -^r— E        -dw.
Im   fc_o •/ bj   z — w

Integrating (39) over b we obtain

$m(z)f(z)dz = -      *m(z) E        -Lii_^ <fe><fz
J 6 2m J b j=o J b*   z — w

N     C 1       C     $m(z) N      C *
= E I    h(Sj(w))dw—; I    -dz = E I    h(Sj(w))$m(w)dw

i=o J b* 2m J b z — w j=o J bj

= T, f h(Sj(w))$Z(w)dw = 2i f f [g(w)]-$t(w)dA.
j=0 J bj J J R

The last equality follows by Green's theorem. Now,
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(41) g(w) = E ( ff g(y>) [*t(u,)]-dA\ **(w), wEB,

so that by (40),

(42) [g(w)]~ = -J:( f *l(z)f(z)dz)[**{w)]-, wEB.
2l n=0 \ J b /

Now, KB(z, w) = E"=o3)*(z) [$*(«>)]-, this series converging uniformly for

zEB and w confined to any closed region contained in B. Thus,

(43) [g(w)]~ = — f KB(z, w)f(z)dz, wEB.
2iJb

We are now in a position to establish the following result(5).

Theorem 1. The function g(z) can be continued analytically across all com-

ponents of b if and only if each component function

1    C C    [g(w)]~
(44) fk(z) = - 1^J1_ dAwt z e Bk

■K  J   J B      Z  —  W

can be continued analytically across bk to the interior of B. In such a case, the

inverse of T is given by

(45) [g(w)]~ = -f KB(z, w)f(z)dz,
2i J b

where the values offk are used on bk informing (45).

Proof. We have already shown that if g(z) is regular in B, then fk(z) con-

tinues analytically across bk and (45) holds. Suppose, conversely, that/*(z)

comes from a g(w) through (44) and that each/* continues analytically across

bk. Define a function g*(w) by means of (45). That is,

(46) [g*(w)]- = — f KD(z, w)f(z)dz.
2iJb

By our regularity hypothesis, we may find contours &* lying interior to B on

which fk(z) is still regular. Thus,

(47) [**(»)]- = — f KD(z, w)f(z)dz.
2iJ b'

Now, for z on b*, it is known that KB(z, w) is an analytic function of w which

(6) These matters have been discussed in Davis and Walsh [5] for simply connected do-

mains and from a different point of view.
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may be continued analytically across bk (k = 0, 1, • • • , N). Thus, by (47),

g*(w) must also have this property. For t in B,

1   C C  [g*(i»)]~ 1    f f   dAw   r
(48)    T(g*) -- ^-^-<L4„ = —-■      KB(z, w)f(z)dz.

x J J b   z — w 2m J J b t — wJ b*

Since both integrands are regular over the indicated sets, we may invert the

order of integration and obtain

T(g*) = — f f(z)dz f f -KB(z, w)dAw
2m J b' J J b t — w

(49) =—r ^^=—r ^^
2m J b* t — z       2m J b   t — z

-lif^.
t=0  2x2 •/ it   / — z

Now, let tEBj. Then, (2iri)~1fbj(fj(z)/(t-z))dz=fj(t) while

(2xi)-» I   (/*(z)/(i - z))dz = 0   for    £ ^/.
J bk

Thus we have, T(g*)=f(z), component by component. Thus, T(g — g*)=0.

It follows from (37) that ffB$>n[g-g*]-dA=0 (n = 0, 1, • • • ). Since {$*}
is complete in L2(B), this implies that g=g*.

7. General continuation theorems. The transform /= T(g) is known ini-

tially to define A^+l analytic functions in the N-\-l components of B. If it

is assumed that g is regular in B, then it follows from the last section that

each component of / may be continued analytically across the corresponding

bk. In the present section we study the singularity structure of/ in more de-

tail.

Let y designate a simple closed rectifiable Jordan curve and let H(z) be

analytic and single valued in an annular region A which contains y in its

interior. Let I and E designate the bounded and unbounded regions into

which the plane is divided by y. The Cauchy integral

1    C   H(w)
(50) t(z) =- I    —^- dw

2m J y z — w

defines two analytic functions Ie(z) and ti(z) in E and i" respectively.

