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1. Introduction. Let Xu X2, ■ ■ ■ be a sequence of independent random

variables, each uniformly distributed on [0, 1/2]. If/is an arbitrary function

from the positive integers to [0, 1/2], the equation

(1) Pr{Xk<f(k)} =2f(k)

holds, and it is a consequence of the Borel-Cantelli lemmas [3 ] that the proba-

bility that the inequality Xk <f(k) is satisfied for infinitely many k is zero or

one, according as the series

(2) E/(A)
Jt=i

is convergent or divergent. While it is well known that no such general asser-

tion can be made when the Xk are dependent, Khinchin [6] has found a direct

analogue in an important case. His theorem is usually stated in measure-

theoretic language: the inequality | kx — p\ <f(k) has infinitely many integral

solutions k, p for almost all x or almost no x, according as (2) diverges or con-

verges. We may, however, consider x as a random variable uniformly dis-

tributed over some interval, and define the quantity Uk (k = 1, 2, • • ■ ) as

the distance (kx) between kx and the nearest integer to kx. Then the Uk

form a sequence of dependent random variables uniformly distributed on

[0, 1/2]; Khinchin's theorem shows that the nature of the dependence is not

such as to affect the finiteness of the number of solutions of the inequality

Uk<f(k).
From a probabilistic standpoint the Borel-Cantelli lemmas yield very

crude information about a sequence of random variables, and it is of some

interest to know whether the Uk also resemble the Xk in their finer structure.

We consider here the case in which (2) diverges, so that there are almost

surely infinitely many solutions of | kx — p\ <f(k), and investigate in §§2-3

the number Tn of such solutions with k^n. The result is not quite what

would be expected from the case of independent variables. For if we put Yk

equal to 1 or 0 according as the inequality Xk<f(k) does or does not hold,

then Sn= Fi+ • • • + Y„ is the number of k^n such that Xk<f(k). Since
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E(Yk) = l-2f(k) +0(1- 2/(A)) = 2/(A),

Var Yh = E(Y\) - E\vk) = 2/(A) - 4/2(A),

E(Sn) = 2E/(A),
4=1

VarS„= 2E/(A) -4E/2(A),
k=i *-i

we deduce from the central limit theorem that if Ei°°/2(^) converges, then

(3) lim Pr \sn < 2 E/(A) + J2 E/(A)Y  1  = 0(«),
"-»«        I *=i \   *-i       /    /

where

d,(w) =- f   e-"2'2^
(2^)>/2J_M

is the normal distribution function.

The law of the iterated logarithm yields the closely related result that

Sn  ~   2 E /(*)
,. k=l

Pr \ lim sup -   = 1 [ = 1
n-« /   " n \1/2

4(  E/WloglogE/W)
\ t-i *=i        /

and so in particular

(4) Pr JS„~2E/(A)|  = 1-

Theorem 1 exhibits the result corresponding to (3) for T„; it differs from (3)

in that the coefficient 2 is replaced by 127r~2.

In §§4-6 we consider the much less strongly dependent sequence

(rxr2 • ■ ■ rkx), where ru r2, • • • is a fixed increasing sequence of positive

integers, and show that here the situation is again as described in (3) and (4).

2. A lemma. Let/ be a function with the following properties:

(5) f(x) is positive and decreasing for x ^ 0;

(6) f(x) = 0(x~1) andf'(x) = 0(x~2) as x -+ °o ;

(7) E/(*)=-.
*-i
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We shall need some further properties of/, which we collect in the following

lemma.

Lemma 1. If f satisfies (5)-(7) and if c and S are positive constants, then

(a) E/(A) =  C f(u)du + 0(1);
k=l J 1

(b) /(A + 0(A1-5)) = /(A) + 0(k-^);

cn n

(c) E/W = Zf(k) + 0(1);
k=l k=l

(d) £,cf(ck) = E/(A) + 0(1);
*=1 k=\

" ll f(c log A)
(e) Z/(fe)=cX: *      +Q(D,

fc=l i=l «

(f) if oi, d2, • • • «wd a ore jmcA /Aai

n

/. ak ~ na
*-i

as w—> =o, then

Ea4/-(A) = «E/(A) + 0(1).
A=l *=1

Part (a) is trivial, and (b) follows from (6) and the law of the mean. Part

(c) follows from the estimate

cn cn

£/(*) = E 0(*-») = 0(log cn - log n) = 0(1),

and (d) from the fact that

n /»n /* cn cn

E c/(cA) =   I   c/(c«)<*« + 0(1) =  I     f(t)dt + 0(1) = E/(*) + 0(1)-
k=l " 1 •* c k=c

The substitution u = c log v in (a) gives (e). To obtain (f), write

E (ak - a)f(k) = f(n) E (a* -«)+£( E («« ~ «)) (/(*) -/(* + 1))
k-l k-l k=l \   1=1 /

and note that

/(») E («* " «) = 0(«-lM») = o(l)
k=l
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and

z(z (««- «))(/"(*) -/(* + D) = E *(*)(/(*) -/(* + 1))
fc_l \  i_l / k=l

= 0(n)nf,(f(k)-f(k+l))
k-l

= 0(nf(n)) = 0(1).

