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Introduction

1. In [4](!), E. Hecke initiated investigations on a class of properly dis-

continuous groups, here denoted by (G(X,)}. Any G(X3) is generated by the

two substitutions S(t) =t+X3, T(t) = — 1/r, where X3 = 2 cos (ir/q), q integer

^3.
When q = 3, G(K3)—G(1) is the modular group with invariant

.7(1; t) = 123/(l;r) = x"1 + 23 3-31 + 22-3M823* +

where x = exp (2iriT). This invariant is usually denoted briefly by j(r) in the

literature.

For g = 4, the group G(\/)=G(2112) was investigated by J. W. Young,

[13], who obtained the invariant, here denoted by/(21/2; t), as a quotient of

theta-null series. A relationship between/(21/2; t) and j(r) is discussed and

utilized by R. Fricke, [3, vol. II, ler Abs., 5es Kap., §2]. The above paper by

J. W. Young is not mentioned in the work of Fricke.

If g = 6, the group G(\o) =G(3112) is the subject of a paper by J. I. Hutchin-

son, [5], who obtains the invariant, here denoted by j(31/2; t) also as quotient

of theta-null series.

In [7], H. Rademacher obtains convergent series for the Fourier coeffi-

cients of j(l; t) and in [ll] W. H. Simons uses methods similar to those ot

[7 ] for the determination of the Fourier coefficients of the invariants X(t) and

1/X(t), algebraically related to/(l; t).

The purpose of this paper is to extend the method of [7] to obtain con-

vergent series for the Fourier coefficients of/(21/2; t) and/(3I/2; t).

In §2, two relations between j(21/2; r) and j(r) are established directly for

a convenient calculation in closed form of the first few coefficients in terms

of those ol j(r). This supplies a partial check on our main theorem.

The corresponding Formulae (2.04) and (2.05) may be determined by

other methods. However, to the best of our knowledge, they do not appear

explicitly in the literature. In §3 the modified Farey dissection of the circle

is discussed. In §§4, 5, 6, 7, we establish the main result, explicit in Formula

(7.7). In the second part of §5, (Formulae (5.1)' and (5.3)'), a sum of exponen-
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tials, Bk(n), appears, and we show that Bk(n) is also reducible to a Klooster-

man sum.

In §9 we establish also two relations between j(3112; t) and j(r) explicitly

in Formulae (9.04) and (9.05). These relations are new. The remainder of §9

indicates how the same methods, used for j(21/2; t), have been carried out

to obtain convergent series for the Fourier coefficients of/(31/2; r).

Details of estimates are partially omitted, since they would reproduce,

except for multiplicative constants, those of H. Rademacher, [7].

I. The Fourier coefficients of the invariant /(21/2; t)

AND ITS RELATION TO /(l; t)

2. The group G(21/2) and its invariant. The group G(21/2), whose gener-

ators are S(t)=t+21/2, T(t) = — 1/t, has a fundamental region defined by

the inequalities:

2i/2 21'2

- — £  <Rto < — ' S(r) > 0,

| t |   ^ 1 if  (R(t) gO, | t |   > 1 if  (R(t) > 0.

(cf. [4] or [13]).

Utilizing a remark by Rausenberger, [8], we let

0(r) = j(2^2r) +/(r/21/2) = x-2 + x-1 + 2co + • • • ,

where x = exp (2irir/2112) and/(w)=/(l; u) = 123/(1; co). Then <p(r) is invari-

ant under S(t) and T(t), hence under all transformations of G(21/2), but has a

double pole in x at r = i<x>, or x = 0. Let us denote by J(2112; r) the invariant

belonging to G(21/2). Such an invariant is a simple automorphic function for

G(21/2) in the sense of Ford, [l, Ch. IV], and hence has a pole in x at the para-

bolic point r = icc. Moreover, the fundamental region being schlicht and

simply-connected, 7(2I/2; t) must be a schlicht function, hence the pole is

simple (cf. [1, p. 91]).

From the above considerations we infer that there exists a relation of the

form

(2.001) A •/2(21'2; t) + B-J(21'2; r) + C = <j>(r)

with A, B, C to be determined.

Similarly, considering the function -ip(r) =j(2ll2r) ■ j(r/2112), also invariant

under the transformations of G(21/2), with a pole of third order in x, we infer

that:

(2.001)' ^'■/3(21/2; r) + 5'-/2(21'2; r) + C'-/(21'2; r) + D' = f(r).