Lemma. H(z)—tE(z) is continuable analytically to I and H(z)—ti(z) is

continuable analytically to E.

Proof. Let contours ji and Je lie in A and surround y on the I and on the

E sides respectively. Let z lie in /, but within the annulus bounded by yi

and y. By Cauchy's theorem, we have
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i   r h(w) r pw
(51) E(z) =-       —— dw -        —^ dw.

2m J T z — w J T/ z — w

Thus,

C   B(w)
(52) H(z) - h(z) = -  I    —- dw = - lE(z).

J 7; Z — W

The functions ti and Ir are frequently called the inner and outer functions for

H.
We can now establish that the singularity structure of f,(z) is identical

to that of h(S,(z)).

Theorem 2. The function fj(z)—h(Sj(z)) which is initially known to be

analytic in an annular strip in Bj adjacent to bj may be continued analytically

across bj and into the whole interior of B.

Proof. From (21) we have

Iff   KSk(w))
/;(z) = ~ E        -dw, z E B,

2m k=o J bk   z — w

2m \J bj   z — w k^jJbk    z — w       )

Now, the function h(Sj(w)) is regular on bj and hence by our Lemma,

fhj(h(Sj(w))/(z — w))dw — h(Sj(w)) may be continued analytically across bj to

the complete interior of B. On the other hand, consider the remaining inte-

grals fbk(h(Sk(w))/(z — w))dw, zEBj, k^j. These can obviously be continued

analytically from Bj into the complete interior of B. However, due to the

presence of the contour bk itself, this continuation may possibly not be single-

valued. We now prove that the period around each contour is zero and hence

the integrals are single-valued. Let ck be a contour lying in B and surrounding

bk. Then,

r   h(Sk(w)) r fd_ r   h(Sk(w))dwl

J bk   z — w Jck\-dzJ bk z — w    J
(54) .

r r HSk(w)) r . r       dz
= -       dz- dw = -       h(Sk(w))- dw = 0,

J ck      Jbk(z-W)2 J bk Jck(z-W)-

since the inner integral vanishes identically for wEbk. This completes the

proof.

We now wish to refer the continuation properties of / to the mapping

functions mk instead of to the Schwarz functions Sk. We first introduce some

geometrical notations.
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Fig. 2a

As in §2, each boundary bk is surrounded by an annular strip Dk

(k = Q, 1, • • • , N) in which the mapping functions f = Mk(w), w = mk(^) are

regular and schlicht. Let C be any region which lies in BP\Dk (for fixed k)

and which possesses part of bk as part of its boundary (see Figs. 2a, 2b). Let

this part of the boundary of bk be designated by b'k. Under the map Mk,

C goes into a region C* which is contained in the image of Dk and which

borders on |f| =1. Let this part of |f| =1 be called c'. Under reflection in

|fI =1, the region C* goes into a region C\ which borders on |f| =1. The

region Cr may or may not be contained in the image D* of Dk under M.

Having fixed an Mk, we may set up the correspondence C<^CR (depending

upon Mk) as explained above. In the theorem which follows, the regions C

and Cr will have this meaning.

Theorem 3. The transform fk(z) can be continued analytically across b'k

so as to be regular in BkKJC if and only if h(mk(z)) can be continued analytically

so as to be regular in C%.

Proof. Suppose first that fk(z) can be continued analytically across b'k so
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Fig. 2b. Simply connected region utilizing inner mapping function.

as to be regular in BkVJC. By Theorem 2, fk(z) — h(mk(l/Mk(z))) is regular

in B. Hence, h(mk(l/Mk(z))) can be continued across b't so as to be regular in

C. Designate this composite function by p(z). As z varies in C, 1/Mk(z) varies

in Cr. Set t = l/Mk(z), then for tEC%, z = mk(l/t). Thus, z is a regular function

oit iortEC\\. Hence p(mk(l/t)) is a regular function of tin Cr. But, p(mk(l/t))

= h(mk(l/Mk(mk(l/t)))) =h(mk(t)). Thus, h(mk(t)) is regular in Cr.

