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1. Introduction. Germain and Bader [3] were the first to find that a

maximum principle could be stated for hyperbolic equations. They showed

that such a maximum principle was valid for the Tricomi equation

(1) yuxx + uyy = 0, y < 0

among the class of solutions which vanish on one characteristic.

This property was extended by Agmon, Nirenberg and Protter [l] to

equations of the form

(2) K(x, y)uxx + Uyy + aux + 8uy + u = 0, K < 0

provided the coefficients satisfied certain basic inequalities. The maximum

principle concerned solutions of (2) bounded by two characteristic arcs, say

AB and AC, and a noncharacteristic "space-like" curve joining B and C. If

u(x, y) is a solution of (1) which vanishes along the characteristic AB and

if the coefficients of (1) satisfy certain inequalities (valid for (1)) then the

maximum of u in ABC occurs on the noncharacteristic BC.

Recently Weinberger [4] obtained a maximum principle for a class of

hyperbolic equations in which hypotheses on the solutions are imposed along

non-characteristic curves rather than characteristic curves. We write the

equation in the form

(3) Lu = (aux)x — (buy)y + cux + duv + fu = 0, a > 0, b > 0

and consider a curvilinear triangle T bounded by a segment AB of the #-axis

and the characteristics AC and BC extending into y>0. Weinberger showed

that if the coefficients of (3) satisfied certain inequalities and if we consider

the class of solutions \u) such that du/dy^0 on AB, then the maximum of

u in T must occur on AB. The principal restriction on the coefficients in (3)

required by Weinberger is the condition:

bll2(~ ((ab)1'2) + cj + al'2(-((ah)1'2) + d J ^ 0

(4) y X ■ in T.

Vl2(—((abyi2) -c\ + al>2(    —((ab)1'2) + dJ ^ 0
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These conditions are shown to be "best possible" in the sense that examples

are given where the maximum principle does not hold as soon as (4) is violated.

It is the purpose of this paper to establish a maximum principle for hyper-

bolic equations which is independent of condition (4). In view of the examples

of the "best possible" nature of condition (4), it is clear that the maximum

principle will take a somewhat different form. It will be shown that there is

a constant yo such that for certain classes of solutions of (3) the maximum

of win the part of P such that 0 ^ y ^ y 0 occurs for y = 0. For the case where (4)

holds the line y=yo passes through C and the maximum principle is valid in

T, yielding Weinberger's result.

Bochner [2] has shown that the ultraspherical polynomials satisfy a cer-

tain maximum principle. Suppose 53™-o anPn(x) ^0, — l^x^l; then it fol-

lows that E»"-oa»P»(*)-P-(y)^0I -l^a^l, -lgygl. Since Pn(x)Pn(y)

satisfies a certain (singular) hyperbolic equation Weinberger showed that

his maximum principle can be adjusted to the singular case to yield Bochner's

result. In §3 it is shown how the singular behavior affects the maximum

theorem in the general case. In addition certain other applications to ordi-

nary differential equations are established.

2. The main theorems. We consider not only the operator Lu defined by

(3) but also the adjoint operator

(5) Mv = (avx)x — (bvy)y — (cv)x — (dv)y + fv.

The coefficients are functions of class C in the domain under consideration

and the characteristics AC and BC bounding T are solutions of the ordinary

equations

(6) dy/dx = ± (b/a)U2

We apply Green's theorem to obtain the identity

I   I   (vLu — uMv)dxdy

= (p   \ avuxdy + bvuydx + cuvdy — duvdx — auvxdy — buvydx\

where 5 is the boundary of P. Making use of the equations for the character-

istics (6), we obtain

J   I   (vLu — uMv)dxdy =   I     [b(vuy — uvy) — duv]dx
%)   */ j* J A

[-(abyihdu + (ab)ll2udv + uv(cdy - ddx)}
B

rA
+ [(ab)ll2vdt( - (aby'Hidv + uv(cdy - ddx)}.

J c
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An integration by parts in the last two equations on the right, and a rear-

rangement yields

2(a(C)b(C)Y'2u(C)v(C)

= (a(A)b(A)Y'2u(A)v(A) + (a(B)b(B)Y'2u(B)v(B) +  f f (uMv - vLu)dxdy

+  I    [b(vuy — uvy) — duv]dx
J A

/.c u[2(abyi2dv + v\((abyi2)xdx + ((abyi2)ydy + cdy - ddx)}
B

+  f   u[2(ab)ll2dv + v{((ab)ll2)xdx + ((ab)ll2)ydy - cdy + ddx}].
J A

We define the function

(8) v(x, y) = e^(l - 8e-av), 7^0, a^O, 0^/3<l

and compute the expression Mv:

Mv = e?*-^(e«i/ - /3)[aT2 + yax - cy + (/ - cx - dy)\

+ e",*-ay[ai8b - byct8 - daB}.