We preassign the boundary correspondence as follows:

/(21'2; p2) = 0,        J(2>'2; i) = 1,       /(21'2; too) =  »



92 JOHN RALEIGH [January

where p2= —2ll2(l—i)/2. Since these conditions are not sufficient to deter-

mine the constants A, B, C, A', B', C", D', we exploit the transformation

equation of rank 2, (cf. [2, vol. II, p. 371], or [3, vol. Ill, p. 395]). Such an

equation is the result of elimination of a between the three relations:

(4<t- l)3 /co\ (4<r' - l)3
(2.01)    j(co) = 2*y--'-,      /(co) = j   -) = 2^--j-L,     co-' = 1,

a- \ 2 / o-

where cr(u>) is a one-valued function of the transformation polygon T2, (cf.

[3, vol. Ill, pp. 297 ff., pp. 390 ff.]). For our purpose we simply interpret

cr(co) as a parameter. We obtain, from (2.01),

j(w) +j'(u) = 2\2H2 - l2t - 23-13),
(2.02)

j(o>)-j'(o>) = T2(17-4tY,

where t = cr+a'. Now, comparing (2.001) and (2.001)' with (2.02), we infer

that:

ott-y 8
(2.03) /(21/2;t) =-, a, 8, 5 constants.

5

But, from (2.01) when a = <r'= -1, /= -2,

/(„) = 2«.53=7» -j(«/2).

On the other hand, from the Classinvariant theory, (cf. [3, vol. Ill, p. 394]),

we have:

,(f21/2).2..S3 =,•(__!-)= ,(_•_).

i.e. such a value is assumed byj(w) only at points homologous to u = i2112, and

if co = 21/2t, this happens when r = i. However we have preassigned that

J(21'2; i) = l, hence, from (2.03)

-2a+ 8
(2.031) - = 1.

5

Similarly, when <r = er' = l, t = 2,

y(„) = 2°-33 = ?(<*) = j(j), by (2.01).

Again,

y(21/2P2) = iJ2"2(-—)(l-i)j  =j(-i + i) = 2*-33,
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This value is assumed by j(w) only at points homologous to w = 21/2p2, hence

if we letw = 21/2T, this happens when r=p2. By the preassigned correspondence

J(2112; p2)=0. Hence, for t = 2, (2.03) supplies the equation:

2a + ft
(2.032) -= 0.

5

Solving (2.031) and (2.032), we obtain ft= —2a, 5= —4a; i.e. the linear rela-

tion^):

t - 2
(2.033) J(21,2;t) =-

— 4

Either by substitution in (2.02) or by a process of differentiation, the

constants A, B, C, A', B', C, D' are readily calculated. By setting

/(2i/2;r) = 2*-/(2i/2;t),

we obtain the following equations, relating/(21/2; t) with j(21/2t) and/(r/21/2):

(2.04) i2(21'2; r) - 33-23j(21'2; r) + 27-33 = j(21'2r) +/(r/21'2),

(2.05) {i(2>'2; r) + 2^-32}' =/(2i/2r)-/(r/21'2).

Since jl,'(a), and hence /1/3(2co), have series expansions with integral

coefficients, (cf. Fricke [2, vol. 2, p. 344] or Petersson [6, p. 56]), Equation

(2.05) shows that the Fourier coefficients of /(21/2; t) are rational integers.

Moreover, Formulae (2.04) or (2.05) permit the calculation of the first few

coefficients in terms of the coefficients C, oi the modular invariant/(w), the

C's being known in closed form up to Cioo, (cf. [12]):

i(21/2; r) = x~l + 23•13 + 22 ■ 1093* + 211 • 47x2 + • • •

= f(x) = x-1 + 2^ c„xn,

where x = exp (2irir/2112).

The substitutions of G(2I/2) can be separated into two classes, as follows:

(cf. [13; 9]),

/  a    b21'2\
(2.2) F^^     d), ad-2bc=l,

/a'21'2   b'\
(2.3) V = ],        2a'd' - b'c' = 1,

V c'   d'2"2J

where a, b, c, d, a', V, c', d' are rational integers and

(2) Obtained by other methods, a linear relation such as (2.033) appears in [3, vol. II, p.

