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1. Introduction. The force of the spectral theorem for normal operators

in Hilbert space is that it affords a reduction of operator-theoretic problems

to function theoretic ones. Specifically, if A is a normal operator (A A *=A*A)

then there is an isometric isomorphism between the (weakly closed) algebra

21 of operators generated by 4, 4* and I (the identity operator) and a

(normed) algebra g of numerical functions. Thus to each function/GS there

corresponds an operator f(A)E21, and the mapping /—>/(4) preserves all

algebraic operations as well as norms. This mapping is appropriately called a

functional calculus for the operator 4. If 4 is a general (not necessarily nor-

mal) operator, so that the spectral theorem does not apply, it is nevertheless

possible to develop a functional calculus for 4, in the sense that one can find

an algebra 21 properly containing the polynomials in 4, a ring of functions gi,

and an algebra homomorphism of g onto 21 which is continuous in some sense.

Following a suggestion which apparently goes back to Cartan, Cauchy's

integral formula has been used to establish such a representation for general

operators [9], with positive though limited results. The main limitation of

this method is that it is purely Banach-space-theoretic and so makes no use

of the Hilbert space structure. The Gelfand-Neumark theory [2] on the

representation of Banach algebras with involution, another possible approach

to the problem, is also ineffective because the powerful results of the theory

demand both commutativity and the presence of an involution, and algebras

generated by non-normal operators do not have both of these properties. A

third approach, which we shall describe, consists in generalizing the measure-

theoretic approach to spectral theory for normal operators, and leads to some

new results. The generalization consists in considering operator valued

"measures," termed operator measures, which are related to general operators

as spectral measures are to normal operators, and which differ from spectral

measures in that they are positive-operator-valued rather than projection-

valued (a projection is positive and idempotent, so that technically the gen-

eralization is simply the relaxation of the condition of idempotence). The

application of operator measures to the functional representation of general

operators proceeds from the fact (essentially proved by Nagy [6]) that every
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operator A (subject to the innocuous technical restriction that ||.4|| ^1) de-

termines a unique operator measure F, supported on the unit circle in the

complex plane, and such that An=fz"dF(z), n = 0, 1, 2, • ■ • , where the in-

tegral is the usual type of spectral integral (weak or strong topology), and

we pursue the possibility of forming functions of A by the formula f(A)

= ff(z)dF(z) with the object of representing A by functions on the unit circle.

Our main results are that for operators A whose operator measure is equiva-

lent to (has the same null sets as) Lebesgue measure the mapping/—>f(A) is

a norm-decreasing algebra homomorphism from the algebra of bounded

boundary values of functions analytic inside the circle (with supremum

norm) into the strong closure of the algebra 21 generated by A and /; and if

moreover the spectrum of A contains the unit circle, then the above mapping

is an isometry of the subalgebra of continuous boundary values onto the

uniform closure of 21. These results are incomplete on two points: (i) we lack

a characterization of operators with operator measure equivalent to Lebesgue

measure and spectrum containing C, and (ii) we have no information on the

class of representing functions associated to operators whose operator meas-

ure is not equivalent to Lebesgue measure.

We conclude the paper with a theorem showing the relation between the

spectral measure and the operator measure of a normal contraction, by means

of which normality can be characterized in terms of operator measures.

2. We are concerned with complex Hilbert space, and we use the word

operator to mean bounded linear transformation. The symbol C is reserved

throughout for {z: \z\ =l| and m is Lebesgue measure on C, normalized so

that m(C) = 1. The spectrum of an operator A is denoted Sp(^4) and we write

A(F) for the support (complement of the union of all open sets where F

vanishes) of a countably additive function F of Borel sets.

We shall make use of the basic definitions and facts about operator meas-

ures and unitary dilations, as expounded in [10]. We state them here briefly

for the convenience of the reader.

An operator measure is a function F from Borel sets on the unit circle C

to positive operators on a Hilbert space U which is weakly (and therefore

strongly) countably additive, and is normalized so that F(C) —I (the identity

operator). If /is a complex-valued function bounded and Borel measurable

on the support k(F) of F then the integral ff(z)dF(z) may be understood in

either the weak or strong topology and defines an operator T such that

(Tx, y) =ff(z)d(F(z)x, y) = ( \Jf(z)dF(z) ]x, y) lor all x and y in H. An operator

measure F on H determines, uniquely within unitary equivalence, a larger

space KZ)H and a spectral measure E (supported in C) on K such that if P

is the projection of K onto H then F(a)x = PE(a)x for every Borel subset

a EC and every xEH (we may express this intrinsically by writing F(a)