We shall use the following notation: 9TC{yl} means the measure of the

set of xE [0, l] such that A, if A is a sentence, and it means the measure of

A if A is a set.

No{ot^w| ■ • • } means the number of positive integers m^n such

that ....
Ex{ • • • } or {x|  • • • J means the set of x£ [0, l] such that • • • .

3. The fractional part of mx. We prove the following theorem:

Theorem 1. Suppose that f satisfies conditions (5)-(7) and put

g(x) = /(log x)/x.

Let

Tn = Tn(x) = No{w ^ n\ (mx) < g(m)).

Then for fixed u,

t 12  » /12  » \I/2)
lim 3R<r„< — E «(*) + « ( — E«(*))   ?•=*(«)■
n->»        I tt' *=i Xx'1 i=i /     ;

If x is a real number with continued fraction expansion

11 111
x = ao A.-• ■ ■ = ao -\-• • •-   -

«i+   «2+ «i+ ak+    xk+i

and convergents

Pk 1 1
— = ao -|-• • • — »
qk oi+ ak

then

PkXk+l + pk-i
x =-

qkxk+\ + qk-i

and

1
[ qkx - pk\ =-■-

qkxk+i -T qk-\
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Lemma 2. Put

Wn = Noh^n\    \qkx-pk\   <-V.

Then

( 1     " /   1     " \ ll2)

limm^.<—-£/(*) + «■>(—-£/(*))    >=*(«).
«^«       I log2*_i Mog2A=1        /     )

We take x as a random variable uniformly distributed on [0, l], and use

Pr*, Ei and Var^ to denote conditional probability, expectation and variance

when ao, • • • , ak are given. We suppose throughout this section that /

satisfies conditions (5)-(7), and we put ak=f(k)(l+qk-i/qk) and

f                  i                i       /(*)
1 — ak if I qkx — pk |   <->

Vk = \ qk

.   —ak    otherwise.

Then

Frk{Vk=l- ak) = Pr* {-- < — \
\(qkxk+i + qk-i)        qk )

( i      <M
= Pr^xi+1 > —-V

I /(*)        9* J

= Pr* < xE   -'  —   f
I       Lqk(l/f(k) — qk-i/qk) + qk-i      qkA)

pkqk/f(k) ± 1       pk

=        q\/f(k) qk

pk + pk-i      pk

qk + qk-i      qk

= /(*)(l + ^) = «*.

Hence

Ek(Vk) = (1 - ak)ak + (-at)(l - a*) = 0,

(8) 22/ 9*-i\
pk = Ek(Vk) = /(A) (l + ^—j + 0(/*(*)).

P. Levy [9; 10, p. 321 ] has shown that
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Pr/lim±i(1 + ^J\=1,
U->«   n k=i\ qk  /       log 2)

and it follows from (f) of Lemma 1 that for almost all x,

(9) £/(*)(i +—)=7^£m + o(i).
t-i        \ qk /     log 2 k=i

Combining (8) and (9), we see that for almost all x,

do) mi+ • • -+mI = -—E/W + °(i)-
log 2 A_i

We now use a form of the central limit theorem for dependent variables

due to Levy [10, p. 246] (and later extended by J. L. Doob [2, p. 383] as a

theorem on martingales):

Lemma 3. Let Zu Z2, ■ ■ ■ be a sequence of bounded random variables, and

let P„-i denote conditional expectation for given Z\, ■ ■ ■ , Zn-\. Suppose that

En-i (Zn) = 0 for n ^ 2, and put

2 2

Hn = En-i(Zn) = Var„_i (Z„).

For t>0, determine N = N(t) so that

2 2
Mi + • • • + AW ~ t,

and put

S(t) = Zi + • • • + ZN.

Then if

Pr | E Mn < « \   = 0,

we have

[ S(t)        )
lim Pr <- < co>   = <t>(w).

I t1'2 )

If Zk = Vk, it follows from (10) that aside from a set of measure 0, the func-

tions N(t) corresponding to various x's are asymptotically equal, and that

[   Vi + • • ■ + Vn )
hm Pr   -< oj  = <b(u).

»--        /   !    ^        \1/2

But
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wn = £vk+£f(k)(i + ^),
k=l k=l \ Qk    I

and hence for almost all x,

IF„= Ef, + -^-E/W + o(i).
k=i log 2 k=i

Thus

(11) lim Pr \wn < -*- E /(*) + « (r^r E /(*)Y '}  = *(«),
n-«        I Iog2fc=i \log2*„i        /    ;

which completes the proof of the lemma.