104].
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(2.4) j(21/2; V(t)) =j(V'2; V'(r)) = j(2^'2; r).

Accordingly we write:

Case I.

/    h'       -(hh''+l)21i2/k\

~~ U2I'2/2 -h )'

where

(2.5) hh! = - 1 (mod k),        (h, k) = 1,        k = 0 (mod 2).

Case II.

/h*2112   -(2M*+ l)/k\

V    k -h21'2       )'

where

(2.5)' 2hh* = - 1 (mod £),        (2/z, *) = 1,        k s 1 (mod 2).

Setting

r = iz/£ + ^21'2/A:, «(z) > 0,

the invariance property (2.4), with the notation of (2.1), becomes:

/ (     2tz h)\        /        (       4t h')\

M     A°" {-3=5 + 2"« t|) -/(■* Hs£ + 2« T})

for Case I; and

/ (     2tz h) \        (        (       2tt A*) \

p-v <exp t-*si+2» t! )=yrp {-is* +2- t} )

in Case II.

3. With the notation of (2.1), by Cauchy's theorem,

1    r  f(x)
cn = —- I    —— da;,

2xi J c  xn+1

where C denotes the circle defined by | x\ =exp ( — 21,2tN~2). Using the Farey

dissection of order N of the circle C, by means of arcs £»,*, we may write

^      1  r   /(*)
cn =      2-/     —: I     -^x-

h.k;0sh<kSN 2TriJ(k,k xn+1

Here and in the following, 2~2' denotes summation running over all A, A with

(h, k) = l. On the arcs £„,* we put
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/     2tt h        2tt      \
x = exp-N~2 + 2«-1-i<p I ;

V    21'2 k       21'2     /

then

cn =-      S'       exp ( — 2winh/k)
21'2 A,i;0sft<*sW

(3.1) „     "     "
/(e2TiCArt)-2,r(Ar-2-i0)/21/^e2x»(JV-2-i*)/21/2^_

From (2.4) it appears that the points h2ll2/k have the same singular char-

acter as r = t°o, hence the Farey arcs, of order N, will be defined as follows:

To every term h2ll2/k in the Farey series of order N,  (0^h<k^N,

(h, k) = 1) corresponds an arc

/ h ,      h ,. \
(      21'»-*Uv21/" + *w)
\ k k /

with

h , h + hi h ,.        h + h2
_91/2 _ ,«'     _ - 21'2  — 21'2 -I- ?>!,!. = -21'2

k  2 h*       k + fa2    '  k +^       k + fa2    '

where

fa               h               h2
_ 21/2 <_ 21/2 <_21'2

(3.2) fa k k2

k, ki, fa g N.

Here fa2ll2/fa and h22x,2/fa are the terms adjacent to h21,2/k in the Farey

series of order N.

The end points of the arc in question are the "mediants" lying between

the terms (3.2). Since

hfa — hik = 1,        h2k — hk2 = 1

or

hki = 1 (mod k),        hfa = — 1 (mod k),

we have, from (2.5) and (2.5)'

(3.3) fa = — h' (mod k),        k2 = h' (mod k)        when k = 0 (mod 2);

and

(3.3)' fa = - 2h*(mod k),       fa = 2h* (mod k)     when k = 1 (mod 2).

The mediants do not belong to the Farey series of order N, hence



96 JOHN RALEIGH [January

Ai + k > N,       k2 + k > N

or, by (3.2)

(3.4) N - k < Ai g N,       N - k < k2 ^ N.

The integers Ai and A2 are thus uniquely determined. We have

2i/2 21'2

(3.5) 0li4 =-,       &'U =-
A(Ai + A) k(k2 + k)

4.  If we introduce the abbreviation

(4.01) w = N~2 - id,,

we may write:

1 fdh.k
c     —   _ V1' g—irinh/lc    I r/e-2rin(.hlk)-(2irl2-l2)-(kwlk)\e2irnwl2'l''^(f)

21/2 h,k;0sh<kS!f "'-*»,*

where 2^i   means summation over A, A with A odd, 0^h<k^N, (A, A) = 1;

and 2^2' means summation over corresponding A, A with A even.