= PE(ff)P, where F is now regarded as operating on all of K and mapping

KOH to 0); moreover, no subspace of KOH reduces all the projections
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P(<r)^0 [8]. The space P and spectral measure E are called respectively the

minimal dilation space and minimal dilation of P, and the unitary operator U

on P defined by E (that is, U=fzdE(z)) is called the minimal dilation of the

operator fzdF(z). An operator measure F is called strong if JzndF(z) = [/scfP(z) ]"

for all n. Every contraction operator 4 (that is, ||4|| g 1) determines a unique

strong operator measure P, and every strong operator measure arises in this

way.

3. To simplify the exposition we shall consider only contraction oper-

ators. Since every operator is a scalar multiple of a contraction, it will be

apparent that the results are valid, with minor and obvious modifications,

for all operators.

Lemma 1. If F is an operator measure on H and E is its minimal dilatation

on KZ)H, then, for every Borel set a, we have E(cr) =0 if and only if F(a) =0.

Proof. By hypothesis F(a) =PE(cr)P, where P is the projection on II. If

£(<r)=0 then P(<r)=0 trivially. Conversely if F(<x)=PE(a)P = 0, then

0=P[P(o-)]2P=[PP(<r)][PP(<r)]*, and consequently PE(a) = P(er)P = 0.

This means that the range M of P(<r) is a subspace of KQ-H. For every Borel

set 8, E(8)E(a)=E((r)E(8); that is, M reduces P. This contradicts the mini-

mality of E unless E(a) =0, as was to be shown.

Corollary 1. A(P) =A(E), where E and F are as in Lemma 1.

Observe that, with E and P as in Lemma 1,

(1) (E(<r)x, x) = (F(a)x, x)

ior all Borel sets a and all x in H, because (F(a)x, x) = (PE(a)Px, x)

= (E(cr)Px, Px) = (E(a)x, x). This is a weaker assertion than that of Lemma 1.

If G is either an operator measure or a spectral measure we define the

essential supremum, denoted ||/||«, of a function / on A(G) exactly as in the

case of numerical measures.

||/|U=    inf   sup |/(2)|.

The set of all Borel measurable functions on A(G) with finite essential supre-

mum is a normed ring, with essential supremum as norm, if we identify func-

tions agreeing except on G-null sets. We denote this normed ring by LX(G).

Corollary 2. If F is an operator measure and E is its minimal dilation

thenLx(E)=L„(F).

This is immediate from Lemma 1.

Definition 1. Let 4 be a contraction with strong operator measure P.

For any function fELx(F) we define an operator f(A) by the integral

ff(z)dF(z), which may be interpreted in either the weak or strong topology.

Thus,
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(2) (f(A)x, y) = (J ff(z)dF(z)~j x, y) =   f f(z)d(F(z)x, y)

for every x and y in H. We denote the mapping f-^f(A) by <p.

Lemma 2. Let A be a contraction with strong operator measure F on II and

let U = fzdE(z) be its dilation on the minimal dilation space K. Then f(A)

= Pf(U)P, where P is the projection of K onto H.

Proof. By the spectral theorem f(U) is well defined for any/ in L„(£)

= L„(F). If x and y are in H then (f(A)x, y) =ff(z)d(F(z)x, y) =ff(z)d(E(z)x, y)
by (1), and the last integral is equal to (f(U)x, y) = (Pf(U)Px, y). Since this
holds for all x and y in H, the proof is complete.

Let A(F) denote the set of all complex valued functions which are approx-

imable on A(F) pointwise almost everywhere with respect to F by uniformly

bounded sequences of polynomials in z. We shall refer to this notion of con-

vergence as bounded pointwise convergence and abbreviate it (BP).

Lemma 3. A(F)ELX(F), and convergence (BP) within A(F) implies strong

convergence within <f>[Lx(F)]

Proof. The inclusion is clear. To prove the second assertion we must show

that if [/„] is a sequence of functions in A(F) converging (BP) to/ then the

sequence |/n(^4)] of operators converges strongly to f(A). For any x in H

Lemma 2 implies that

\\\fn(A) -f(A)]x\\2 = \\[P(fn(U) -f(U))P]x\\2

which does not exceed

Ufn(U) -f(U)]x\\2 = J \fn(z) -f(z) \H(E(z)x, x).

By (1) and the assumption on [f„] the integrand is bounded and converges

to 0 pointwise almost everywhere with respect to the measure d(E(z)x, x).