We select a and y so large that Mv^O. We note that for sufficiently large a

we can make Mv^O lor any fixed y lor 0 5jy :£y0 if yo is sufficiently small and

8 is sufficiently close to unity.

We now consider the inequalities

-2avx + 2(abY'\ + v[-(a/byi2((abyi2)x + ((oJ)1/2)H + c + ^(a/J)1'2] ^ 0,

2avx + 2(a6)1'2^ + v[(a/by2((aby'2)x + (W2),, - c.+ d(a/b)^] ^ 0.

If necessary we further increase a, decrease y0 and make 8 closer to unity so

that both inequalities in (9) as well as Mv^O hold in the common part of T

and 0:gy^yo. We denote this region by D.

Theorem 1. Let Lu^O in D and suppose/^0 in D, d(x, 0) ^0. If u(x, 0)

^0 on AB and (w/i>)i/ = 0 on AB with v(x, y) defined by (8), then the maximum

of u in D occurs on AB.

Proof. We first consider the case u(x, 0) <0, (u/v)y^0. Suppose the maxi-

mum of u occurs at a point Q in the interior of D. If u(Q) 2:0 then there is a

point Q' closest to AB where u(Q') =0. If the maximum of u (occurring at Q)

is less than zero we add a constant N>0 to u so that the function Ui = u + N

has zero as its maximum at Q. A simple computation shows that Lui^O and

(ui/v)y^0 on AB, and of course Wi^O on AB if its maximum ( = 0) occurs

at Q. Construct the characteristics 71 and 72 of (6) through Q or Q', which-
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ever is applicable, and denote the intersections with AB by Pi and P2. Apply-

ing (7) to the curvilinear triangle D' bounded by P1P2Q' (or P1P2Q) we find

0 = (a(Pi)b(Pi)yi2v(Pi)u(Pl) + (a(P2)b(P2)y'2v(P2)u(P2)

+  I        (uMv — vLu)dxdy +    f      [b(vuy — uvy) — duv]dx
J J j)i J pl

+  I    u[d((aby2v) + v(cdy - ddx) + (aby2dv]
J Pi

rQ
+        u[d((aby>2v) - v(cdy - ddx) + (ab)ll2dv].

J p,

All the terms on the right side of the above expression are nonpositive and

hence each must vanish. This can only happen if w=0. Thus the maximum

of u occurs on 4P.

For the general case we define w = l— eSy and consider the function Ui

= u-\-w. Then Pto>0 in D for sufficiently large 3, Ui(x, 0)=u(x, 0) and

(ui/v)y = (u/v)y — 8/v<0 ior y = 0. Thus the function u2 = Ui — e with t a suffi-

ciently small positive constant will satisfy the conditions under which the

result has already been established. Hence the maximum of u2 occurs on 4P.

Letting «—>0 we see that the same must be true for u\. Since u(x, y) ^Ui(x, y)

in D and u(x, 0) =U\(x, 0) the maximum of u occurs on AB.

In the applications it is often important to include the cases where the

equation becomes singular on the initial line. If, for example a(x, 0)=0 for

y = 0 the results of Theorem 1 remain valid. However if 6 = 0 for y = 0 it

may or may not happen that a choice of a, ft and y can be made so that

inequalities (9) as well as Mv^O hold. If these constants can be so chosen

then we have the following theorem.

Theorem 2. Let Lu^QinD and suppose/^0 inD, b(x, 0)=0, d(x, 0) ^0.

// a, ft and y can be so chosen that Mv ^ 0 and inequalities (9) hold in D and if

u(x, 0) ^0 on AB, then the maximum of u in D occurs on AB.

Proof. The argument here is similar to that given in the proof of Theorem

1. We note that the second integral in (10) reduces to

/> pi
duvdx

and thus the condition (u/v)y^0 which appears in Theorem 1 is eliminated.

In the special case c = d = 0 and b^y*, 0<£<2 as y—>0 it can be shown

that a selection of a, ft and y can always be made. We consider the operator

Liu = (aux)x — (buy)y + fu

and show that the inequalities Pi^^O and (9) hold. It is clear that if a=ft = 0
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and 7 is sufficiently large then Liv>0. Also in (9) the quantity (a)ll2((byn)y

is dominant and hence (9) will hold in some neighborhood Di of the initial

line. Thus we have

Theorem 3. // Lru^O and /2j0 in Di and if u(x, 0) gO on AB then the

maximum of u in D occurs on AB.

