
AUTOMORPHISMS OF THE GAUSSIAN
UNIMODULAR GROUP

BY

JOSEPH LANDIN AND IRVING REINER^)

1. Introduction. Let G be the ring of Gaussian integers, and Gn the group

of nXn unimodular matrices over G. Define Gt = {XEGn: det X = +1}, and

likewise define G~n, Gn, G^1. Let X'= transpose of X, X = conjugate of X,

Pn) = identity matrix in G„, 0 = null matrix of appropriate size, and 4+P

= direct sum of 4 and B. For X, YEGn, writeX~Fif X and Fare conjugate

in Gn. We assume throughout that «2j2. For a = unit in Gn and 4£G„_i de-

fine (a)~YrA to be the matrix B for which b„ = a, brj = bjr = 0 for jVr, and such

that the submatrix obtained by deleting the rth row and rth column from B

coincides with A. Thus (a)-\-xA coincides with the ordinary direct sum

(a) +4. We use [oi, • • • , an] to denote the diagonal matrix with diagonal

elements oi, • • • , an.

The generators of Gn are [l, p. 425]

0 ... o    (-1)""1

/l    1\   . 1 • •    0 0
(1.1)       T = I J + 7<"-2\   S = ,     P = (i) + /("-1>.

.0 • • • 1 0

For the case n — 2 we shall use T0, So, Po as symbols for the generators, where

So now denotes the matrix

(_: :>

In this paper we prove the following

Main Theorem. Let 2I„ be the automorphism group of Gn. Then 2l„ is gener-

ated by

1. X->AXA~\ AEGn;
2. X^>X'~l (may be omitted when n = 2);

3. X->X;
4. X—»(det X)kX, where k = l if n is even, and k = 2 if n is odd;

5. For w = 2 only, (P0, S0, T0)^>(Po, —S0, — T0).
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We may remark that 1., 2. and 3. are obviously automorphisms. We shall

prove later (Lemmas 3.2 and 3.3) that 4. and 5. are also automorphisms. For

w = 2, it is easily verified that 2. is expressible in terms of the other automor-

phisms in the list, hence may be omitted.

2. Involutions in G„. We begin by giving a canonical form for involutions

in G„ under conjugacy. Throughout this paper let £ denote 1+i, and set

(2.1) /._(-»   °),

(2.2) W(a, b,c,d) = (/, +   •••+/,) + (/{+••• + /{) + (-/)<«> + /W,

where a J/s and b /j's occur in (2.2).

Theorem 2.1. As (a, b, c, d) range over all non-negative integers for which

2a-\-2b-r-cJrd = n, the matrices W(a, b, c, d) give a full set of non-conjugate

involutions in G„.

Proof. The proof given in [2, pp. 336-337] can be used with a few modifi-

cations, due to the fact that G is a principal ideal ring. From the reasoning

there, it is easily established that for any involution XEGn, we have

/-/<»>      0 \
(2.3) Z~ )

V    T       I™J

where T is a diagonal matrix with entries 0, 1 or £. The right-hand side of

(2.3) is conjugate to some W(a, b, c, d), and it is not hard to verify that two

distinct W(aj, bj, c,, d/) (j=l, 2) cannot be conjugate in G„.

We may remark that p, q in (2.3) are the dimensions of the plus-space

X+, and the minus-space X~, respectively, of the involution X. Call X a (p, q)

involution in such case. We find at once that W(a, b, c, d) is an (a-\-b-\-d,

a+b+c) involution.

Our next step will be to characterize the + (1, n — 1) involutions in G„. Let

(S(-S') denote the centralizer in Gn of a set 5 of elements in Gn.

Lemma 2.1. Let XEGn be an involution and let

311= {M E &(X):M m X (mod 2)}.

Then the only involutions in (2(902) are +P"\ +X.