Conversely, let h(mk(t)) continue analytically so as to be regular in Cr.

For zEC, Mk(z) is regular and takes values in C*, while \/Mk(z) takes values

in Cr. Therefore, h(mk(l/Mk(z))) is regular in C. But by Theorem 2, fk(z)

— h(mk(l/Mk(z))) is regular in B. Therefore fk(z) must be regular in C.

In this theorem as it is phrased above, the region C must be taken interior

to Dk. However, if by Mk we understand an interior mapping function of

bk (A = 0) and an exterior mapping function (A^l), then any C lying in B

and bordering on bk will be admissible.

Corollary. Let B be a simply connected region and let m(z) map the interior

of the unit circle onto B such that m(0) =0. Then, f(z) =fo(z) continues analyti-

cally into B — (0) if and only if h(m(z)) is an entire function.

Proof. Under the correspondence C<->Cr (see Fig. 2b), any simply con-

nected region lying in B, bordering on an arc of b and not containing the

origin corresponds to a finite simply connected region lying in | f | > 1, border-

ing on an arc of |f| =1, and vice-versa. The corollary now follows.

Additional corollaries can be obtained by specializing the function g.
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Thus, e.g. if g(z) =1, then the above results read directly on m(z).

8. Analytic continuation and moment properties. In the present section,

we relate the analytic continuability of the mapping function of a simply

connected domain with the growth properties of certain sequences of mo-

ments.

Theorem 4. Let B be simply connected and let m(z) map the unit circle onto

B with ra(0)=0. A necessary and sufficient condition that h(m(z)) be an entire

function is that

(55) lim    ff z"g(z)dA       = 0.
n—. so 1 J «/ b

Proof. From the previous Corollary, a necessary and sufficient condition

that h(m(z)) be entire is that/(z) continue analytically to z = 0. From (25)

and the Cauchy-Hadamard formula for the radius of convergence of a power

series, we obtain (55).

Corollary. Let m(z) be defined as above. A necessary and sufficient condi-

tion that \m(z)]h+l be an entire function is that

I c r ^n
(56) lim    I  I zn[zk]~dA       = 0.

n—♦ oo I ./  J b

A necessary and sufficient condition that m(z) be entire is that

(56') lim        I  zHA       = 0.
n —* oo [ J J b

In the case of multiply connected domains, Theorem 4 is no longer ap-

plicable, but the following inequality may be obtained. See also (86), (87).

Theorem 5. Let mk($) map the interior of\$\ =1 conformally onto the inte-

rior of bk (k = 0, 1, ■ ■ ■ , N) with mk(0) =ak. If h(mk($)) are all entire functions,

then

I C C \Un
(57) lim sup I  I   I  zn[g(z)]~dA i      ^   max    | ak \ .

n-.oo       ! J   J B 0£k^N

Proof. From (27') we have,

ff zn[g{*)YdA = — f        E Mf)H (rnk (—)) ml (f)#.
1C  J   J B 2xjJ|f|_lA_0 \ \f//

In view of the fact that the functions h~(mk(£)) are entire, the integration path

in the last integral may be taken as |f| =r, for all OO^l. Let Ak(r)

= max|f|_r |w*(f)|, 5*(r) = max|f|_r \h~(mk(l/$))m'k(S)\. Then,
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(58) -   f { z»[g(z)]-dA   ^ r E [Ak(r)YBk(r),
X   I J   J B k=0

and

(59) j  f fz»[g(z)]-dA ln ^ (xr)"4 E [Ak(r)]«Bk(r)\ ' ".
I J   J B \ k=0 J

Therefore,

j     /»   /» l/n

(60) lim sup    I   J  z"[g(z)]-(L4        g   max   4*(r).
m-*oo      \ J J B O&k&N

Since r may be selected arbitrarily small and since limr^0 A k(r) = \ ak | , we

now obtain (57).

