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This paper consists of three separate parts(') which are related mainly in

that they treat different stochastic processes which arise in the study of plane

brownian motion. §1 is concerned with the process R(t) = \Z(t)\, denoting

the distance of the 2-dimensional separable Bachelier-Wiener process Z(t)

= X(t)+iY(t) from the origin. We shall derive a law of the so-called strong

type concerning the frequency of small values of R(t). This theorem dis-

proves a conjecture of Paul Levy. In the next section we study the process

6(t) =arg Z(t). Results are obtained concerning the transition probabilities

and absorption probabilities of 6(t). The limiting distribution of (2"""1 log /)-10(O

is found to be the Cauchy distribution. This problem has also been considered

by P. Levy, who showed that the distribution of 8(t) must have infinite vari-

ance. The two-sided absorption time is shown to be a random variable which

has a finite wth moment if and only if the wedge which constitutes the absorb-

ing barrier has an interior angle ft<ir/2n. In §3 we point out how plane brown-

ian motion can be used to represent the Cauchy process. A theorem on

brownian motion due to P. Levy is then used to gain information about the

Cauchy process C(t). If -KC(0)=x<l the probability that C(t)^l before

C(t) g — 1 is found to be 1/2+tt-1 sin"1 x.

1. In his recent book on brownian motion [4, pp. 59-60] P. Levy quotes

a result of Dvoretzky and Erdos [3, Theorem 5] concerning brownian motion

in «2:3 dimensions. He goes on to point out that the analogue of their theo-

rem for the plane could be found if one had an asymptotic estimate for the

probability

H(h, h;r) = Pr     min   R(t) < r | P(0) = 0   , as r -* 0.
L hitztz J

We shall find such an estimate and call it

Lemma 1.

Received by the editors September 8, 1956.

(') The results of §1 and part of §2 are taken from the author's 1953 Ph.D. dissertation,

and were presented to the Mathematical Society in Abstracts 247 and 248, December 1952.

The result of §1 was also obtained independently in 1954 by P. Erdos, A. Dvoretzky, and

S. Kakutani, who kindly urged the author to publish it.
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log h — log li
H(tuh;r)-Z--JL1 (r_>0).

log r~2

Using this lemma, we can prove that the correct analogue of the result of

Dvoretzky and Erdos is

Theorem 1. For every positive nonincreasing g(t), R(t)^g(t)t112 for all

sufficiently large t with probability one or zero, according as the series

E"-i [^1 '°g g(k)\ ]_1 converges or diverges. R(0) is arbitrary.

P. Levy's conjecture that, for every e>0, Jfv(/)>/_eforall sufficiently large

t with probability one, is therefore false. t~* does not decrease rapidly enough

but for instance t~log * does.

Levy also points out in this context that, if R(0) =0, the invariance of the

process t~ll2R(t) under the transformation t-+t~l transforms results of the type

discussed into interesting local theorems. By this device, Theorem 1 produces

the

Corollary. For positive, nonincreasing g(t), and R(0) =0, R(t) ^tll2g(l/t)

for all sufficiently small positive values of t with probability zero or one according

as the series in Theorem 1 converges or diverges.

To arrive at Lemma 1 we make the definitions

F(r, I; R) = Pr [R(t) < r\ R(0) = R],

G(r, I; R) = Pr f min R(r) <r\ R(0) = R\ if R ^ r,

= 1 if R ^ r.

F(r,\;R)=  f  tr*'F(r, t; R)dt,
J 0

G(r,\;R) =   \    e~uG(r, t; R)dt.
Jo

It will not be necessary to compute the probabilities F and G explicitly.

F(r, t; R) satisfies the backward diffusion equation

dF      d2F      1   dF
(1.1) 2—=-+-

dt      dR2     R  dR

Since F(r, t; R)—>0 as I—>0, it follows that

d2F      1   dF
(1.2) -1-2\F = 0.

dR2      R   dR

The general solution of (1.2) is
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^7o((2X)'/2P) + BK0((2\y'2R),

where A, B may depend on X and on r, and P(z), Po(z) are Bessel functions in

standard notation. As P—>°o, only Po is regular so that

F(r, X; P) = B(\, r)K0((2\y2R).

Next we make use of the continuity of the sample functions and of the

Markovian nature of the process R(t) to write down the following renewal-

type integral equation

(1.3) F(r, t;R) =   f F(r, t - s;r)dsG(r, s; R), r g P.
J o

It follows by taking the Laplace transform that for r^R

.. - 1   F(r, X; P)        1   Po((2X)"2P)
(1.4) G(r, X; P) =-^—'-=-•

X    F(r,\;r)        X    P0((2X)1/2r)

But, as z—>0, P0(z) = —log z + C log 2+o(| z|), so that

(1.5) lim logf—)G(r, X; P) = — Po((2X)1'2; P).
r—o        \ r / X

Now it can be verified by studying the inversion integrals of the Laplace

transforms in (1.4) and (1.5), that

/ 1 \ rx    e~x
(1.6) limlogl — )G(r, t; R) = -dx.

r^O \ r / J /(2/2(   2x

Lemma 1 now follows, since

G(r,ti - ti,p)dF(p,h;Q).
0

We find

/ 1 \ 1   r *> ( p2 \       /• - e~x 1 t2
lim log I — ) H(li, l2;r)= — I    p exp I-) dp ( -— dx = — log — •
r^o       \r/ h Jo \2/i/      JP2/2(t2~to   2x 2 h

The proof of Theorem 1 follows closely that given in [2] by Dvoretzky

and Erdos for the case w=^3. There is no loss in assuming P(0)=0. since

plane brownian motion is a recurrent process. We first assume that the series

in Theorem 1 converges and define the events

An = R(t) < 2"'2g(2n~1) ior some 2""1 ^ I g 2", n = 1, 2, • • • ,

A = lim sup An.
n—»oo

It is seen that
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1 - Pr [R(t) 2: tll2g(t) for all sufficiently large /]

= Pr [R(t) < tll2g(t) for arbitrarily large t] ^ Pr [A].