Therefore by the Lebesgue bounded convergence theorem the integral, and

hence also the quantity || \fn(A) —/(4)]x||, converges to 0 as n tends to <x>.

Since this holds for all x in II, the proof is complete.

Theorem 1. The map <p is a norm decreasing * vector space homomorphism

of L„(F), and restricted to A(F) it also preserves products. (A * mapping sends

complex conjugation into adjunction.)

Proof. In the notation of Lemma 2, if/ is in LX(F) then ||<£/|| =||/(^4)||

= ||P/(L/)P||^||/(c7)||, which is equal to \\f\\„ by the spectral theorem(2),

(!) That | \f{A)\ | ^| |/| | „ for / analytic in a domain containing Sp(y4) was proved by

v. Neumann [7] and later by Heinz [3] and Nagy [6], The above argument applies Nagy's

method to functions in L„{F).
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and <pf=f(A) =Pf(U)P = P[f(U)*]P= [P/(t7)P]* = [</>/]*. That </> is a vector
space homomorphism is clear (it is not in general an isomorphism; for exam-

ple, if 42 = 0 then <p[z2] =0 but z2?^0 everywhere on C). The last statement of

the theorem is the assertion that/g(4) =/(4)g(4) for/and g in A(P). We ob-

serve that because P is a strong operator measure we have JzndF(z)fzmdF(z)

= [fzdF(z)]n[fzdF(z)]m=[fzdF(z)]n+m = fzn+mdF(z) for all non-negative in-

tegers n, m, and therefore, if p and q are polynomials in z then p(A)q(A)

=Jp(z)dF(z)fq(z)dF(z)=fp(z)q(z)dF(z)=pq(A). This is the essential use of

the strong property of P. Let [pn] and [qn] be sequences of polynomials in z

converging (BP) to/ and g respectively. By Lemma 3, pn(A) and qn(A) con-

verge strongly to f(A) and g(A) respectively. The sequences [^n(4)] and

[qn(A) ] are uniformly bounded in norm because they are strongly convergent

(or one may use the first assertion of the present theorem) and their limits

have the same bound. Multiplication being jointly continuous in the strong

topology on bounded sets it follows that pn(A)qn(A) converges strongly to

to f(A)g(A). From the fact that [pn] and [qn] converge (BP) to / and g

respectively it follows that [£„<?„] converges (BP) to fg, and hence that

(pnqn)(A) converges strongly to (fg)(A). But (pnqn)(A) =pn(A)qn(A) ior all n.

Hence (/g)(4)=lim (pnqn)(A) =\im pn(A)qn(A) =f(A)g(A) and the proof is

complete.

Theorem 2. Let A be a contraction with strong operator measure F. If A is

not unitary then A(P) = C.

Proof. Suppose to the contrary that A(P) 9^ C, so that A(F) does not

separate the plane. Then every continuous function on A(F) is a limit uni-

formly on A(P) of polynomials in z (see [5]). In particular/(z) =z is such

and so belongs to A(P). Then by the preceding theorem I = <p(l) = <p(zz)

— 4>(z)4>(z)=AA*. Similarly 7 = 4*4 and the theorem is proved.

Thus the functions in A(P) are limits (BP) everywhere on C, and <f> is a

continuous * algebra homomorphism of A(77) into the ring of operators

generated by A and I. We specialize now to the class 8 of contractions whose

operator measures are equivalent to Lebesgue measure m on C. That is,

A =JzdF(z) belongs to 8 if P has exactly the same null sets as m. We have

shown in [10] that all operators 4 such that ||.4|[ <1 belong to 8, as do all

quasi-nilpotent operators.

Theorem 3. If A =fzdF(z) belongs to 8 then A(P) is exactly the set of f in

L„(F) such that fznf(z)dm(z)=0 for n>0.

Proof. Under the present assumption limits almost everywhere with re-

spect to P or m are the same. Let / be in A(P), with /=lim £„(BP). If A>0

then Jpn(z)zkdm(z) =0. Hence \fzkf(z)dm(z)\ = \f(f(z) - pn(z))zkdm(z)\

^f\f(z)—pn(z)\dm(z) for A>0. The last integral converges to 0 by the

Lebesgue bounded convergence theorem, showing that / has the property

stated in the theorem. Conversely, if/has the stated property and is in LX(F),
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then its Fourier coefficients cn=fznf(z)dm(z) vanish for «<0. It follows that

the Fejer means <r„(z) = (1/n) E" c*2* 0I / are polynomials in z alone. More-

over the <r„ are uniformly bounded by the same bound as/ [12, 3.22]. Since

the measure of C is finite/ is in Li(m). Then by the Fejer-Lebesgue theorem

[11, p. 415] the sequence of Fejer means converges to/almost everywhere,

hence (BP), so that/is in A(F) and the proof is complete.