Corollary. If B is doubly connected and ifmk(0) = 0 (k = 0, 1) and h(mk(£))

are entire then

(61) lim I  \   \  zn[g(z)]~dA       = 0.
n—>°o \ J J b

In the two theorems which follow, we deal with simply connected regions

B with interior mapping function w(f), m(0) =0.

Theorem 6. The function h(m(£)) is a polynomial of degree n if and only if

(62) ff zp[g(z)]-dA =0, p^n.

Proof. If t($)=h(m($)), then [t(f)]~ = h(m(£)); hence, h(m({)) is a poly-

nomial of degree n if and only if t(£) is. Write m(f) =aif+fl2t2+ " " " > *w'(f)

= a1 + 2fl2r+ ■ " "  and assume first of all that A(w(f)) =&o + &if+ ■ ■ • +&nfn-

From (27') we have

— ff z'[g(z)]~dA = — f      [m(i)]ph(m (-)) «'($•)#.
tJJb 2m J if |=i \    \f//

Now [»«({") ]'''w'(f) =f PRP(0 where 7\,, is some regular function in | f | =1, and

Rp(0)^0. Then,

(63) — f f z*[g(z)]-dA = — f      f^p(f) |~5o + — 4-+ -=   *•
■k J J B 2m J |f|=i L f s J

For £g:w the right hand integrand is regular in | X, \ = 1 and (62) follows.

Conversely, suppose that (62) holds. Then by (25) we have

Co Ci cn

(64) f(z) =—+ — +•.. + -
z        Z^ z"
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for some constants Co, Ci, ■ ■ • , cn. On the other hand, from (37) we have

(65) /(*) = - E (  ff [g(w) ]-t>*n(w)dA) - Pn (-) .
IT   n=0\J  J B /    Z \Z /

In view of the fact that Pn(z) are polynomials of degree n, we have from

(64) and for some constants do, o*i, • • • , 0*„_i,

(66) f(z)   =   d0 —   P0 (—) + di —   Pi (—}  +   •   •   •   +  dn-l — Pn-l (—) .
z       \ z I z       \ z / z \ z I

It follows from (65), (66), (36) and the uniqueness of the representation of/

in a series of P„'s that

(67) I  J   [g(w)]~$*(w)dA =0 for p ^ n.

Using (29') we have

(68) j]   [g(w)]-M'(w)[M(w)]*dA = 0 for p ^ n.

Applying Green's Theorem to (68) there is obtained

(69) I [h(w)]-M'(w)[M(w)]pdw = 0 for p ^ n
J b

or

(70) f      |>0*(i"))]"?p# = 0 for p ^ n.
J iri-i

Since by Theorem 4 A(m(f)) is entire, it is regular in |f| rgl and it follows

from (70) that h(m(%)) must be a polynomial of degree n at most.

Corollaries. PAe mapping function mi£), m(0)=0, has the form miX)

= (Polyn (f))1'* if and only if JJ\znzk~ldA =0 for all n sufficiently large. w(f)

is a polynomial if and only if ffBzndA = 0 for all n sufficiently large. B is the

circle \z\ =r if and only if ffsZndA=0, »=1, 2, 3, • • • .

Theorem 7. Define r(z) = (\/z)f(\/z). The function r(z) is entire of order

Sot if and only if h(m($)) is entire of order 5=a. Here m(0) =0.

Proof. If t(f)=h(m({)), then A(m(D) = [t(f)]~. Hence, h(m(£)) is entire

of order <a if and only if t(%) has this same property.

From (12) we have,

If       h(m(l/S))m'(S)dS
(71) r(z) = - I        -•

2m J K\=i      1 — zm(^)
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To establish an inversion formula for (71), we could use Theorem 1. How-

ever, it seems simpler to proceed as follows. From (40) we have

(72) f £(z)f(z)dz = 2iff [g(z)]-$n(z)dA.

Utilizing (29')

f M'(z)[M(z)Yf(z)dz = 2% f f [g(z)]-M'(z)[M(z)]HA

(73) " B

[h(z)]-M'(z)[M(z)]"dz,
J b

the last equality following by application of Green's theorem. Here M is the

interior mapping function of B and is inverse to m.