The remainder of the proof of Theorem 1 consists in transforming (11)

into a statement not involving continued fractions. For this we need an esti-

mate of qk.

Lemma 4. If 5 < 1/2, then for almost every x there is a constant k = k(x, 5)

such that

TT2 I
log qk-A    < kA1-5.

12 log 2     I

This results from an extension of the following theorem of Khinchin [7]:

Let F be a function of A positive integral arguments, such that for n^k,

I    F2(an, • • • , an-k+i)dx < C,
J o

where am = am(x) denotes the mth denominator in the continued fraction expansion

of x. Then

1   "
lim — E F(af> - " * > ai-k+i)
n->«   n   ,-=*

exists and is constant almost everywhere.

Examination of the proof shows that the theorem may be modified in

two ways. The function F may be replaced by a quantity depending on a

slowly increasing number of the am; we write

1   A
(12) lim — 2^ P.-(«», fflf-i) • • " . <*i-J<:t+i),

n->°o   n   y=i

and require that i — A.- + 1 be positive for i=gl. Secondly, the rapidity of ap-

proach of the sum in (12) to its limiting value can be estimated by replacing

the € occurring in Khinchin's proof by n~', where e is now a sufficiently small
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positive constant. In this way the following theorem can be proved:

Let \Fi(ri, • • • , rki)} be non-negative functions of the positive integral argu-

ments r\, r2, ■ ■ • , and suppose that the integrals

I    Fi(ai, ai-\, • • • , ai-ki+i)dx
J o

are uniformly bounded. Suppose further that 5 < 1/2 and that

ki = 0(log" i)

for some constant <7>0. Then there is a constant B such that

1   "
— E Fi(ai, ■ • • , af_*,.+i) = B + 0(n's)
n ,_i

for almost all x.

We put

1 1
<bi(x) = ai-\-• •-

Oi_l+ Oi-tj+l

and

Fi(at, • • • , ai-ki+i) = log d>i(x).

Since 4>i(x) ̂ at + l and i3R{ai = r} = 3Tt{r^Xi<r+l} <l/r2, we have

fV;   <   f\    2f      L1U,f  logMr+1)I    Fidx ^ log  (a,- + l)dx ^ 2^ -:- '
J 0 ^ 0 r-1 T"2

Thus for

*< = 1 + [2 log i]

there is a 50 such that for almost all x,

n

E log <t>i(x) = B0n + 0(nl~s).
i-1

On the other hand, if #i(x) =qi/qi-i, then by the law of the mean,

| log <pi(x) — log $i(x) |   = ij | <£,(*) - <?,-(*) I

where £<1. Since

1 1
(13) fr(x) = at -\-• •-,

Oi_i+ ay

this implies that
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| log <pi(x) - log fc(x) |

< (« + -^r-- -)-(a< + ̂ -7-^-r)l<1/0*"
\ Oi-i-f- ai_j;,+i/       \ ai-i-h di-ki+i +1/1

where Pi/Qi is the Ith convergent in the expansion (13). Since

Qt ^ Qt-i + Qt-2 > 2Q^2 > > 21 <iv ,

we see that

| log 4>i(x) - log fc(x) |   < 2l~k> < i~2 lo*2.

Thus for almost all x,

n

E log &(*) = log qn = B0n + 0(nl~s).
t=i

Levy [10, p. 320] showed that 50 = x2/12 log 2. The proof of Lemma 4 is

complete.

Now let

KT   1.^    ,   |                  ,       /(So"1 log fc)\
s» = No < £ S m|   I qkx — pk |   <-> ,

/                                      y(£ _ K£i-«) •)

*„(«) = No h ^ «|   | ?**-/>* |  <-> .

By (11),

C              1     n                           /   1     n V2i

lim arc < /»(«) <-E/(* - «*1-') + «(-Z/(* - K*1-5))   f = *(«)•
»->»       I log2t_i Mog2i=i /    )

Putting

An = -*-i:f(k),
log 2 *_,

it follows from (b) of Lemma 1 that for each k,

(14) lim Sfllj/,,(«) < i4B + aAn*} = 0(«).
n—►«

Let

^n   =   {*|  $n   <   An + 0)^n    },

G(k) = [x\    | log qk - B0k |   < k^1"5 for every * ^ l},
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Then by Lemma 2 and Equation (14), to each e>0 there corresponds a

k0 = Ko(«) and an «o = Wo(ko, e)=Wo(e) such that

3H{G(k)} > 1 - e        for k ^ ko

and

| 9e{P„(±ko)}  - 4>(w) |   <e        ior n^ no.