Proof. For fixed BEG„ we note that MEM implies BMB^E^BXB-1)

and BMB~1 = BXB~1 (mod 2), and conversely. Without loss of generality,

we may therefore take X in the form of the right-hand side of (2.3). In that

case, EpO consists of all elements KEGn given by

(2.4) A = ^    ^),        A EG,,,        DEGV,       C = (DT - TA)/2.
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Since A = —I (mod 4) and D = I (mod 4) imply C=T (mod 2) we see that

SSR contains all elements P satisfying

(2.5) A = - I (modi),        D = I (mod 4).

Now if F£S(9W), then Y commutes with all K satisfying (2.5). Set

Y=(r'     °V
\F2     Yj

In that case, Fi commutes with all 4£G9 for which 4 = —I (mod 4), and

Yi commutes with all DEGP for which D = I (mod 4). This shows at once

that Y\ = ul, Y% = v-I, u, v units. If, further, Y is to be an involution, it

follows that Yi=±I, Y,= ±I. Since F£g(9Jc) implies F£6(X), therefore

F2 = (F3P—PFi)/2, and F2 is uniquely determined by Fi and F3. Hence

£(9Ji) contains at most four involutions.

Theorem 2.2. The image of any (1, n — 1) involution in GH under any r£2I„

must be either a (1, n — l) or an (n — l, 1) involution.

Proof. The result is trivial for n = 2 and n = 3. Assume hereafter that n>3.

We shall characterize the + (1, n — l) involutions in G„ by intrinsic properties

using a method due to Mackey [5]; see also Rickart [7]. Letting <E2( ■ ■ • )

denote &(&( •■■)), define for an involution XEGn

(2.6) v(X) = Max (number of involutions in S2(Z, Xx)),

where Xi ranges over all involutions in &(X). Taking X to be a (p, q) involu-

tion we shall show that v(X) ^ 16 if Min (p, q)>\, while v(X) =8 if Min (p, q)

= 1; this will imply the theorem.

To begin with, note that v(X) depends only upon the conjugate class of

the involution X. We may therefore take X as the right-hand side of (2.3),

and then &(X) is given by all P satisfying (2.4). For Min (p, q)>l define
'-1 [     1

(2.7) Xi= I ,        W =

I) i P

where we have set P (occurring in (2.3)) = (/) + Pi- Then both Xi and W are

involutions in &(X). Since every KE^-(Xi) is of the form

a b

A, lh

K= /c a

Ci Pi.
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we see that the general element of (H(X, X/} is given by

a 0

Ai
(2.8) A= ,

c a

Ci Di.

where

(2.9) c = (d - a)t/2,       Ci = (DiTi - TiA/)/2.

But then the involution W defined above commutes with all such A, so that

£2(X, X/) contains the 16 distinct involutions ±XaX\Wc, (a, b, c = 0, 1), and

v(X) 2:16 for Min (p, q) > 1. (Indeed, v(X) = 16 for this case although we do

not need the stronger result here.)

We now show that v(X) =8 for p = 1. We may choose

(2.10) X = (~ ),

t=(t, 0, • ■ • , 0)'. Then Qi(X) consists of all elements

(2.11) K = (a        Y      aEGh      DEGn-u      C = (D - aI)t/2.

To compute v(X) we may assume that XiE&(X) is given by

(1    0\
(2.12) Xi = ( ),        u=(C/-/)t/2,

\u    UJ

where UEGn~\ is an involution. Then (&(X, Xi) consists of all A given by

(2.11) for which DE$(U). In particular, whenever P>G@(£/) and DmU

(mod 2) then (2.11), with o = l, defines an element of (&(X, Xi). If now

LE&2(X, Xi) is an involution, then L has the form

/a*     0   \
*-{?      D*}        c* = (D* - a*I)t*/2

and L commutes with every A for which a = l, DE&(U) and D= U (mod 2).

Then P>* commutes with all such D, whence by Lemma 2.1, D*= +1 or

± U. Certainly a*= ±1. Since a* and D* uniquely determine c* it follows

that S2(X, Xi) contains at most 8 involutions. Since +1, +X, +Xi, ±XXi

are all in S2(Z, X/) we have established that v(X)=8 if Min (p, q) = l.