If we make use of formulae (2.6) and (2.6)', we get:

c     =  _ \^>   e-2Tinhlk    j ^g2irtA'/i-47r/21/zA2«)'\g2irnu)/21/2^j(

21'2      2 J-o[

(4.1) *•»..1                           /•»*.*
_|_V*'   g—2x«nA/i    I J"(-g2xiA*/A;-2j-/21/2A2to'\g2irnu./2l/2J<i

2"2     1 «'-»i.»

Let

(4.2) /(a:)=x-I+P(x)

(4.3) P(x) = Ew'.
71 = 0

Then the expression (4.1) can be split into four parts:

(4.4) c„ = QM(n) + P«>(«) + Q^(n) + «»>(«),

with

Xdh.k
e4T/(2I/Vw)+2x7.u,/21/2^0>

A.*

£)(g2x,7,M-41r/(21/VM))g2T„u-/2l/2^)
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/0h,k g2ir/(21/Vl»>+2™t»/21/!^

/0h,k r)(e2"ih'ik-2'i^llv^)e2Tnwl2l'2dd>.

■**.»

In order to estimate Q(e)(n) and <2(0)(«) we divide the intervals of integra-

tion into three parts as follows:

21/2 2i/2 21/2 21'2

k(fa + k) = ~ k(N + k)     k(N + k)= k(k2+k)~   *'*'

For k even, k = 2p, p = l, 2, • • • , we have:

[JV/2] ftlltl2pW+2p)

Q(e)(w)   _   2-1/2     V V'      e-2*i(nh+h>)lip       I

p-l     A mod 2p J -21/J/2j>(JV+2j>)

[AT/2] /.-21/22p(iV+2p)

_|_   2-1/2     V" 52'      g-2»t(n*+*')/2p       J
(4.5) p=1      J, mod 2p ^-21/2/2p(i,+2p)

[JV/2] /.21/2/2p(i2+2p)

_|_  2-1/2     V Y]'      e-2ri(nh+h')lip      j

p=l      A mod 2p J 2l,2/2p(.N+2p)

= e^w + Cie)w + 02%).

In all three integrals the integrand is

e4T/(21/2.4p2M)+2Tn/(21/2w)JJ>   =   gx/(21/2p2»)+2Tn/(21/2to)^J)_

If k is odd, k = 2p-l, p=l, 2, ■ • ■ ,

[(JV+D/2] /•21/2/(2p-l)(iV+2p-l)

QC«)(W)   =   2_1/2 YJ YJ' g-2Ti(nA+A*)/(2p-l)    I

p-1 Amod(2p-l) c'_21'2/(2p-l)(Ar+2p-l)

t(AT+l)/2] «_21/2/(2p-l)(Ar+2p-l)

_|_   2-1/2 VJ VV g-27ri(n*+A*)/(2p-l)    j

,.    ,y P-l »mod(Sj-l) *'-2I/2/(2p-l)(J:1+2p-l)

[(JV+D/2] /•2l/2/(2p-l)(t2+2p-l)

_|_   2-1/2 YJ VJ' g-2Ti(nA+ft*)/C2p-l)    |

p-l h mod  (2p-l) ^ 21,2/(2p-l)(2V+2p-l)

= eo%) + e!0)(«) + <A»).

In these three integrals the integrand is

g2Jr/(21/2(2p-l)2u.)+2irn/(2l/2ti>)^

5. Let us set

(5.1) A2p(n) =    JJ'    e~2" '(nh+h,) /2p-
A mod 2p
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Then

IN 12] ~21l2/2p(N+2p)

Qo   (n) = 2~1'2   53   A2p(n)- erU^V^+2rnK,2^d(t>
J>=1 J -2ll2/2p(N+2p)

and with

<j> = (N~2 - w)/i,

IN 12] I      pN-i+i2ll'1l2p(N+2p)

(5.2) Qo  (n) = 2"1'2  53  A2p(n)— I jr/ciVV.)-*™./*1'1,*,,,
j>=1 i   J N-i-i2Vi/2p(N+2p)

where A2p(n) is a Kloosterman sum for which we have the estimate (Rade-

macher [7] and references there given):

(5.3) | A2p(n)\   < C(2pyi*+<(2p, nyi\

In the w-plane we take as a contour the rectangle Pi of vertices

+ A"2 ±-

21'2/>(A + 2/>)

Then

. . 2ir lN/2] r
Q0 \n) = _   £   A2p(n)      eW(2"2p2-)+2x,l„/21/^w

(5 4) 21'2  ^ *'
V    '    ' J      [«72] /    p-N~2+iMi n-N   2-iMi nN~2-iMi\

"—   Z   A2p(n)\ + + L

with Mi = l/21/2/>(A^+2/)). Consequently

(,) 2x    [Ar/2] 1     [A'/21

Qo" (w) = ——   53   i4jp(n)-L2p(»)-—--   53   A2p(n){li + I2 + I3},
21'2   p_i J21'2  P=I

where the four integrals L2p(n), Ji, J2, J3 have the same integrand.