Corollary 3. If A =fzdF(z) is in 2 then A(F) is closed under limits (BP)

and consists of all nontangential boundary values, almost everywhere on C, of

functions analytic and bounded in the interior of C.

Proof. That A(F) is closed under limits (BP) follows at once from the

integral formula of Theorem 3. To prove the second assertion, observe that

if/ is in A(F) then the Fejer means an of/ are analytic in the interior of C

(since they are polynomials) and are uniformly bounded there (by the maxi-

mum modulus theorem). Hence, by a consequence of Vitali's theorem [11,

p. 168] on the uniform convergence of bounded sequences of analytic func-

tions, a subsequence an, converges uniformly on every closed subset of the

interior of C and so defines a bounded analytic function in the interior of

C. It is known that such a function assumes a bounded boundary value on

C almost everywhere, nontangentially [12, pp. 86, 44], and it is easy to check

that this boundary value coincides with the given function /.

Thus for operators in 2 the map <p is an algebra homomorphism on the

boundary values of bounded analytic functions. It is clear from Lemma 3

that 4>[A(F)] is always contained in the strong sequential closure of the

algebra 21 generated by A and I, for any contraction A. To say more about

the range of <p we specialize still further. Write ||/[|g for the spectral norm

sup \\f(z) | : z in Sp(yl) ] of a function /.

Lemma 4. /// in Lx(Fa) is analytic in a domain containing Sp(^4) then

IWLsll/wllslWI-
Proof. By the Dunford spectral mapping theorem [4, p. 122] ||/||s is the

spectral radius of f(A) and therefore is not greater than ||/(.4)||. The second

inequality is the first assertion of Theorem 1.

Theorem 4. If A is in 2 and Sv(A)Z)C then <j> is an isometry of the space

of continuous functions in A(F) onto the uniform closure 21 of 21, and so in par-

ticular■ %Q<j>[A(F)].

Proof. Let B be an arbitrary element of 21- Then B is the uniform limit of

a sequence pn(A) of polynomials in A. If p is a polynomial in z then \\p\\s

^ |^(^4)|| ^[|^||» by the preceding lemma, and since Sp(yl)Z)C we have

\\p \s = \\p\\x, by the maximum modulus theorem. Hence ||/>n||oo = ||£nC<4)|| for

all n. Consequently the polynomials pn converge uniformly on Sp(yl), and in

particular on C, to a continuous function/ in A(F). Hence pn(A) converges
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uniformly to/(4), so that B—f(A). This shows that every element of 21 has

the form f(A) for/continuous in A(F). In the other direction, if g is continu-

ous in A(P) with 4 in 8, then, just as in Theorem 3, the Fejer means cn are

polynomials in z, and by a corollary of the Fejer theorem [ll, p. 414] cr„ con-

verges to/ uniformly on C. Hence g(A) is the uniform limit of an(A) and so

belongs to 21. This also shows that the polynomials in z are uniformly dense

in the continuous functions in A(FA), and since <b is isometric on the poly-

nomials it is isometric throughout. This completes the proof.

Note that the set of continuous functions in A(FA), with A in 8, is exactly

the set of continuous boundary values of functions analytic inside C. Thus

we have a true representation for contractions 4 in 8 such that Sp(^4)DC.

A more illuminating description of operators of this type is not at hand.

One example is the so-called unilateral shift operator U, which is defined on

the span of the functions z", « = 0, 1, 2, ■ ■ • , | z| = 1, by the relation Uf(z)

= zf(z). The unitary dilation U of U is defined on the space L2(m), that is,

the span of all powers, both positive and negative, of z, by the relation

U/(z) =zf(z). (This may be verified by direct calculation from the definitions,

or may be found in [10].) The spectral measure E of U is given by the relation

E(8)f(z) =ki(z)f(z), where ks is the characteristic function of the Borel set 6,

so that E is equivalent to m. But E is the minimal dilation of the operator

measure P of U, whence it follows by Lemma 1 that P is also equivalent to

m. Moreover we have Sp(P)= {z: \z\ gl}DC(if |a| <1 then P*(53o«nz")

= 53oa"+1z"=«(I3oanz"). so that a£Sp(P*), and it follows that Sp(P)

= Sp(P*) is the whole disc). Thus U has the stated properties.