Let us now set

La = /« + I(n~2), oc = 0, 1 or (.

Then every (1, n — 1) involution in Gn is conjugate to one of L0, Lx, L^, and
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hence any r£2In maps L0 onto ±ALaA~1 for some4£Gn, where a = 0, 1 or £.

Theorem 2.3. For t£2I„ there exists AEGn such that LJ= ±AL0A~X.

Proof. For «^3 we shall use the method of maximal sets of involutions

(see [6]). By a maximal set in G„ we mean an abelian group of 2" involutions in

G„. As in [6] we may at once establish the following results:

(i) The number of elements in any abelian group of involutions is ^2\

(ii) A maximal set contains precisely C„,p involutions of type (p, q).

(iii) Any maximal set may be obtained from a generating matrix M" (whose

columns are primitive vectors with components in G) by choosing any p

columns of M as basis for the plus-space W+ of an involution, and the re-

maining q columns as basis for W~. Each such choice defines a unique involu-

tion W, and this process gives rise to Cn,p involutions of type (p, q). If this

process is carried out for /> = 0, 1, •••,«, an abelian group of 2" involutions

is obtained. Furthermore, if each of the invariant factors of M is either 1, £

or 2, then each of the 2" involutions will lie in Gn. In this case we call M a

permissible generating matrix.

(iv) Two permissible generators Mi, M2 give rise to conjugate maximal

sets if and only if there exist 4, P£G„, where B is obtained from I by permut-

ing columns and multiplying them by units, such that M2 = AMiB. In such

case call Mi, M2 equivalent.

(v)  Every permissible generating matrix is equivalent to one of the form

"JW     A        B   ■

(2 A3) ¥«=   0       £/<">     C     ,

0 0       2/(').

where the columns of M are primitive, the elements of A are 0's and l's, those

of B are 0, 1 or |, and those of C are 0 or £.

Now define Mi by: s = l, / = 0, all entries in A are l's; M2 by: r = \, t = 0,

all entries in 4 are l's; M3 by: s = 0, t = l, all entries in B are l's; lf4 by:

r = l, 5 = 0, all entries in B are l's. The maximal sets generated by Mi and

Mt are nonconjugate (since w^3), and each contains n involutions which

are conjugate to Lj. The maximal sets generated by M3 and M\ are nonconju-

gate, and each contains n involutions conjugate to Li.

On the other hand, it is easy to show that any two maximal sets, each of

which contains n involutions conjugate to L0, must be conjugate. Hence for

w^3 the class of L0 is characterized by intrinsic properties, and the theorem

holds. We postpone until later the proof for n = 2.

3. General remarks. Before we turn to the question of determining all auto-

morphisms of Gn, it is desirable to state several lemmas.

Lemma 3.1. For any automorphism r of Gn, either detZv = det X for all

XEG„ or det XT = conjugate of det X for all X£G„.
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Proof. Let S<*> = P~kSPk, T™ =P~kTPk. Since every XEGn is expressible

as a power product of P, S and T we find that every X can be written as

x = Pmn(s, t, s<*\ r(i)),

and then det X = im. Exactly as in [2, Corollary 1 of Theorem l], we deduce

that det 5T = det PT = 1, whence also det (Sw)T = det (T(k))T = 1. Hence we

have
det XT = (det  PT)m.

But det PT= ±i, since if det Pr= +1, then GrnE(Gt\lGn), which is impossible.

Hence det XT= (±i)m, where det X = im, whence the result follows.

Lemma 3.2. For n even the mapping -X-—»(det X)X is an automorphism of

Gn. For n odd X—>(det X)2X is an automorphism of Gn.

Proof. Consider first the case where n is even. The mapping is clearly an

endomorphism of Gn. If Xr = I, then (det X)X = I whence X = ul, u

= (detX)_1. But then detX = wn, so un = u~1, whence u = l (because n is

even). Therefore r is one-to-one.

To show that t is onto, we observe that ST = S, TT=T; set Q= —iP lor

» = 0 (mod 4), and Q = iP for n = 2 (mod 4). In either case Qr = P, whence r

is onto.