Estimating Ji and J3, we have:

i
w = u +->

21'2/>(A + 2p)

-N~2 g«g A"2,

(R(w) = «g A~2,

&(—} =- < N~2-2p2(N + 2/.)2
\w/      u2 + l/2/>2(A+ 2/02

= 2^(1 + ^)2-8^
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Hence Ie*t2V'ip'lw+2rnwl2V2\ ^eSTl2ll2+2wnN~2121'2, and

(5.5) '    S jrV'!*""')'1'" S df W-V'"rl'!l".

We pass on to the estimation of J2. In J2,

1 1
w = — N 2 + iv,-< v <-,

21'2p(N + 2p) ~ 2l'2p(N + 2p)

/ 1\        -N~2
(R(w) = - N~2 < 0, (R ( — 1 = - < 0;

\w/       A^+D2

hence

I   gir/21/2pW2irnio/21/2 I     <-   J

and

2
(5.6) | J2 \   <-< 2p-1N~1.

2"2p(N + 2p)

By the results (5.3), (5.5) and (5.6) we have:

[A72] rjv/2]

E   ^2p(«){/1 + /2 + /3}   ^C2   E   (2pYl3+'(2p, nyitp-iN-W""-*!*1'1
i  p=i p=i

If we assume n^l, then (2/>, «) ^n, and hence

[iV/2]

(5.7) YJ  4,,(»){/! + /» + /,} = 0(ei*»>f-*iill*n1i3N-1i*+').
p-i

Now we consider the integral denoted by L2p(n) in (5.4)

L2p(n) =-f e^/(21/V»)+2xnw/21/^w

27ri«/ b,

1     f      "    (tt/21'2P2wY   "    (2ir«w/21'2)"
= —;   I        2^  - E  - dw

2ti J r1 m=0 nl ,.=o v!

= Residue eWCs'/V-o-M™./*1"

_ A /    t   V+1     _J_/2roV  J_

ZjU^V (^+1)!\21'2/      y|

2"2    "   /T»l/2Y'+, 1

~ 2/w1'2 ,=0 \   £   /        *!(» + 1)7'

or
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21'2 /47r«1/2\

(5.8) w») = — /,(—), , = 1,2,.-.,

where Ji(z) is the Bessel function of first order with purely imaginary argu-

ment. From (5.4), (5.7), (5.8) we have

(e)/ x       2x  vm] A2p(n)      /47rw1/2\ ,   „,
(5.9)    Qo  (n) = •—53 —2-i jl-) + 0(e2™* 2i2li2nv3N-uz+<).

n112 P^!      2p        \   2p  /

Passing to the case of A odd, let us write

(5.1)' B2p-i(n) =       53'      e-2"<«*+A*>/(2P-i);
h mod (2p— 1)

or

Bk(n) =        53'       e-2«c»*+"*)/*,
h mod k\k odd

with 2AA*= —1 (mod A). The sum Bk(n) is also a Kloosterman sum. Indeed,

if A = 1, Pi(«) =Ai(n) = 1 with

Ak(n) =    53'   e2"i(--"h-h'>ik, hh' = - 1 (mod A).
h mod fc

We may write

Bk(n) =       53'      e-2*«<«*+"'/2>/*, A ̂  3.
h mod k\ k odd

Since A is odd, we have (A, 2) = 1 and therefore the congruence

2-a; = 1 (mod A)

has the unique solution

x ^ 2*<«-1 (mod A),

i.e.