Clearly

G(/c0)P„(ko) C Fn,

and since ,M(AB)^m,(A)+'3K(B)-l if 4 and P are subsets of  [0, l], we

have that for w2:wo,

9TIJP.} ^ 1 - e + 4>(u) - e - 1 = 0(a>) - 2e.

Similarly, since G(Ko)FnEHn( — Ko),

3ft {p,} ^ «(«) + 2e.

Hence

lim 3ft{p,}  = lim Pr {sn < An + co^'2}  = d>(w).
n—>« »-m»

By the same reasoning we can use (d) of Lemma 1 to show that if

„(..,!              A .        Po/(log<?*)\
r„ = No < A S w|   | qkx — pk \   <-> ,

then

lim Pr {rn < An + uAn   } = <2>(co).
n —* «=

Replacing/by//Po, it follows immediately that

lim Pr {No\k^n\    \ qkx - pk\   <f    g ?   1  < — E/(*)
»— • I       ( qk      )        ir2 ifc_i

/12   n \1/21

+ «(^-E/(*)j } = *(«)■

If \mx —1\ <l/2m, then Z/w is a convergent to x. Since f(x) =o(l),

No <A ^ »|    | g*x — /»* |  <-r

( . /(log m))
= No \m^q„\ (mx) < J-^^-^\ + 0(1),

( m     )
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the error term being uniformly bounded for all x. Putting

12 £ /(log 4)
A(n) = — E -:-

m k=i        k

and using (e) of Lemma 1 with c=l, it follows that

(       ( , /(logw)) )
(15) lim Pr ^No<w ^ qn\ (mx) < -^-J-  < A(n) + a>A(nyi2} = <p(oo).

There is now a final set-theoretic argument required to eliminate qn entirely.

Put

(       (            ,              /(log m)) )
F(n,u) = E,<No<m£qn\ (mx) <-\  < A(n) + uA(nyi2V ,

G(«,j8,oj) = EJNojm ^ eBn\ (mx) <     °gm\  < A(n) + wA(n)li2\ ,

HN(e) = E^e*'11-')' < q, < eB«(1+e)" for all v ^ N\.

It is easily seen that

(16) HN(e)G(n,B0(l+t),u>)CF(n,a),   HN(e)F(n, a) C HN(e)G(n, B0(l - e),co)

for 0<e<l, n^N. On the other hand, we have

/l - e \ (       ( , /(log m)\
Gl-n,Bo(l + t),v) = £,   No   »^es«(1-')"|(«j;)<--^--j-

and hence if n is chosen so that

(17) A (- nj + rjA1'2!- n) > A(n) + u>All2(n),

then

(18) G\\~~ n' Bo{1 + e)' V) D G(w' 5o(1 ~ 6)' w)-

By (c) of Lemma 1, A(cn) =^4(»)+0(l), so

a(-  - nj + r)A"2(-      - nJ = /!(«) + (t, + 0(^-1'2(«)))yl1'2(«).

Since ^4 («)—>«> as »—>=», it follows that if S > 0 is arbitrary, (17) holds with

?7 = co + 5, if n>n0(e, 5). But then by (16) and (18),
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HN(t)F(n, a) C HN(t)G(n, B0(l - t), «) C f(—— n, o> + o\

ior

.   /I 4- e \
w > min I-N, no 1.

By Lemma 4, 3n{iPv(e) }-»l as A->oo, and by (15), 3ft {P(«, w) }->0(«) as

«—>oo. Hence, if we allow n and A to increase in such a way that

A(l + «)/(l - «) < n,

we obtain the inequality

4>(o>) g lim 3ft{G(w, P0(l - t), «)} ^ 0(« + 5).
n—.oo

Since 5 is arbitrary and <b is continuous,

lim3ft{G(«, P0(l - e), «)} = <£(«).

Since e is arbitrary (in [0, l]), we can choose e = l—Bo~l, and obtain

lim3ft{0(«, 1, o)} = 0(w),
n—*»

or

(       ( , /(log *»))
lim Pr <No<m^en| (mx) <->

H-.00 (       ( m      )

12  -   /(log k) (\2  ~   /(log A)y'2)

<lL—7— + «l —2,—-—)    >=*(«).
it2 t_i        A \x2 i_i        A      /    J

Using (c) of Lemma 1 again (with l^c^(w + l)/w) and the fact that there

are at most three denominators qk lying between e" and en+1, we obtain

Theorem 1.