A similar proof is valid for odd n.

Lemma 3.3. For n = 2,the mapping r defined by P„ = P0, STU = — S0, Tr0 = — T0

is an automorphism of G2.

Proof. To begin with, we must show that r induces a well-defined mapping

of G2 into itself. This will be so if we can show that if a power product

II (Po, So, To) =1 in G2 then the total number of factors of So and Po is even.

Letting £ = 1 +i as usual, we remark that since

Po = / (mod Q, II (Po, So, Po) = /
implies

(3.1) H(S0, To) =• / (mod £).

However, there are only 6 elements in G2 mod £, represented by /, S0, To,

S0To, ToSo, SoToSo, since Sl = T^ = I (mod £). Any power product H(So, Pn)

can be brought into one of these 6 forms by repeated use of Sl= Tq = (50Po):!

= 1 (mod £). Hence in the left-hand side of (3.1), the total number of S0's and

Po's must be even.

Now that r has been shown to be well-defined we see at once that r is

onto. Further r2 = l implies r is one-to-one, whence r is indeed an automor-

phism of G2.

4. Generators of %2. We shall obtain here the generators of ?(2, the auto-

morphism group of G2. As before, define
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Our previous discussion shows that +1 and Ja, a = 0, 1, £ constitute a full

set of nonconjugate involutions in G2.

Lemma 4.1. For any r£2I2, there exists an AEG2 such that J[ = AJiA~1.

Proof. By Theorem 2.2, to within an inner automorphism we have

J[= +Ja, a = 0, 1 or £. However, the centralizer E(Pi) contains 8 elements,

whereas (5(P*) contains 16 elements for a = 0 or f. This completes the proof

since —J\ is conjugate to J\.

Theorem 4.1. 2I2 is generated by the automorphisms

1. X-*AXA~\
2. X->X'~\
3. X-*X,
4. X^(detX)X,

5. (Po, So, To)—>(Pq, —So, —To).

Proof. Let t£212; changing r by an inner automorphism if necessary, we

may assume hereafter that J\ = Ji. Let K = S0Jo, then

(4.1)        K = Q    *),     ̂ P = (_j    J),      (KJiY=-I,     K2 = I.

Let us put

-c :>
Using the fact J\ = J\, (4.1) implies that

-a + b + d = 1,       b(a + d) = c(a + d) = 0,       a2 + be = d2 + be = 1.

These imply that d= —a, 6 = 2a+l, and

a2 + (2a + l)c = 1,

that is

4(a + c)2 - (2c - l)2 = 3.

There are only 4 solutions in Gaussian integers of this equation, and therefore

KT has only 4 possible expressions given by P, Pi, P2, P3 where

*'-G-i> '-("I'D- ̂(ID-
A further inner automorphism by a factor of /1 leaves /I unaltered, but takes
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A2 into A, and A3 into K\. We may therefore assume from now on that

J\ = Jx and either KT = A or AT = Ai. In the latter case, replace r by the auto-

morphism

X -> (V-xX*V)'-\    where    V = ( V

This new automorphism leaves Ji and A invariant. Hence in all cases, after

changing r by automorphisms chosen from the list in Theorem 4.1, we may

assume that J{ = Ji and KT = K.

Lemma 4.2. i/rGSk is such that J\ = Ji and KT = K, then Jr0= ±JQ.

Proof. We have J0K=-KJ0, J\ = I. Setting

'-£:)

we have d= —a, c= —b, a2 — b2=l. Solving this last equation in Gaussian

integers, we find that there are only 4 possibilities for JI, namely ±Jo or

± iSo.

Suppose now that Jo— +iS0. Since Jo = Pl, setting

*-c :)•
we obtain

/ a2 + be     b(a + d)\ /0   -i\

\c(a + d)     d2 + bc) ~   ~ \i      0/

Hence a-\-d is a unit. On the other hand,

a2 + d2 =  - 2bc, (a + d)2 = 2(ad - be),

so (a-\-d)2 is a nonunit. This is a contradiction, whence Jo must be +Jo-

We have now shown that by changing the given r by automorphisms in

the list, we can assume that

T T T

Jo = i Jo,        Ji = Ju        A   = A.