1
(5.101)' — = 2*<*>-» (mod A),

where <b(k) denotes the Euler function(3). Hence

Bk(n) =        53'       e-i*UH»h+2*W-l-h') = S(-n, 2*'*)"1; A)
h mod k I ft odd

in the Salie [10] notation. By the properties, (cf. [10]), of Kloosterman sums,

S(-n, 2*«-1; A) = 5(1, -w-2*^-1; A) = S(-n-2*<-»-\ 1; A),

(3) From (5.101)' follows that n ■ 2*<*>"1 = n • 2-»(mod k) =n{\ -k)/2 (mod k), k odd.
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since we have (k, 2*(*)_1) = 1. Hence, returning to our notation,

Bk(n) = Ak(n-2^k^) = Ak(-^— n\ k odd.

Accordingly

(5.3)' | Bip-i(n) |   < C*(2p - iy'3+*(2p - 1, n)1'3, p * 1.

From (4.5)'

KJV+D/2] /.2I/2/(2p-l)(JV+2p-l)

Qi  (n) = 2-1'2     Y_)     B2p-i(n)-   \ e2W21/'c2P-i)W«™./2,"<tyj

p-l J -21/2/(2p-l)(JV+2p-l)

or, with w = N~2 — up,

I(iV+l>/2]

Ql \n) = 2-1'2      E     52p_i(»)

(5.2)' r\,2V ' 1      CN     +'2I'2/(2p-l)(JV+2p-l)

_I e2T/21/2(2p-l)W2intI>/2I/2^w_

i   J AT-2_,21/2/(2p-l)(JV+2p-l)

Taking as a contour the rectangle i?2 of vertices

i21'2

±N~2 ±-,
(2/>- l)(2V+2#- 1)

Qo°'(w) is split up into four integrals in the same manner as <2o'(w):

(o) 2x I<™21

@°   ^ = wi      *-     B2p-^>' -W2p-i(»)

(5.4)' 1        [(tf+l)/2]

- -7T-     E     52!)_1(«) {/T, + K2 + tf3}.
*21/2      p_i

We obtain the estimates

I K I
(5.5)' '    < 2^-2e2"(2+"Ar~2"2"2 < ctp-1N-1e2"nN~2l2l'\

\K3\ "

2(2"2)

(5.6)' 2|       (2#- l)0V+2/»- 1)

< 4^-W-1,

[(JV+D/2]

(5.7)' V     B2p-i(n){Ki+K2+K,} =0(e2*nN~2'2l'2n"3N-H3+').

p-i

Also
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M2p-i(n) = - f e2W21/2(2p-i)W2xnl„/2v^TO

2iri J r2

r     "   (2t/2!/2(2/) - 1) V)"  »    (2irnw/21>2y
= I    2w-,-L,-;-dw

J R2 p=0 Ml >.=o v\

_   "  /     21'2x     V+1 1        /2x»y 1

" ho\(2p- i)2/    (? + i)!\2^y 7T

1 "  /t(2m)1'2Y"+1 1

~ (2p - lK»i\2^- 1 /        fI(f+ 1)1 '

i.e.

1 /     4xw1/2     \
Jf jp_i(n) =-/i (-)

(2p - V)n"2    \21/2(2/> - 1)/
5.8)' * ^        '

21'2 / 2x(2m)1'2 \

~ (2p - 1)(2«)1'2   A   2/.- 1   /'

From (5.4)', (5.7)', (5.8)',

(0)/ 2x     !^+i)/2]  5|j>_i(w)       /2x(2W)"2\

q0 («) =-    Zj    --M-)
(5.9)' V (2ny2      Pti       2/.-1       V2/.-1/

+ 0 (e2*wAr~2/2l/V'3A-l'3+<),

where

P2P-i(«) = ^2p-i((l — p)n).

6. At this stage we return to formulae (4.5) and (4.5)' and we show that

Ql       (W) -5       1/1(6.1) (.,       = 0(e2™N 2/2l/V/3A-1'3+«),

62   (»)

n(0V  >»
(6.1)' CO)       = 0(e2™N !'21,!«i/'f-"3+').

Q2  (n)

These estimations follow closely the method used by Rademacher [7], hence

details are omitted.

7. Referring to formula (4.4), Pw(w) and Pco)(w) can also be broken into

three sums:

(7.D p(%) = sie,+sr+sr,

(7.1)' RW(n)=s[0) + S^+S(;\
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by using the same decomposition of the Farey arc

—&h,k ^ <P ̂  &h,k-

We find, again omitting details,

(7.5) RM(n) = 0(e2"'N~ii2lllnl!3N-1i3+'),

(7.5)' RM(n) = 0(e2rnN~i'2innll3N-1i3+').