4. The small values of (n r2 • • • r„x). We now consider sequences of

the form (rir2 • • • r„x), where x is again uniformly distributed on [0, 1 ] and

ri, r2, • • ■ is a fixed nondecreasing sequence of integers larger than 1, not

depending on x, with lim r„= ». Let the sequences {x„} and \a„} of real

numbers and integers, respectively, be determined by the following condi-

tions:

riX = ai + Xi,        —1/2 ^ Xi < 1/2,

r2Xi = a2 + x2,        —1/2 g x2 < 1/2,

rnx„_i = a„ + xn,        —1/2 g x„ < 1/2,
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Then

(19) a„ = [rnxn_i + 1/2], | xn |   = (r„xn_i),

™ -[fls«-<[7]-
for » = 1, 2, • • • , and

(21) x = E —^— •
„=i ri ■ ■ ■ r„

The series (21) bears an obvious relation to the expansion of x to the base

r ii, contrary to assumption, we take all rn = r, and to the Cantor factorial

expansion if rn = n ior all n. In any case, the expansion is unique except for

a set of measure zero.

Since x is a random variable, so is every element of {x„j and {an}, and

it is easily seen that each x„ is uniformly distributed on [ — 1/2, 1/2], and

that each an is discretely uniformly distributed, in the sense that

(22) Pr(.-y)-i    for     _[^]Sy<[i].

There is a significant difference between the two sets of variables, however,

in that the an are statistically independent, while the x„ are not, as the Equa-

tions (19) show. Dependence makes the sequence {x„} difficult to analyze

probabilistically, but a considerable amount of information can be gained

indirectly by transferring results about {a„} via the relation

x„_i = — +0(— ).
rn \ rj

Theorem 2. Suppose that ru r2, • • • is a nondecreasing sequence of positive

integers such that r™>n for some fixed integer m. Let Rn = iriTi • • • rn, and let f

be a positive function. Let S be an increasing sequence of positive integers. Then

the inequality

(23) (Rnx) < f(n)

has infinitely many solutions nES for almost all x or almost no x, according as

the series

(24) E /(»)
nes

diverges or converges.

We note first that it suffices to consider functions/such that/(w) ^ n~2 for

all nES. For if (24) converges, then so does the series
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E /*(«),

where

y/(n) if f(n) }z n~2,
f*(n) =  <

\n 2    otherwise,

and if the inequality (Rnx)<f*(n) has only finitely many solutions in S, the

same is surely true of (23). Suppose on the other hand that (24) diverges.

Then so also does

E/(»y),
the summation being extended over the integers n,ES such that/(«y) ^nf2.

These integers constitute a subsequence S' of S, and the truth of the theorem

for S' implies its truth for S.

We suppose throughout the proof that nES. If we put

Pn =  Rn£j   -'
y-i R,

then

|  RnX ~   Pn |     =    | Xn |     ^   1/2,

so

I  RnX  —   Pn\     =   (RnX).

For each n let kn be the unique positive integer such that

(25) [rn+i ■ ■ ■ rn+kn-if(n) + 1/2] = 0,     [rn+1 ■ ■ ■ rn+kJ(n) + 1/2] ^ 0;

in particular, if [r„+1/(w) + l/2] 5^0 then kn = l. Then

(26) - ^ 2f(n).
rn+i • ■ • rn+k„

Let S„ be the event that (i.e., the set of xE [0, 1 ] such that)

J\.n-\-fc

<*n+i = • • • = aH+kn-X = 0,   | an+kn I   < r„+i ■ ■ • rn+krlf(n) + 1 = " f(n) + 1,
Rn

and for c>0 let 5„(c) be the event that (Rnx)<cf(n).

Suppose that iGJ„(l). If kn=l, then we have

| xn\   < f(n),

I an+i |   =   | an+K |   =   | [rn+1xn + 1/2] |   ^ rn+11 xn |  + 1/2 < r„+kJ(n) + 1,

so x£S„. If kn>l, then
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| an+i |   ^ [rn+if(n) + 1/2] = 0,        x„+i = r„+iX,

| an+i |   S [rn+irn+if(n) + 1/2] = 0,        x„+2 = r„+ir„+2xn,

| On+t»-i |   ^ [rn+i • • ■ r„+kn-if(n) + 1/2] = 0,    xn+k„-i = rn+i • • • rn+k„-ixn,

| an+k„ |   ^ [rn+i • • • rn+kJ(n) + 1/2] < rn+i ■ • ■ r„+kJ(n) + 1,

and again xGS„. Hence JFB(1)C6„.

On the other hand, if xES„ then

y_l  Py        y=7!+*n Py

so

2P„
= /(») + -r—

A-n+A:„

and it follows from (26) that S„C3rn(3).

Thus if £„ occurs for only finitely many nES, the same is true of SFn(l);

while if £n occurs for infinitely many nES, the same is true of SFn(3). Since

the convergence of (24) is unaffected by replacing f(n) by 3f(n), there remains

only the task of showing that S„ occurs for infinitely many nES, or only

finitely many nES, ior almost all x, according as (24) diverges or converges.