Case I. Jg = J0. Then 50 = A/0 implies 51 = So, and T0 = KJ0JiK implies

Po = Po- From Po = Jo, setting

we have
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a2 + be = - 1,        d2 + be = 1,        i(o + <f) = c(a + <2) = 0.

These imply that b = c = 0, and a = + i, d = ± 1. Hence PTQ = + P0 or + P0. In

the latter case, changing r by X—*X, we may assume Po= +Po- This new t

is the automorphism X—>(det X)mX where m =4 or 2, and hence is a product

of automorphisms on the list.

Case 11. Jra = — J0. As above, we find that So = — S0, TT0 = — P0, Po = ± 2P0

or ±iPo. In the latter case, change t by X—>X to obtain

t t r

So = — So, To = — To,        Po = i iPo.

This automorphism is an obvious product of automorphisms on the list.

This completes the proof of Theorem 4.1. We may remark that P~—>P/_1

can be omitted from the list, since it can be expressed as a product of the

other automorphisms on the list. Further, Theorem 4.1 implies Theorem 2.3

ior the case n = 2.

5. Generators of 2(3. In this section we prove the main theorem for the

'•ase n = 3.

Step 1. Let Dj be obtained from 7(3) by changing thejth diagonal element

to —1. Given any automorphism r£2l3, we may assume by Theorem 2.3

Rafter changing r by an inner automorphism) that D\= ±Pi. In that case r

maps E(Pi) onto itself, that is,

c:h::)
where a is a unit in G, 4£G2. By Lemma 3.1 r: G£-^>Gt so that t: S(Pi)^G3+

—>@(Z>i)nG3+. For each AEG2 choose a to be a unit for which o+^4£G3+.

Then b and B in (5.1) are uniquely determined by 4. Set

(a   0V      (\(A)    0\
(5.2) )   =( ),     where    o-det A = 1, A £ G2.

\o a;     V 0    A")

Then X: G2—>Gi is a homomorphism, as is a: G2—>G2. Since X(4) det A" = l we

see that if A' = I then X(4) = 1, and so A = I. Hence <r is one-to-one, and from

this we see that a is an automorphism of G2. Consequently det A" = det 4

always or conjugate of det 4 always, whence X(^4)=a always or a always.

Therefore \(A) = 1 for A £G2+ and X(4) = -1 for A EGt.

Using the results of the preceding section, we deduce that there exists a

YEG2 such that

A" = (det A)mYA*Y~1

ior all AEG2 where 4* is obtained from 4 by applying neither, or one, or

both of automorphisms 3., 5. (§4). If we change r by an inner automorphism

with a factor of 1+ Y~\ we may then assume that A" = (det A)mA*, and that

D\=±Di is still valid.
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Let us apply the above results to evaluate D],j = 2, 3. We have

(-1     0     oy
/\(A)      0\

(zw=     o-i    o   =(Q     J,
0      0      1.

where A = ( —1) + (1). Then \(A) = —1 by the above remarks since AEG2~.

Further, A = Po, so A*=A for any choice of *. Therefore A" = ±A, whence

(DiD2)T = DiD2 or DiD3. The latter case is reduced to the former by changing

r by an inner automorphism with factor (1)+A where A is given in (4.1).

Therefore we obtain D\= +Di, DT2= + D2. Since ( — I)r= —I we also have

Dl= +D3. Thus, starting with any tG2I3 and changing r by inner automor-

phisms, we arrive at a new r for which D]= ±D,,j = l, 2, 3.

Step 2. Now let rG2l3 satisfy Drr= ±Dr, where r = l, 2, 3. By the preceding

discussion we may set

(5.3) ((a) +'A)* = (\T(A) +'A''),

where AEG2 is arbitrary, a is a unit such that a-det /I =1, Xr: G2—>>G\ is a

homomorphism such that either \r(A) =a for all AEG2 or Xr(^4) =a for all

AEGi, and ovG^U is expressible as

(5.4) A"r = (det AY'YrA"'Yv\ for all A E G2,

where FrGG^, and Aar is obtained by applying to A neither, or one, or both

of automorphisms 3. and 5. (§4).