Finally, putting together the results of (5.9), (5.9)', (6.1) (6.1)', (7.5), (7.5)'
we obtain

2tt  W*l A2,(n)      /4xw1/2\

c» - ~z E-11 (-
n1'2   ~i       2v \    2v    /

2t      [W+i)/2] ^^((l _ „)«)      /27r(2w)1/2\

(7.6) +-   E   ■——-—M—^-^—)
(2ny2      Zi 2v-\ \ 2v - 1 /

+ 0(e2xnAr"2/2l/2w1/3Ar-1/3+').

For every fixed n ^ 1, we let iV—>» and we have the

Theorem. The Fourier coefficients of the invariant

00

i(21'2;r)   =  e-2"W2'/2 + Cq +   Yj C„e2.inr/2"2

n=l

ore determined by the sum of two convergent series

2x  (»    A2r(n)     /2Tnl'2\

1    A  ^2,-i((l - *)»)     /2x(2w)'/2^

+ "i^r £t    27^   Hi^n-;/ '

Ak(m) =   E'  e-2"(*»*+'''>/*, M' = - 1 (mod*).
A mod A

8. The same remark has to be made here, as by Rademacher [7], concern-

ing the exclusion of the value « = 0. The coefficient Co has been obtained in

(2.1) asc0 = 23-13.

Using formula (7.7), calculations have been made with only four terms of

each series, obtaining, e.g.:

Ci = 4371.46, exact value: a = 4372,

c2 = 96,255.92,        exact value: c2 = 96,256.
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II. The Fourier coefficients of the invariant j(3112; t)

and its relation to /(l; r)

9. Let J(31I2;t) be the invariant belonging to G(3112), with the properties:

J(31'2; P3) = 0,        J(31'2; i) = 1,        I(31'2; i«>) = *=,

where
-31'2 + i

P3 = —2-

As in §2, here we exploit the transformation equation of rank 3, (cf. [2,

vol. II, p. 385] or [3, vol. Ill, p. 395]). Such an equation is the result of

elimination of a between the three relations:

., N      33(<r+ l)f>+ l)3

JW = -'

(9.01)
,, ,       ./«\      3V+1)(V + 1)! ,

= JVT/ =-~-'     ff(7

where <t(o>) is a one-valued function of the transformation polygon P3, (cf.

[3, vol. Ill, pp. 297 ff. and pp. 390 ff.]). For our purpose we simply interpret

a(u) as a parameter. We obtain

j(u) +/(«) = 33(3V + 22-36/2 - 22-479/ - 26-59),
(9.02)

i(«)-J» =36(/+2)-(2-41 + 32/)3,

where / = <r+ff'. The functions

0(r) = /(^"r) + /(r/31'2), *(r) = /(3l'2x) -j(r/3^)

are invariant under the transformations

S(r) = T + 3"2, r(r) = -l/r,

<£(t) with a pole of order 3 in x, \p(r) with a pole of order 4 in x, x = e2xiTl* .

We infer that

A •P(31'2; r) + 5-/2(31/2; r) + C-I(31'2; r) + D = <Kr)

and

yF-/4(3"2; r) + £'-73(31'2; t) + C'-72(31'2; r) + P'-/(31'2; r) + P' = f(r).

Now, comparing these two last equations with equations (9.02), we infer

that:

al + ft
(9.03) /(3i/2;r)=-

7

But, from (9.01), when <r = <r' = l, t = 2,
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i(«) = 2<3353 = /(«) =i(co/3).

On the other hand, from the Classinvariant theory, (cf. Fricke, [3, vol. Ill,

p. 395]), we have:

j(i31'2) = 243353 =j(- l/i31'2) = j(i/3"2);

i.e. such value is assumed by j(co) only at points homologous to co = i31/2,

and if o) = 31/2t, this happens when r = i. However we have preassigned that

J(31/2; i) = l; hence, from (9.03) we obtain:

(9.031) (2a + 8)/5 = 1.

Similarly, when <t = <t' = — 1, t= — 2,

/(«)-/(») =0, by (9.01),

Again

I      /-31'2 + i\) /-l + i3l'2\

/p, \        /-31'2 + i\        ( 2-31'2 \

By the preassigned correspondence, J(3112; p3)=0, hence (9.03) supplies the

equation:

(9.032) (-2a + 8)/8 = 0.