Since r™>« and f(n)>n~2, we have rn+i • • ■ rn+2m/(n) > 1. Hence kn^2m,

and the event S„ depends on at most the 2m random variables a„+i, • • • ,

an+2m. Hence for fixed / (0^l<2m), the events 82^+1 (v = 0, 1, • ■ • ) are inde-

pendent. By (22),

- if j = 0,
rn

(ii)2 rn
Pr{|a„|   =j}=\—    if 0 < j < — ,

rn 2

1 .      rn
— if j = — >    rn even.

\rn 2

Hence for arbitrary real uE [0, rn/2),

2[«] + l/£ (2u+l)/rn,
Pr    UJ   g u\ =-<

r„        U (2« - l)/rB.
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Thus, because of the independence of the an, we have

2^L/(M)+3
, 1 1 Rn 3Rn

(28) Pr {Sn} g-= 2f(n) +-,
fn+l Tn+lin-l r"+kn Rn+k„

and by (26),

Pr {Sn} < 8/(n).

Also

Rn+kn    .....

2 ——— /(»)  +  1

(29) Pr {S„} ^-> 2f(n).
rn+l   "   "   '  rn+k„

Hence for each I the series (')

/_,        Pr }£2m+i}
r;ivm+lES

converges or diverges with the series

(30) E     /(2m + /)•
r;2rm+IS/S

But if the series

(31) E/(»)

diverges, at least one of the series (30), for 0^1 <2m, must diverge, while if

(31) converges, all the series (30) converge. The theorem therefore follows

from the Borel-Cantelli lemmas.

5. We now consider the case in which (23) has infinitely many solutions

for almost all x, and investigate the number of such solutions with n^N. For

simplicity we suppose that 5 is the full set of positive integers.

Theorem 3. Let {r„} and {Rn} be as described in Theorem 2. Let f be a

positive function such that

oo

E/(»)=°°,       /(») = 0(n-l'2-<).
n=l

Let kn be the positive integer defined in (25), and suppose that

CO

(32) E ('n+i ' • -rn+kX1 < «>.
n=l

(') The symbol 5I»r" means summation over those v such that  • ■ • .
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Then

lim Pr |no|» ^ N\ (Rnx) </(»)>

(33)

<2^/(»)+«(2E/(»)j    f  =*(«)•
n=l \     n-1 /       /

According to Theorem 2, the n for which /(«) <»~2 contribute only a

bounded number of solutions of the inequality (23), so we may suppose that

f(n)^n~2. Put

|1   if (RnX)  </(»),

lo otherwise,

and

iv

■Sat = E -^n-
n=l

Similarly, put

|1 if Sn occurs,

lo otherwise

and

N

TV = E r»,
n—1

where Sn has the same meaning as before. Since 5n(l)E&n, we have

(34) Sir < TN.

On the other hand, if F„ = l then either Xn=l or

r 2i?» 1
(35) (Rnx) E\f(n),f(n)+--   ,

L K-n+kn J

by (27). Because of the uniform distribution of the x„, the probability of the

event (35) is 2Rn/Rn+k„, and by (32) and the first Borel-Cantelli lemma, the

event (35) occurs only finitely many times, for almost all x. Thus given e>0,

there is a constant M so large that

(36) TN < SN + M

for all N and all x not in a set of measure at most e. Combining (34) and (36),

we see that (33) will follow if it can be shown that
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t N /       N \l/2\

(37) lim Pr \ TN < 2 E/(») + «(2 E /(») )    >  = *(«)•
jv-«      I »_i \ „_i      /   ;

To this end we first prove a general lemma, suggested by work of Hoeff-

ding and Robbins [5]. A set of random variables Zx, Z2, • • • is said to be

w-dependent if for every r,s and n for which n>s>r-\-m, the sets

Zi, • • • , Z, and Z„ • • ■ , Zn are independent. (The variables F„ above are

2w-dependent.)

Theorem 4. Let Zi, Z2, • • • be a sequence of m-dependent random variables

such that

(1 with probability pn,
^n  =    \

(0 with probability 1 — pn.

Suppose that

(38) E  Pn   =    « ,
n—l

(39) pn = 0(n-v2~<),       e > 0,

00 CO

(40) E E I Cov (Zi, Zi+j) |   < oo .
t=i y=i

Then

lim Pr \zi + • ■ • + Zn < E Pk + «( E #*)    }  = *(«).
n-*" l *=1 \ 4=1       /      /

We decompose the finite sequence 1, 2, • • • , n into blocks, in the follow-

ing way. Choose n smaller than e, and find an integer l0 such that

, 2+ij 2+ii
(41) (lo + 1)      - h    > 2m.

For qs^l put

lq   =    [d0  +   ?)2+'],

and define k = k(») by the inequality

h ^ n < l,+i.