Theorem 3 is the one which will be applied to singular ordinary differen-

tial equations, the singularity corresponding to the condition b = 0.

If /=0 in Theorem 3 then the maximum theorem holds without the con-

dition «^0 as a sufficiently large positive constant may be subtracted.

Corlllary 1. Let Liu^O in Di and suppose/=0 in D. Then the maximum

of u in Di occurs on AB.

If |8 =7 = 0 the function v(y) = l suffices; and if the additional conditions

(4) of Weinberger are assumed the theorems become those given in [4].

The result of Theorem 1 implies that the Riemann function of Lu is

non-negative in D.

3. Ordinary differential equations. We consider the ordinary differential

equations

(11) (fi(x)<p'(x))' + gi(x)d,(x) = 0,       fi(x) > 0, Q^x^xo,

(12) (MyWiy))' + g2(y)+(y) = 0,      My) > 0, 0 g y g x0/2.

The function u(x, y) =cf>(x)\f/(y) satisfies the hyperbolic equation

Lu = (fi(x)f2(y)ux)x - (fi(x)f2(y)uy)y

+ (gi(x)f2(y) - fi(x)g2(y))u = 0.

We shall suppose that

(14) gi(x)My) - fi(x)g2(y) ^ 0,        0 ^ x ^ x0, 0 g y g x0/2

so that the maximum principle of Theorem 1 applies to equation (13). If

we select 7 = 0 in the determination of v conditions (9) become

(15) ape-* + (1 - 8e-°y) i-^- - u \n   ^ 0
L/2(y)        fi(x)   J

while the condition Mv^Q is, in virtue of (14),

afi (y)
(16 a2 > -^-^ •" My)

Theorem 1 now yields a comparison theorem on the distance between zeros

of ordinary differential equations.

Theorem 4. Suppose fu g,-, i = l, 2 satisfy (13) and 8 and y0 are chosen so

that (15) and (16) hold for 0|i^xn, 0 gygy0g.To/2. If <p(x) is a positive
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solution of (11) in O^x^Xo, then the solution 4*(y) of (12) satisfying the intial

conditions \[/(0) =0, iA'(0) <0 has no zeros in the interval 0 <y <y0-

Proof. The function u=<p(x)\f/(y) satisfies (13) with initial conditions

u(x, 0)=0, uv(x, 0)=4>'(0)4>(x)<0, 0gxgx0. The condition (u/v)v^0 is

vuy — uVy = vUy^O and is automatically satisfied for any non-negative func-

tion v. Therefore Theorem 1 applies, the maximum of u occurs for y = 0, and

hence «<0 in the domain D defined in Theorem 1.

An interesting special case occurs if fi(x) = 1 and gi(x) =X2. The distance

between zeros for (11) is thus wf\ and (14), (15) become

fi (y)
A2/2(y) £ g2(y),       afte-«« + (1 - fie-") —— ^ 0

My)
while (16) remains unchanged.

Corollary 2. If X2/2(y) ̂ g2(y) and a>0, 0</3<l are such that afte~ay

+ (l-fte-"y)f2' (y)/fi(y)^0 for 0^y^y0^7r/2X, the solution iA(y) of (12) with
initial conditions iA(0) =0, ip'(0) = £<0 has no zero in the interval 0<y<y0.

In the special case X = 1, /2 = g2, fi (y) ^ 0 we can select a = 0. Then Corol-

lary 3 states that solutions of the equation

with/2>0,/2 ^0 have minimum distance 7r/2 between zeros. This result was

obtained by Weinberger [4].

Because of the special nature of the functions involved it is possible to

obtain other estimates for the distance between zeros of solutions of (12) in

the case fi(x) = 1, gi(x) =X2. For example, select for v the function

(17) v(y) = l//,(y).

Then condition (9) is automatically satisfied, while (14) and (16) become,

respectively,

\2f2(y) ^ g2(y),       (fi/fi)' ^ 0.