Solving (9.031) and (9.032), we obtain B = 2a, b = 4a, i.e.

(9.033) /(31/2;r) = (t + 2)/4.

Either by substitution in (9.02) or by a process of differentiation, the con-

stants A, B, C, D and A', B', C, D', E' are readily calculated. By setting

j(3"*; r) = 2233/(3i'2; r),

we obtain the following equations, relatingj'(31/2; r) with j(3ll2r) and j(r/3112):

(9.04) j3(3»2; r) - 2-32-7j2(31'2; r) + 27-23i(31'2; r) = j&'h) +J(t/V'2),

(9.05) i(3"2;r){2«-3+i(3"2;r)}3 = j(3"'t)-j(t/31'*).

Using (9.04) or (9.05), the first few coefficients olj(3112; r) may be computed:

(9.06) 0'31/*;r) = x-1 + 2-3-7 + 33-29x+ 26-271x2+ • • • = f(x),

where x = exp (27TM-/31'2). Also from (9.04) and (9.05) we obtain a quadratic

equation in j(3112; r), whose coefficients involve {J(31/2t)+j(t/3112) } and

{j(31'2t)j(t/31'2)} linearly.

Although this group has been known for a long time, (cf. [5] and refer-
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ences there given), relations (9.04) and (9.05) are new. To the best of our

knowledge, they do not appear anywhere in the literature.

As shown by J. I. Hutchinson, [5], the substitutions of G(3112) form two

classes:

/    a        b31'2\

(I) V = (aw        d), 1-31,-1,

/a'31'2        b'   \
(II) V = ( ), 3a'd' - b'c' = 1,

W        d'P'2J

where a, b, c, d, a', b', c', d' are rational integers. We write:

f hh' -Y- 1 )
h'-31'2

A
V =

A31'2
-• -A

3

with AA' = — 1 (mod A), (A, A) = 1, when A = 0 (mod 3);

f 3AA*+n
A*31/2-

A
V =

.    A -A31'2

with 3AA*=-1 (mod A), (A, A) = l when A = l (mod 3) or A = 2 (mod 3). We
have

1   r  f(x)
a„ = - I     ->

2m J c  xn+1

where
oo

f(x) = x-1 + 53 anx" = j(31'2; r) ,
n-0

and C is the circle |a;| =e-2lrN-2^m.

The Farey arcs are taken around the point (A/A)31/2, and hence we pro-

ceed as in the case of G(2I/2). We obtain

2x   I"/3' A3,(n)      /4x«1'2\
an = —-   2-, -Ii [-)

M1'2   Zi       3v V   3v   /

2t     wr-win   A3,-i(vn)     / 4tt(3«)1'2\

(3m)1'2   ",       "17-1       \3(3e-l)/

2x     t<™3i 43p_2((l - »0»)     /4x(3w)1'2\

(3m)1'2      ~t 3*-2 1\3(3^-2)/

+ o(e2wnN~2'3l'2n1i3N-l'3+'),
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where w^l, Ak(m) being defined as in (7.7), whence a Theorem which sup-

plies the Fourier coefficients of/(31'2; r) by means of convergent series, by

letting N—> a>, n fixed.

10. In the class of groups G(Xa), with 1 ̂ X9 = 2 cos ir/q, described in §1,

G(l), G(21/2) and G(31/2) are the only groups whose arithmetical character is

known, i.e. we know the coefficients of the substitutions. Hence the Farey

dissection may be determined, and the Hardy-Littlewood method can be

applied to obtain the Fourier coefficients of the invariants.

In a long series of papers (cf. [6] and references there given), H. Petersson

has found other methods for the determination of the F. C. of certain classes

of automorphic forms. In ([6, p. 13]), Petersson announces his intentions to

extend these results to certain classes of automorphic functions. These meth-

ods presuppose, in general, the full knowledge of the group.

Although an important contribution toward the arithmetical character

of the groups G(X8) is due to D. Rosen [9] even for the next in order particu-

lar case of 2 = 5, Xs = (l+51/2)/2, we were not able to take advantage, to this

date, of such results, in order to determine the Group G(Xs) nor to devise the

proper Farey dissection.
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