In the classical spectral theory of a general operator A one considers

functions / analytic in a domain Df, depending on /, properly containing

Sp(/4), and one writes

(3) f(A) = — ff(z)R(z)dz

where R(z) = (I — zA)~l is the resolvent of A, and 7 is a contour within Dt

and containing SpC4) in its interior. This defines an algebra homomorphism

ip from the set of all such functions to operators, such that iA(l) =7 and \p(z)

= 4 [9, Chap. XI]. J. von Neumann has recently shown that iA is also norm

decreasing if the functions are given their spectral norm (see footnote to

Theorem 1 above). These results are improved somewhat by the present

method in two senses. First, if Sp(4) DC then we may include functions which

need not be analytic in a domain properly containing Sp(4); and second, the

operators f(A) defined by (3) will be contained in the uniform closure of the

algebra generated by 4 and I, and this is a smaller algebra than the strong

sequential closure.

The two methods are coherent. That is, if / is analytic in a domain con-

taining the unit disc then



1958] GENERAL OPERATORS IN HILBERT SPACE 115

f f(u)dF(u) =—[ f(z)R(z)dz
J C 2wl J y

where F is the strong operator measure of a contraction A, R(z) is its resol-

vent, and 7 is a contour containing C in its interior. For the power series

expansion of / at the origin will converge in a circle larger than C, so that its

partial sums sn will converge uniformly on C. Hence Jsn(u)dF(u) will con-

verge uniformly to ff(u)dF(u). But fsn(u)dF(u)=sn(A), and it is easy to

see, just as in the numerical case, that sn(A) converges uniformly to (l/27rf)

■fyf(z)R(z)dz.
11 A is a normal operator with spectral measure E, and B is any operator,

then Fuglede's theorem asserts that B commutes with A if and only if B

commutes with all the projections E(a), or equivalently, B commutes with

all bounded measurable functions of A [l]. The analogous assertion for an

arbitrary operator A with operator measure F, namely that B commutes with

A if and only if B commutes with all the operators F(a), and hence with all

the operators f(A) where fELM(F), is false. For the function/(s) —z belongs

to LX(F), so that the assertion would entail as a consequence the further

assertion that B commutes with A if and only if B commutes with A*, and

this is easily refuted by matricial examples. The only possible theorem is the

following.

Theorem 5. Let A =fzdF(z) be an arbitrary operator with strong operator

measure F, and let B be an operator. Then B commutes with A and A* if and

only if B commutes with all f(A) with f in L«,(F).

Proof. Let AM denote A" if w^O and A*in^ if n<0. Then clearly B com-

mutes with A and A* if and only if B commutes with AM for all n, which is

so if and only if (AMBx, y) = (BAMx, y) = (A(n)x, B*y) for all x and y in H

and all n. We use F to express these quantities as follows.

(4) (A^Bx, y) =   f z"d(F(z)Bx,y),

(5) (BA™x, y) =   f z"d(F(z)x, B*y)    f zH(BF(z)x, y).

Fixing x and y for the moment, the set functions (F( ■ )Bx, y) and (BF( ■ )x, y)

are both complex valued measures on the circle C, and the left hand members

of (4) and (5) are the values of the functionals induced by these measures on

the functions/(z) =z", w = 0, +1, +2, • • • . But these functions span the

ring of continuous functions on C. Hence (A(n)Bx, y) = (BAMx, y) for all n if

and only if the two measures induce the same functional and hence are equal

as measures; that is, if and only if (F(cr)Bx, y) = (BF(a)x, y) for all Borel

sets a in C. The argument does not depend on the choice of x and y, so that

we may now let them be arbitrary, and this completes the proof.
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Corollary 4. If A commutes with all F(a) then A is normal and con-

versely.

Proof. We merely replace B by 4 in the above argument.

4. If A is a normal contraction then it determines both a spectral meas-

ure E supported on Sp(4) and a strong operator measure P supported on C.

We propose to express P in terms of P. The first step is to consider operators

of the form Aa = al, where a is a complex number. Then Sp(40) = {a} and

the spectral measure Ea of Aa assigns / to the set {c}. If \a\ <1 then 4tt is

a proper contraction in the terminology of [10] and we may apply the results

of that paper. In particular, it is shown there that the strong operator meas-

ure P of a proper contraction 4 is given by

(6) F(<t) =   f K(A,z)dm(z)

where P(4, z) = 53-« zn4(n) is the so-called operator function of 4. In the

present simple case P(4, z) reduces to P„(z) I, where Pa(z) is the Poisson

kernel [12, p. 51], and the formula (6) is easily checked by direct calculation.