For 1 ̂ q<K — 1, let 7a+i be the set of integers/ such that lq<j^lq+i—m, and

let J5+i be the set of integers/ such that lq+i — m<j^lq+i. Finally, put

Uq   =     /   .   ^v /  .  £y,

velq lq

' q  =     / .     ^p,

Jq
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for g = 2, • • • , k, so that

Qn = Tlz„=Jtz>+£ uq + Tlvq+ E z,.
y=l >=1 3=2 4=2 >•-i,+ l

By the definitions of lo and w-dependence, the variables U2, ■ ■ ■ , UK are

independent, as are F2, • • • , Vc. We shall show that the limiting behavior

of Qn is determined by that of E U*, an(l then apply a standard version of the

central limit theorem.

Since l\ is fixed and the Z's are bounded, the sum

ii

Ez,
p=i

is clearly negligible in the limit, if Var (£„)—>00. By (40), (39), and (38),

/        K \ K K

Var ( E Vq) = E E Var (Z,) + 2 E E Cov (Z„ Z.)
\  3=2 / 3=2   Jq 3=2   /j

= E E^ - />?) + o(i)
3=2   Jq

= £zp, + o(i)
Q=2   Jq

K       m

= ZZ o(C) + o(i)
3=2   v=l

= o(EfH,-'""") + o(i),

so that

(42) Varl^E F3^ = 0(l).

Turning to Uq, we see that

(43) E(Uq) = E h = *«,

and

Var (t79) = E Var (Z„) + 2 E Cov (Z„ Z,),

so that

(44) o-l = Var (U2 + • ■ • + U.) = E ea + 0(1).
3=2
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Now

ZI /,l/2-« l/2-«.
——   <   C(lq ~   lq_i    )

T       »l/2+«
' 9

1/S_.  (/ 1\ (1/2-0 (2+,) -)

= of o(2+,)(1/2_<)■—)

and so

(45) eq = 0(1).

This implies in particular that

(46) Var (  E   z) = 0(1),
V=;«+i      /

and hence, since

CO

T,Hp>< «,
5=2  /g

that

(47) ^ = E P. + 0(1),        P(P2 + • • • + £7.) = E P. + 0(1).
»=i ,.=1

If we put

n

Tn   =   E  ^i
v=l

then (42) shows that

Var Ln1'2 E Vq\ = 0(1),

and it follows from Chebyshev's inequality that the random variable

TTn'^Es! V<i approaches zero in probability. By the same reasoning this is

true also of 7r„"1/2Ei' ^"- Combining these facts with (46), we see [l, p. 254]

that the limiting distribution of (Qn—^n)/^]!2 is identical with that of

(48) (Ut +   •   •   •   +   U.  -  Tn)/wT.

We now wish to apply Lyapunov's criterion [l, p. 213], according to which

the normalized sum (48) is asymptotically normal, with mean zero and vari-

ance 1, if
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/   "     A1'3

(49) { E P*J      = 0(0,

where

pq = E(\ Uq-E(Uq)\i).

This will complete the proof of Theorem 4. We have

pU-e{(e |z,-#,|)|

< oe\ E \z,- p,\3+ E Iz.-&.| ■ \zr- p,\2
\ v£Iq ».*elg

+       E       I  ̂ ^A. — ̂>A» I   *   I  ̂ ^^ — ̂»- I   *  J  ̂ ^X — ̂>X I   >  -

Now

E £( I z„ - pv f) = E (i - p>)'p> + E Ai - p>)

= «, + o(Ea\

Since | Zv — p,\ < 1, we have, by the generalized Holder inequality [4, p. 140],

E e( I z„ - #,I • I zv - p,I2) ̂ E £( I z„ - ^ I • I z, - p,I)

=S (   E  Var (Z„) Var (Z,)) ^ E Var (Z„)
\e.»er, / n£iq

= E (a - #*) = «9 + o( E #*Y
"6/a \ r9      /

Similarly,

E   E{ I Z„ - />„ I ■ I Z, - p, I • I Zx - ft I )

g  I E £( I Z„ - ^ |3)£( I Z, - />, |3)E( I Zx - px \3)\

g Z e(\ z, - p,\*)        =«3 + o(e^)-
iq \ iq   1

Thus (49) reduces to the triviality

Ee3+0(l)   =   .j(i>3)3/2}.
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To complete the proof of Theorem 3, we must show that the hypotheses

of Theorem 4 are satisfied when Zn= Fn, pn = Pr {S„}. We know that

2f(n) ^pn^ 8/(n),

and hence, from the hypotheses of Theorem 3, we obtain (38) and (39). Since

the Fn are 2?w-dependent, we can rewrite (40) in the form

oo     2m

(50) J2H I Cov(Ft-, Fi+y)|   < co.
t=i y=i

Now if j> kn, then Y, and F,+y are independent, and their covariance is 0. If

i^jSkn, then

| Cov (Yi,  F,-+y) |    =   | P(FiFi+y) - P(F,)P(F1+y) |

=  | Pr { Yi = F,-+y = 1} - Pr { F,- = 1} • Pr { F,-+y = 1} |

^ (r„+i- ■ ■rn+kn)-1+Sf(t)f(i+j),

and the convergence of (50) follows from (32).