Corollary 3. 7/X2/2(y)^g2(y),/2(y)/2"(y)^ [fi(y)Y for 0^y^y0^7r/2X,

the solution iA(y) of (12) with initial conditions \p(0) =0, '/''(O) = £ <0 has no zero

in the interval O^y^yo-

Again considering the case/i(x)=-l, gi(x) =X2 in (11) we set

/-v     1
777 ^o fi(y)

Then we have condition (14)

\2f2(y) ^ g*(y)
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and Mv^O in virtue of the above condition and the definition of v. Conditions

(9) become

i+fi(y) P 7^r^ = o.
Jo My)

Corollary 4. If

\2My) ̂  g*(y),   i = - fi (y) f" 777 *y o^y^yo^ tt/2x,
Jo My)

the solution \(/(y) of (12) with initial conditions iA(0)=0, ^'(0)=£<0 has no

zero in the interval 0^y^y0-

In Corollaries 2, 3 and 4 we see that X can always be selected large enough

so that X2/22^g2. Corollaries 2 and 4 have the property that they yield a

minimum distance between zeros regardless of the behavior of the derivative

oi My). Corollary 3, however, is of a more special character and yields a

result only if f2(y)fi' (y) =£ (fi (y))2 in some interval.

Further theorems on ordinary differential equations are obtained from

the observation that the function u=<p(x)\p(y), with <p, \p solutions of (11)

and (12) respectively, satisfies the equation

(19) Lu m (M^)g2(y)ux)x - (f2(y)gi(x)uv)y = 0

which is hyperbolic if the functions/,-, g,-, t = l, 2, are positive. In this form

the condition (14) disappears (and is replaced by the conditions that gi, g2 be

positive). For v = 1 —fte~ay we find

(20) Lv = afte-aygi(af2 - fi)

and conditions (9) become

(2D   a/3e--+(i-^-«,)r_|j-(^-y/2(/igl)x +-^-~Uo.
L     I2gi \/i/2gi/ 2(/2g2)J

The characteristics of (19) are solutions of

(22) * = ± f^^Y'2
dx \fi(x)gi(y)/

The limitations on the domain in which the maximum principle holds involve

not only (21) but also the size on the characteristic triangle as determined by

(22).

Theorem 5. Suppose fi, g,, * = 1, 2 are positive and a, ft and y0 are chosen

so that (20) and (21) hold for 0^x^x0, O^y^yo; let yo^yo(xo) where y0(x0) is

the height of the characteristic triangle. If cp(x) is a positive solution of (11) in

0 ^ x ^ Xo, then the solution \f/(y) of (12) satisfying the initial conditions \J/(0) = 0,
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^'(0) <0 has no zero in the interval 0<y<yo.

As in the case of Theorem 4, if we select fi(x) = 1, gt(x)^\2 we obtain

corollaries analogous to Corollaries 2, 3, and 4.

Corollary 5. If a, 8, yo are chosen so that

1 (f2g2)'
a8e-<"> H-(1 - 8e~av) iL±jL ^ 0

2 f2g2

for Ogygyo, with y0^y(xo), then the solution ip(y) of (12) satisfying initial

conditions ^(0) =0, ^'(0) <0 has no zero in the interval 0 <y <yo. The quantity

yo(xo) is the height of the characteristic triangle determined by the curves

x= ± J (\2My)/g2(y)Y'2dy + c.

Corollary 6. If My)fi' (y)^(fi (y)Y, 0gygy0, y0gy(x0), then the result

of Corollary 5 holds.

Corollary 7. // l^-fi(y)fl(l/f2(y))dy, 0£y^y0, y0^y(x0), then the
result of Corollary 5 holds.

We now consider the equation

(p(yW)' + q(y)f = 0, p ^ 0

in the interval Ogy gyo, where £(0) =0 and p(x)/q(x) has a zero of order not

exceeding 2 at x = 0. Many of the equations of mathematical physics have

this form and if p, q are analytic, there is one solution analytic in the neigh-

borhood of the origin and satisfying the condition ^(0) = 1. This condition

on analyticity replaces the condition on the derivative '/''(O). Under these

circumstances Theorem 3 yields results on the distance between zeros.

We consider the equations

d /        dd>\
(23) -~lp(x)--j + q(x)<t> = 0,

d /       #\
(24) T(p(y)—) + q(y)*(y)=o

dy \        dy/

where p(y)>0, 0<ygyo, p(Q)=Q; the function u(x, y) = <p(x)\j/(y) satisfies

the hyperbolic equation

(25) (P(x)q(y)ux)x - (p(y)q(x)uy)y = 0.

The characteristics are solutions of

/jwv-   _ + /jwy-v,
\p(.y)/ \K*)/
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so that one of the characteristic curves is the line y = x while another is

!l(<l(y)lP(y))wdy=fl(q(x)Jp(x)yiHx.
For 0 = 1 —fte~ay conditions (9) become

r       i   /     q(y)     \in I
ape-"y + (1 - 0e--»)-       (P(x)q(x))x

L       2q(x)\p(x)p(y)q(x))    "K m       I

|  (P(y)g(y))«l    Q

2p(y)q(y) J "
Theorem 3 yields the following result.