Thus, denoting by Pa the strong operator measure of Aa, we may write Fa(b)

= JsKa(z)Idm(z). Since for \a\ <1 the function Ka is positive on C we may

define a family of measures ma on C as follows.

(7) ma(8) =   \  Ka(z)dm(z), \ a\   < 1.

The behavior of ma as a approaches the boundary is described by

Lemma 5. i//is continuous at uEC then limr=i ff(z)dmru(z) =f(u).

Proof. The one parameter family of functions

{P™:0 g r < 1, |«|   =1}

constitutes a positive kernel for each fixed uEC, in the sense of [12, pp. 45,

51]. The lemma then follows as an immediate application of [12, 3.21] to

this kernel.

This being so, we may extend the definition of ma to the boundary by

taking ma to be the measure concentrated at the point z = a when \a\ =1.

With ma so extended we may now write

(8) Fa(8) =ma(o)I, \a\   g 1.

Now let 4 be a normal contraction with spectral measure P. It follows

that Sp(^4)=A(P) is contained in the unit disc D. Heuristically speaking,

every point z of Sp(4) contributes the amount mz(8)I to the value of P(5),

where F is the strong operator measure of A. By adding these contributions

we are led to
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Theorem 6. If A is a normal contraction with spectral measure E then its

strong operator measure F is given by

(9) F(8) =   f mz(8)dE(z).
•Id

Proof. For any fixed Borel set 5 the function mz(8) defined by (7), and ex-

tended as noted, is bounded, measurable and positive on all of D, so that

the set function F given by (9) is positive-operator-valued. Let {§<} be a

countable family of disjoint Borel sets, and write fn(z) = Ei ntz(8i). Then

1 =g/„(z) 2:0 for all n and all zED, and /„(z) converges pointwise everywhere

in D to mz(\J"=1 5;) because mz is for each z a measure. For any vector x in H,

(F(U?„i Si)x, x) =fDfnt(\Jti 8i)d(E(z)x, x) =fDfn(z)d(E(z)x, x). By the Le-
besgue bounded convergence theorem the last integral converges to

fDmz(\J^i 8i)d(E(z)x, x) = (F(UZ.i 8i)x, x) as n tends to oo. That is, F is

weakly countably additive. It follows that F is strongly countably additive

[10]. Moreover F(C) =fDmz(C)dE(z) =fDldE(z) =1, so that F is an operator

measure. It remains only to show that fczkdF(z)=Am for k^O. Let {5,}

be a disjoint partition of C into Borel sets and let zt- be a point of 5;. Then

E? *?*"(«.■) = Ei z\jDmz(8i)dE(z) =fD { Ei ^mz(8i)}dE(z). The expression
in braces is an approximating sum for fcukdmz(u), where mz has its extended

sense, and this integral has the value zk for every z in the closed unit disc.

Thus, as the partition is refined indefinitely Ei z\mz(8i) converges to zk so

that Eizi^(^«') converges to fSpu)dE(z) =Ak. Since this holds for all k>0,

and therefore by adjunction for all k<0, the proof is complete.

Corollary 5.1. A contraction A is normal if and only if the set of positive

operators determined by its strong operator measure is a commutative set.

Proof. If A is normal then for all Borel sets a and 8 we have F(a)F(8)

= F(8)F(oc)=fDmz(ci)mz(B)dE(z), where F is the strong operator measure

of A, by Theorem 6 and the spectral theorem. If, conversely, {F(-)} is

commutative, then for any fixed Borel set a the operator F(a) commutes

with all the F(8), which easily implies that F(a) commutes with fczdF(z) =A.

Since a may be chosen arbitrarily, we see that A commutes with all the posi-

tive operators in the range of F, whence it follows by Corollary 4 that A is

normal.

Thus normal contractions are distinguished from all others by the com-

mutativity properties of their operator measures (Corollaries 4 and 5.1). As

a final corollary we have another analogue of Fuglede's theorem.

Corollary 5.2. If A is a normal contraction with strong operator measure

F and B is any operator and AB= BA, then BF(8) = F(8)B for all Borel sets 8.

Proof. Let E be the spectral measure of A. Then BE(8)=E(8)B lor all 5
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by Fuglede's theorem, and therefore B commutes with JDmz(8)dE(z) = F(8)

ior all 6.
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