6. A strong theorem.

Theorem 5. Let {Rn} and f(n) satisfy the hypotheses of Theorem 3. Then

for almost all x, the number of integers m^n, for which (Rmx) <f(m), is asymp-

totic to

2E/(A).
k=i

As in the proof of Theorem 3, it suffices to prove the theorem with S„ re-

placed by P„= Ei ^*f ancI to suppose that/(w) >n~2, so that the Yk are 2m-

dependent. We write

Pi   =   E*   P2mr+1 +   E      Yimr+i +   *   -   -   +   /_j      F2m„+2m

(1) (2) (2m)

=    P„      +   Tn      +    •   •   •   +   Tn        ,

where each summation extends over those v for which the subscripts are not

larger than n. The terms in Pj,;) are independent and uniformly bounded, and

E(Tn) = 2 E* f(2mv + j),        Var (T™) = 2 E* f(2mv + /) + 0(1).

Hence Kolmogorov's version of the law of the iterated logarithm [8] implies

that for 1 Sj^2m,

v   iy 1^J)-2EV(2^+/)| IPr < lim sup —=-=;-= 1 >  = 1;
I    ^«F2(E*/(2^+/)-loglogE*/(2w,+/))1'2        J

and it follows from these equations that



1958] ON THE FREQUENCY OF SMALL FRACTIONAL PARTS 259

Pr j | Tn - 2 E/(£)   = <?( £ (pf(2m, +/) ■ log, E*/(2»v +^)W)} = *>

and the theorem is a weak consequence of this result.

Note added in proof.

I. There is a strong version of Theorem 1:

Under the hypotheses of Theorem 1, the number of solutions m^n of the

inequality (mx)<g(m) is asymptotic to

12 »- E gW,
■K1 *=1

for almost all x.

The proof depends on a strong law of large numbers for dependent vari-

ables, due to Levy [10, p. 253]: Under the hypotheses of Lemma 3,

Pr { lim — = 0> = 1

for every positive constant e. Using this in place of Lemma 3, we obtain a

strong analogue of Lemma 2, to the effect that for «>0,

Pr {!F„-(log2)-'E/(&)=0((E/(£))1/2+<)}=l,
i i

and  thereafter the proof parallels that of Theorem 1.

II. It has been pointed out to me that Lemma 3 is not immediately ap-

plicable in the proof of Lemma 2, since Ek(Vk), in the equation preceding (8),

means E(Vk, given c0, • • • , ak) and not E(Vk, given F0, ■ • • , Vk-i), and it

is possible that Vk-i, for example, is not uniquely determined by aQ, ■ ■ ■ , ak.

But in order for this to be the case it is necessary, since \qk~ix — pk-i\

= (qk-ixArqk-i)-1 and ak= [xk], that

1 f(k - 1) 1

qk~i(ak + 1) + qk-i qk-i qk-iak + qk-i

This happens only if

f      ! °k-2 1
ak =-.

If(k-l)       <7*_iJ

The difficulty vanishes, therefore, if we prove the following theorem, and

exclude from the beginning the exceptional set mentioned in it (taking b = l

andh(k) = l/f(k-l)):

Let h be a real-valued function on the positive integers, with h(k)>ck for

some positive constant c. Then for every positive constant b, the set of x, for which

the inequality \ ak — h(k) \ <b has infinitely many solutions, has measure zero.
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Put Fk(t) = Pr {xk<t}; then Levy's form of the Gauss-Kuzmin theorem

[10, pp. 298-306] asserts that for some g with 0<g<l,

"''"-i^T+rh8*-'
for all />1 and all positive integers A. Now the inequality \ak — A(A)| <b is

equivalent to

A(A) - b <xk< h(k) + b + 1,

and we have

lim Pr {*(*) - b < xk < h(k) + b + l}

1 /2(h(k) + b+l) k(k) -b+l\
<-log-) + 2gk~1

log 2        V A(A) + b + 2      2(h(k) - b) )

1 2A2(A) + 4A(A) - 2(b2 - 1)
=-log-Y 2gk~l

log 2        2A2(A) + 4A(A) - 2(b2 + b)

=-log (1 + 0(A"2(A))) + 2srx = 0(h~2(k)) + 2gk~\
log 2

Hence the probabilities of the inequalities in question form the terms of a

convergent series, and the required result follows from the Borel-Cantelli

lemma.
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