Applying the transformation z = m($) to the first and last integrals in (73)

we obtain

(74) f     r^r-r(-—)di- =   f      [A(«(r))]-f#.

Now if h(m(t)) = Er=o <W*. then

f      [A(w(f))]_f"df = 2mdn+i
•Mtl-i

so that

[h(m(w))]~ = Edkwk = — I>* f      [h(m({))]-{k-W
k-o 2m a_o      J lfl_i

i a    r     f*   i    / i \
(75) = — E*H     T~^r(-?^)*

2xt k=o     J in-i  f   w(f)    \»»(f)/

= Jf r(l/mGQ)#

~ 2x*J,ri_1f(l-a)fMf)

which is the required inversion formula.

Suppose now that h(m(£)) is entire and satisfies an inequality of the form

(76) \h(m(t))\   <0(r),        0 <r =  |f|   < ».

Since h(m(%)) is entire, then the integral in (71) may be extended over any

circle whose radius is sufficiently small. For each z, we shall select an appro-

priate radius rs and obtain from (71) and (76) the estimate

(77) \r(z)\   £r,-J—\-A- max-—
\rj |ft-r.   1 — zw(f)
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where A = maxifi^i | m'(Q \.

Since m(f) =aif+a2f2+ • • • , limf,0 »w(f)/f = a1. Hence to a given e, there

is a f o such that

(78) (|0l|   -«)|f|   ^   |»(f)|   ^ (I ai|   +e)|f|

for |f I ^fo- Fix a 0<e< |ai| and select rz as follows,

1
(79) r2 = -:-:-r-,-

(l + e)(|ai|   -€)|f|

For z sufficiently large, rz<fo, and hence, from (78) and (79),

i i *
mm | m($) |   ^ ———-r—- ■

lfl-r, (l + e)|z|

Hence, max|f|_r> 11/(1 — zm(f))| ^(l + e)/t. Thus, for |z| sufficiently large,

(80) |r(z)|   * —-j-rT-T*((l + 0(|«i|   ~«)|«|)-
«( | a\ |   — e) | z |

Assuming, conversely, that r(z) is entire and satisfies an inequality of the

type

(81) | r(z) |   ^ iKO,       0<r=|z|   <oo,

we may proceed similarly with the integral (75). Select

(82) rw = •
(1 + e) I w\

For |w| sufficiently large, ru<fo and therefore

i          i         I ai I   — 6
min     w(f)     > -;-r >

Ifl.-r, (1 + «) | w|

while max|f|_ru, |l/(l—wf)| ^ (1 +e)/e. Then, from (75), for |w| sufficiently

large,

. , (1 + e)21 w|       /(l + 0|te»|\
(83) \h(m(w))\   gS   \ ,'     '   *(\      ■ ')■

(e)( I °i I   — e)      V | «i |   — e /

If we now select, as a special choice, dy=^ = ef,a, the theorem follows from

(80) and (83).

Corollary. The function h(m(£)) is entire of order <a if and only if

(84) \ f f zn[g(z)]~dA       =0(n-1>"), n -> w.
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Proof. The quantities JJbzu [g(z) ]~dA are the Taylor coefficients of r(z) so

that classical growth theorems(6) may be employed.

9. Identification of \imn^Ksup\ ffBzng(z)dA\Un. We have seen in the pre-

vious section that growth properties of the quantities | ffsW1 [g(w) ]~dA \ lln

are intimately related to the analytic continuability of h(m({)). Introduce

the abbreviation

I   C C 1'B
(85) a = o-g = lim sup    J   j  zn[g(z)]~dA

n—»w      I «/   «/ b

In §8 we investigated the case <r = 0. In the present section we shall study

the case <r>0 in more detail.

If P designates the maximum distance from 0 to B, then (85) yields the

immediate estimate

(86) a ^ R.

In many cases the weak inequality in (86) can be strengthened. Let Wo(f)

map the interior of |f| =1 conformally onto the interior of Co, and assume

that h(mo(Z)) is regular in |f| gr, r>l. Then, using the same technique as

that employed in the proof of Theorem 5, we can show that

(87) a S   max   | m0(£) | .
Ifl=r-'

Hence, in this case

(87') o- < R.