Now we evaluate ((—l)+.4)r where A =( —1) + (1). By the above this

yields

YiA Yr1 =  + A

whence Y\ is either diagonal or anti-diagonal, that is

/«   0\ /0    u\
Yi = [ )    or     Yi =

VO    v) \v    0/

u and v units. A similar argument shows that each YT is either diagonal or

anti-diagonal.

Case I. Suppose to begin with that at least one Yr is diagonal; without

loss of generality we may assume that Y\ is diagonal. After an inner auto-

morphism with factor (l)-i-Fi"1 we may assume that Y\ = I in (5.4); Y2 and

Y% will now be different, but DTr= +Dr is still valid. We may again deduce

that F3 is either diagonal or anti-diagonal.

Case 1(a). Suppose Y3 is diagonal, say Ys= [u, v]. Then changing t by

an inner automorphism with factor [u~l, v^1, vl] we still have Yi = I,

D'r= +Dr, and now also F3 = P Therefore
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f = (To + (1))' = T? + (1),

where now T^= + T0; the minus sign occurs if and only if automorphism

5. (§4) is one of the factors of u3. We show next that PJ3 = — P0 is impossible.

For, if 7>= -P0 + (l), then (S0 + (1))T= -S„+(l). Set

0    1    0

(5.5) U= ((l)+S0)-(So+(l)) =001.

.1    0    0.

Then UT= ((1) + (±S0))( — S0 + (l)) = Pi or U2, according to the sign, where

0 -10] [0 -1      0'

Pi=0     0-1,         P2=       0     0      1.

1 0     oj l-l      0     0,

Set Z=TU2; then

(5.6) P = To' + (1) = (UZ-i)2UZ2

and Po' =So_1PoS0. Therefore (Po')U3= — P0'. Applying r to both sides of (5.6),

and using Ur= U\ or P2 we obtain a contradiction. Hence P"3 = — Po cannot

occur.

We may now assume that both P and S0 + (l) are invariant under r. In

that case, again defining U by (5.5), UT has the two possible values U, U3,

where U3 = D3UD3. But S = U2 so that either Sr = S or S* = D3SD3.

In order to find Pr, we observe that

V = P-iPviP = [1, -i, i] = (1) + Vi

where Fi= [-i, »]; hence V= (1) + F"1. But F1 = P?S0-1PoS0, whence F[' = Fi

or Fi. Using the fact that (U)T = + ii we obtain PT = + P or + P. In the latter

case, change r by the automorphism 3. to get Pr= +P. If PT= —P change r

by the automorphism 4. to get PT = P. Hence after changing t by automor-

phisms on the list, we may assume PT= P, Sr = D3SD3, PT = P. But then r is

just an inner automorphism by a factor of D3, and therefore is on our list.

This completes the proof for the present case.

Case 1(b). Suppose next that Y3 is anti-diagonal, say

/0   u\

r"{,  o>

After changing r by an inner automorphism with factor \u~l, —v~l, — z>_1],

we may assume that FX = PP^= +Prand F3 = S0. Then PT= +S0"1PoS0+(l);

the same type of argument as above shows that the minus sign is impossible.

Hence 7> = So-1PoS0 + (l) = r'-1, and we find again that either Ur=U or

£P= U3, whence ST = S or ST = D3SD3-1. Furthermore, we obtain PT=+P or
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+ P as before, and changing r by 3. and 4. as needed, we get PT = P. Now

change r by 2. Since S = S'~l, P = P'-1 we find that Tr=T, S* = S or D3SD3,

PT = P which is clearly a product of automorphisms on the list. We have com-

pleted the proof for this case.