Theorem 6. Suppose p, q are analytic and p/q has a zero of order not greater

than 2 at the origin. Let a, ft, and yo be chosen so that (26) holds for 0^x5^x0,

O^y 2=yo with yo^y(xo). If<t>(x) is a positive solution of (23) in O^x^Xo, then

the solution \p(y) of (24) satisfying the initial condition \p(0) =£>0 has no zero

in the interval 0:Sy:Syo.

Proof. The result follows immediately from Theorem 3 since equation (25)

has coefficients a=p(x)q(y), b=p(y)q(x), c — d=f=0. We note that b(x, 0) =0

and u(x, 0) =<£(x)^(0) is positive. Hence the minimum of u(x, y) occurs on

the x-axis and \p(y) can have no zero for O^y^yo.

Theorem 6 may be used to extend a result of Weinberger [4] concerning

solutions of singular differential equations which itself is an extension of a

result of Bochner's obtained for sums of ultraspherical polynomials.

For the equation

(27) j (p(y) j} + {\q(y) - r(y)} *(y) = 0

we can pose an eigenvalue problem by adding an additional boundary condi-

tion. If {Xn} is a sequence of eigenvalues, ^n(y) the corresponding eigenfunc-

tions, and similarly for

(28) 7-(^(*) t) + ?X?W ~ '(*)}*(*) = 0
dx \        dx/

then the quantity u= 53^=0 o,n<pn(x)^/n(y) satisfies the equation

(29) (P(x)q(y)ux)x - (q(x)p(y)uy)y + (q(x)r(y) - q(y)r(x))u = 0.

If p and q are each of one sign in the domain under consideration, Equation

(29) satisfies a maximum principle in a certain subdomain whenever q(x)r(y)

— q(y)r(x)^0. We note the important fact that the quantity X does not

appear in (29). Thus while $„(x), iA„(y), n—l, 2, • ■ • , satisfy equations (27),

(28) respectively which change with n, the product <pn(x)4/n(y) satisfies (29)

for all n. If we select initial values of (27) to be t/'„(0) = l, then any linear
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combination ^,an4>n(x)^>n(y) satisfies (29) with initial value E°n0«(x)-

Let Cn(x) be the eigenfunctions of

d r d<p~
(30) —   (1 - x2Y'+im —   + n(n + 2x)(l - x2)*-I/2<£ = 0, v ^ 0

(fa; L dx A

normalized so that C^(l) = l. Bochner [2] showed that if E«°-o o,nCn(x) 2:0,

-lgxgl then

00

E anCl(x)Cl(y) ^ 0, -lgxg 1, -1 gyg 1.
71 = 0

Equation (30) is of the form (27) with r = 0, and the initial line situated

along the line y = 1 instead of y = 0 and a singularity at x = 1 instead of x = 0.

The maximum principle of Theorem 5 may now be applied to (29) with

p=(l— x2Y+112, q = (l—x2)"-U2, r = 0. The initial values along the line y=l

are }|"=n an<j>n(x), —1 g.rgl. If this is positive, then the maximum principle

holds in the characteristic triangle below y = 1 if condition (21) holds. This is

2(1 - 8e+a(y-1)) r     -vy                vx "1
a/3e+°(v-i) +-'-   -i— A-< o.

(1 - y2)1'2     L(l-/)1/2       (1 - x2)1'2  _  -

This relation holds for a = 0 if j'^O and

\y\ ^ I ̂ 1 »
that is, in the characteristic triangle. By symmetry this extends to the entire

square. Note that this result cannot be extended to negative values of v

regardless of the choice for a because of the singularity at y = 1.

A maximum principle can be stated for other functions that occur in the

equations of mathematical physics. For example, if Jn(\knx) are the Bessel

functions of order n with {\kn} determined as usual by the zeros, we recall

that the equation

d2 d / 2 n2\
X -  Jn(\knx)   H-Jn(\knx)   +  I  \knX-)Jn(\knX)   =   0

dx2 dx \ x /

holds. We consider such equations for fixed n and varying values of k. We

again obtain an equation of the form (29) with p = x, q = x, r = n2/x. Then a

maximum principle holds if n2(x/y) —n2(y/x) ^0 or x2— y22:0 if x, y are non-

negative and if conditions (9) hold. They are

xya8e-ay + (1 — 8e~ay)[x —  | y | ] ^ 0.

Thus a maximum principle holds for expressions of the form

E  a.kJ,,(\knX)Jn(^kny)
k

in appropriate domains.
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