Thus, the equality sign in (86) can hold only if h(m0(z)) is nonanalytic on the

outer boundary. This occurs, e.g., in the case of the unit square .S with g = l.

In this case, an explicit computation yields cr = 21/2 = P. The converse is not

true. There are simply connected domains with a nonanalytic boundary for

which cr<P. Thus, for instance, let B be the crescent shaped region formed

by the two circles cy: \z\ gl, c2: |z —1/21 gl/2. We have, for w>0,

(88) \   i z"dA =   I j   z"dA -  j  I   zndA = -  I   I   zndA.

Now

I  c r l'n | c c 1'n       1
(89) lim     I   I  z"dA        = lim    I   I   z"dA        = — < 1 = P.

\ J  J B I J  J c2 2

It is of considerable interest to identify the constant ag more precisely

for simply connected domains with an analytic boundary. To this end, we

make the following definitions. We assume here that B contains the origin.

(6~i Cf., for example, Titchmarsh, [6, p. 253].
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I   n     \       2-plane

_ r-plane        j/*"—^w.

o o
Fig. 3

For values of r, 0^r^i? = maxzgB| z|, define a one-parameter family of

curves CT as follows, (see Fig. 3).

(90) Cr = boundary of [B C\ (| z |   g r)].

The curve Cr is therefore contained in B and, under the interior map M(z)

has an image C*. Under the map f' = l/f, C* has an image Dr. For small

values of r, Dr is a very large circle-like curve which tends to <* as r—>0.

As r—>R, Dr becomes the circle |f| =1 itself. If ri<r2, it is clear that Dri

contains DT2 in its interior. It should be emphasized that the family Dr

is a fixed set of curves which depend upon B, but not upon g. If g is analytic

in B, then h(m(£)) is analytic in |f| 2=1 and therefore, for values of r suffi-

ciently close to R, it can be continued analytically to Dr. As r—->0, and Dr

expands, this property will, in general, cease. We make the following defini-

tion: r0 is the greatest lower bound of quantities r such that h(m(z)) is continuable

analytically to Dr.

Theorem 8. aa = r0.

Proof. From (25) we have f(z) = (1/x) E*"=o z~"~1ffBWn[g(w) ]~dA. From

(85) and the Cauchy-Hadamard theorem,/(z) must be regular in the region

\z\ >ag and will possess a singularity on \z\ =aa. Thus, /(z) will continue

across certain parts of the boundary of B and will be regular in C

= B — (\z\ ^<rB). By Theorem 3 it follows that h(m(£)) must be regular in the

region Cr corresponding to C. (The correspondence of Theorem 3.) This Cr is
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precisely D,g as defined in the previous paragraph. Hence r0^o-„. Suppose

now r0<as. Then, by definition, A(m(f)) would be continuable analytically

to Pro and hence again by Theorem 3, f(z) would be regular in the region

B — (\z\ ^r0), which is a larger region than C. Now from (4) it is clear that

f(z) can have no singularity in the complement of B. Hence, the singularity

of/which is located on | z| =<rg must occur either at a boundary or an interior

point of B. From Theorem 1, since g is analytic on b, f must be regular on b.

Therefore the singularity on |z| =o-„ is located at an interior point. This

contradicts the regularity of/in B — (\z\ ^r0), r0<<T0. Therefore we must have

r0 — aa.

10. The Schwarz reflection function; further facts. The function S(z) de-

fined by

(15) S(z) = z;        z on b

is sufficiently interesting in its own right to warrant separate study. This

function embodies within it the reflection principle for analytic functions in

that the following facts are true.

(a) The point zr given by

(91) Zr  =   [S(Z)]~

is the reflection in b of the point z. Given a small neighborhood containing

an arc of b, let w = t(z) map this neighborhood one to one conformally in such

a way that b goes into a part of the real axis Im (w) = 0. According to Schwarz,

the reflection of z in b is given by ZR = t~l[(t(z))]". Consider the function

Si(z) = [r~l[(£(z))]~]~. For z on b, we have Si(z) =z. Therefore 5i(z) =S(z) and

(91)holds.