Case II. Suppose that in (5.4) each Yr is anti-diagonal. After an inner

automorphism by a suitably chosen diagonal matrix, we may assume that

Yi= Yz = So- We then find that Pr=(±Po'_1) + (l), and the same reasoning

as before shows that the minus sign cannot occur. Thence we obtain (S0 + (l))r

= So + (l), and Sr = S or D3SDS. In the latter case, an inner automorphism by

a factor of D3 gives a new r with TT = P'_1, ST = S. Changing this r by X^X'~l

we arrive at an automorphism r which leaves U, S and T invariant. The same

reasoning as in Case 1(a) shows that PT= +P or +P, and the remainder of

the proof is as before.

6. Generators of Sl„. We are now ready to prove the main theorem by in-

duction on n.

We suppose w=5 4, and that the result holds for M — l. Let D, be the di-

agonal matrix [l, - - - , 1, —1, 1, • - - , l] with —1 occurring in the/th posi-

tion. By Theorem 2.3, given any tG2L, we may change r by an inner auto-

morphism so as to achieve D[= +Du Therefore r maps S(Z?i)P\G^ onto it-

self. Hence if A EGj»-i and a ■ det A = l, we have

\0  A/   '~ V    0        A'i)

where Xi: Gn-i—>G\ is a homomorphism and <ri is an automorphism of Gn-\.

As before, \\(a)=a always or a always. Using the induction hypothesis, we

may write

4" = (det A^YiA^Yt1, Yi E G»_i,

where «i is a product of automorphisms chosen from 2. or 3. After an inner

automorphism with factor (l)-i-Fr1, we may take Yi = I. Now DXD2

= [— 1, — 1, 1, • • • , 1 ]; by computing (DxD2y we find that D[ = ±D2. Like-

wise DTT = +Dr, l^r^.n. We may therefore write

(6.1) ((a) +r AY = XPG4) +r (det A)^YrA^Yr\

where AEG„^i is arbitrary, a-det A =1, Xr: Gn-i—*Gi is a homomorphism

such that either Xr(^4) =a always or a always, where FrGd-i, and cor is a

product of some (of none) of the automorphisms 2., 3. (Further, we have

already seen that we may choose Y\ = I.)

Now let ZEGn^2; since (F2)+Z)E&(Di)rM$.(D2) we can compute

(Z(2)+Z)T in two ways. This gives

Vo z) Vo  zj
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for some Zi£G„_2. Since such a relation holds for all ZEGn-i, it follows that

Yi= (yi) + Y. By a similar argument we see that Yi, and indeed each Fr, must

be diagonal, and that all Fr are sections of a single diagonal matrix D.

Following r with an inner automorphism with factor P_1, we see that we

may assume each Yr = I. The same type of argument shows that the various

mT are all the same, and that all the cor coincide. Hence we have

Xr = X"

for all decomposable XEGnh, where co is the common automorphism wi

= w2= • • -, i.e., wis a product of automorphisms chosen from 2. or 3. Changing

t by the automorphisms 2., 3. as needed we may thus assume that XT = X

for all decomposable XEGt • For w^4, these decomposable matrices generate

G+, and so X* = X for all X£G,J".

We now determine the effect of r on G„ and G„l. Let Y, ZEGZ where Z

is fixed. Then

Y*ZT = (Yzy

implies

Y* = YB

for all YEG„ , where B is independent of F. Using (F2)r= (YT)2, we obtain

BYB = F

for all F£G,7. This implies that B = ±1 or ±»'J. However, B= +il is impos-

sible, and therefore B = +1, whence

YT = ± F

for all F£G^. If w is odd, r: G~-^G~ shows that only the plus sign can hold.

If n is even, then changing r by the automorphism X—>(det X)X, if neces-

sary, we may assume that XT = X ior all X£G^WG„".

The same argument as above shows that FT= + F for all YEG^ . If the

plus sign occurs, t is the identity; if the minus sign occurs, then t is simply

the automorphism XT= (det X)2X. This concludes the proof of the Main

Theorem.

Another approach to the proof of the Main Theorem, which is less com-

putational than that given here, is contained in references [3] and [4].
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