(b) If /(z) is regular in B and continuous in B and if for z on b,f(z) takes

values on the unit circle, then /(z) may be continued analytically across b

by means of the formula

(92) f[(S(z))]- = l/[/(z)h

(c) More generally, the invariant form of (92) is as follows. Let /(z) be

regular in B and continuous in B and for zEb, let f(z) take on values on an

analytic curve d. Designate the Schwarz functions of b and d by Sb and Sd

respectively. Then f(z) may be continued analytically across b by means of

the formula

(93) f([Sb(z)V) = [Sd(f(z))]-.

This may be written in the form,

(94) Sd(z) = f(Sb(r(z)))

which is the law of transformation of one reflection function into another.

(d) S(z) satisfies the equation
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(95) S(S(z)) = z,

identically. The "Hermitian idempotence" of S(z) expresses the idempotence

of the reflection operation.

The differential geometry of reflection has been studied by E. Kasner(').

The identity (95) is reminiscent of the theory of permutable functions as

developed by Ritt(8) and others.

We have already seen that an analytic curve determines S(z) uniquely.

The converse is also true:

Theorem. Let S(z) be regular and single valued in a doubly connected an-

nulus-like region A. Then S(z) cannot be the Schwarz function for two distinct

homotopic analytic curves lying in A.

Proof. Let & and C2 be two analytic curves lying in A and bounding the

(finite) simply connected regions Bi and B2 respectively. Assume that S(z)

is the Schwarz function for both d and C2. As a special case of (27), or by

applying the complex Green's theorem directly to the left hand number, we

have

I  I    zmzndA = - I    zmzn+1dz = - I    zm[S(z)]n+1dz
(96) J J Bl 2i(n+l)JCi 2i(n+l)JCl

(m, n = 0, 1, • • • ).

Similarly

(97) f j    zmz"dA =- f zm[S(z)]n+1dz.
•J J s2 2i(n+ 1) J c2

By the assumed regularity of S(z) in A, we have by Cauchy's theorem,

(98) f   zmSn+l(z)dz =   j    zmS"+1(z)dz.

J Ci J c2

Therefore,

(99) I   I    zmzHA =   j j    zmzndA,        (m, n = 0, 1, • • • ).
J   J Bx J  J B2

Therefore, from (3b),

(100) I  I    xmyndA =  I  I    xmyndA        (m, n = 0, 1, • • • ).
J  J Bi J  J B2

From the corollary in the introduction it follows that B\ = B2.

(7) Annals of Math. vol. 38 (1937).

(8) Comptes Rendus vol. 176 (1923).
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Though the singularity structure of S(z) is completely given by Theorem

2, it is of interest to obtain results on this question which are independent of

the transform/(z). We note first of all that S(z) cannot be regular throughout

the interior of its curve. For, from, (96) with m = n = 0,

(101) 0 < Area (B) = — f S(z)dz = 0
2iJ c

assuming regularity. We may even state that S(z) cannot be equal to the

derivative of a function which is analytic and single valued on C. This state-

ment may be generalized in two ways;

Theorem. Let g be regular in B, and let g(S(z)), initially known to be regu-

lar near C, continue analytically to be regular in all of B. Then g is identically

constant.

Proof. We have

ff | g'(z) \2dA =   f f g'(z)[g'(z)]-dA = - f g'(z)[g(z)]-dz
J  J B J   J B 2l J c

= - f g'(z)g(S(z))dz = 0.
2iJ c

Therefore g'(z) =0 and the conclusion follows. The same conclusion holds if

we require that g'(z)g(S(z)) be the derivative of a function analytic and single

valued on C.

It follows from this theorem that the singularities of S(z) cannot be

annihilated by its being operated upon by a regular function.

Theorem. Let B be contained in \z\ <d. Letf(z) be analytic in \z\ <d2 and

satisfy xf (x) +/(x) >0 for real x>0. Then S(z)f(zS(z)) cannot be regular in B

(or cannot be the derivative of a function which is analytic and single valued on

C).

Proof. Let

f(x) = E -— *" I x I   < d2.
n=o n+ 1

Then,

r2/(r2)=E-5-'2° \r\   <d
n=0   W+1

and

d °°
— [r2f(r2)] = 2r E <V2" > 0
dr „„o
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by hypothesis. Setting

r2 = x2 + y2, 0 <   I  I    E anr2ndxdy =   I   j    E anznzndxdy
J   J B    0 J   J B n=0

= E«»- f z»S"+1(z)dz = — f S(z)f(zS(z))dz.
n=o      2iJb 2iJb

The conclusion now follows as before. As a corollary we cite: Pe/ £(z), r(z) be

regular in B and assume that p(z) = [r(z) ]_ along C. Then £ and r are con-

stants. For, p(z)= [r(z)]~ on C. Therefore p(z)=f(z) on C or £(z) =r(5(z)).

The conclusion now follows the previous theorem.

Theorem(9). The Schwarz reflection function S(z) of an analytic curve C is

rational if and only if C is a circle.

Proof. The circle |z —z0|2=p2 possesses the reflection function S(z)

= (p2/(z —Zo))+Zo- Conversely, suppose that S(z)=R(z)=P(z)/Q(z) where

P(z)=a_oZra+ • • • ,Q(z)=b0zn+ ■ • ■ ,a0bo^O,(P, Q) = 1. Since we have iden-

tically R(R(z))=z,

a0Rm + diP"1"1 + • • •

(102)-= z,
b0Rn + biR"-1 + • • •

or,

(103) (d0Rm + aiP"-1 +•••)= z(50P" + biR*-1 +•••)•

Case 1. Suppose m>n. Then,

50Pm + diQPm~l + • • • = Qm(b0Rn + biR"-1 +•••)•

Thus, (2|aoPm, and since (P, 0 = 1, <3 = const. Thus, P=a0zm+aizm-1 +

Since R(R(z))=z, identically, it follows that

z = 5o(a0zm + aiz"*-1 + • • • ) m + ai(a0zm + • • • )m_1 + • • • .

Comparing leading coefficients, we find aoaoZm =z and so m = l, a0a0 = l.

Then,

(104) R(z) = az + ft, aa =  1, Re (aft) = 0.

Case 2. Suppose m<n. Then as before, Q\ bozP", and since (P, Q) = l,

Q = const, or Q = const, z. Since P is of smaller degree than Q, we must ac-

tually have R(z) =c/z. Now R(R(z)) =z implies c = c. Thus, in this case,

(105) R(z) = c/z, c real.

(9) The present theorem utilizes the Hermitian idempotence of the reflection function.

Though Hermitian idempotence as such does not appear to have been studied, an equivalent

theorem for ordinary idempotence is well known. The authors wish to thank Dr. Morris New

man for a fruitful discussion in this area. The present arrangement of this proof is due to him.
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Case 3. Suppose m = n. Then

SoPm + axqPm~l + • • • = z(b0Pm + bxQPm-1 +•••)•

This implies that d0 — b0z = 0 (mod Q). Thus, Q=Cz+d and so P = azA-b for

some a, b, c, d. Writing

the identity R(R(z)) =z implies

(*    b)(a    b)z = ,

\c    d) \c    dj

Thus, we need only to look for matrices

«-c:)
such that MM=I. Assume, as we may, that det M=l. Since M = M~\ this

implies that

/a    b\      Id -b\

\c    d)      \ — c      a)

so that a = d, b= —b, c= —c, d = a. Writing a = ai-\-iai, b = b\A-ib2, c = Ci-\-iCi,

d = d\A-idi, we obtain a = a\A-ia2, b=ib2, c = ic2, d = a — ia2. Thus,

/a     ib\M = {.       X
\ic    a;

aaA-bc=l. R(z) is now seen to take the form

(106) R(z) = -£— + So
z — z0

with p = c~l and Zo = id/c.

All the solutions of the functional equation R(R(z)) =z are given by (104),

(105), and (106). Case 1 yields the straight lines in the plane, while cases 2

and 3 are the proper circles.
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