It is well known that F(r, t; R) and G(r, t; R) can be expressed as functions

of the variables t~1,2r and t~ll2R. Hence

(1.8) H(tu hi r) = H(c%, c%; cr), c > 0.

Equation (1.8) and Lemma 1 imply

Pr [An] = H(l, 2; 2^(2-1)) = - r^^^o (1 + *»)•    lim «» = 0.
2 log [21'2g(2n !)J »->»

Our assumption about g(t) shows that E"-i Pr [An] converges, so that

Pr [^4]=0, and by (1.7) the event of Theorem 1 is certain.

To prove the second part of Theorem 1 we assume that g(t) has the prop-

erty that the series diverges. Since log g(2n) is a monotone function of n,

there exists an increasing sequence \nk) of integers with the property that,

as k—>a>

(1.9) nk+i - nk —> =o,       E  | log g(2nk) \~l = E W | log g(nk) | ]_1 = °o.

Now the events Bk and B are defined as

Bk = 2?(0 < 2"*'2g(2"*+1) for some 2»* ^ I ^ 2"*+1,

5 = lim sup Bk,
k—*M

so that

(1.10) Pr [i?(/) < /!/2g(0 for arbitrarily large t] 2t Pr [B].

By the method used above, it follows from equation (1.8) and (1.9) that

CO

EPr [Bk] = ».
i

If the events Bk were independent we would have Pr [B] = 1 by the Borel-

Contelli Lemma, so that (1.10) would show that the probability in Theorem 1

is zero. We can in fact conclude that Pr [J3] = l, because the choice of the

sequence nk has made the events Bk almost independent. Rather than giving

a detailed proof we refer to the extension of the Borel-Contelli lemma of

Chung and Erdos [l], the conditions of which can be verified to hold for the

sequence of events Bk.

2. Now we define the process 6r(I), the angular part of the plane brownian

motion. The subscript i? denotes the radial initial condition, i.e. | X(0) +i'F(0) |

= R>0. 6it(t) is then the winding number of the continuous path Z(r)

= X(r)+iY(T), O^r^t, about the origin. Or, in other words, one may im-

agine the original brownian motion to take place on the Riemann surface of
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log z, so that 9r(1) = Im log [Z(£)]- The initial condition 8r(0) is left unspeci-

fied for the moment. It is clear that 6r(() will be a continuous function of t

with probability one (the probability is zero that Z(t) =0 in any /-interval).

However a little intuition shows that 6r(1), unlike R(t), is not a Markov proc-

ess. Nevertheless some interesting questions can be answered concerning

this process. It was first considered by P. Levy [3, p. 252] who deduced that

the distribution of 0R(t) must have infinite variance from the fact that 0R(t)

tends to assume very large values, when R(t) is small. We return to this

problem after studying the absorption problem which, in a way, is more gen-

eral.

Let 0R(0) =a>0, and ft>a, and let

T = TR,a,» = infr [t I 6b(t) ^ 0,    or   6r(t) £ ft].

Then u(R, a, t) = Pr [P>*]=Pr [0<6R(T)<ft, for all 0^rg.t]. This absorp-

tion distribution satisfies the diffusion equation in polar coordinates as its

backward equation, and since the process Z(t) is recurrent, it is determined

by the boundary and initial value problem

du      d2u       1    du        1   d2u
(2.1) 2 — =-1-1-, R> 0,t> 0,0 <a<ft,

dt      dR2      R   dR      R2 da2

u(R, a, 0) = 1,        u(R, 0, t) = u(R, ft, t) = 0.

This problem has been solved by many authors, but we prefer to use a new

method which gives the solution in an elegant form. Let

(2.2) v(s, a,t) = ( — \      I    u(r, a, *)e_r!/2'a>, s > 0.

One verifies, through integration by parts, that v is the solution of the problem

d2v d2v dv d2v dv
(2.3) -Y is2-Y 4s-4s2-2s — = 0,

da2 ds2 ds dsdt dt

v(s, a, 0) = 1,       v(s, 0, t)  = v(s, ft, t) = 0.

It remains to use the invariance of u under transformations of the state space

leaving Rt~112 invariant, as was done for the function H(ti, t2; r) in the last

section. Hence u is a function of a and Rt~112, and v is a function of a and

ts~l. Now let

(2.4) t1'2 = s1'2 sinh y,        v(s, a, t) = w(a, y).

By this change of variable (2.3) now reduces to the simple Dirichlet problem

d2w      d2w
(2.5) 7T+,-^ = 0- y>0,0<a<ft,

da*      ay'

w(a, 0) = 1,        w(0, y) = w(ft, 0) = 0.
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The solution is

2 r      air   I y7r~|
(2.6) w(a, y) = — tan-1    sin—  / sinh—   ,

7r L       8 I 8-1

and the distribution of TriCC^ can be obtained through inversion of the integral

transform in (2.2).

If 8 = ir, then it is known that Tr,a,T is a positive stable random variable

of index one-half, since it is the time before absorption in a half-plane. There-

fore it has an infinite first moment. On the other hand, the time of absorption

in a strip has also been studied. It is the same random variable as the absorp-

tion time for an interval in one-dimensional brownian motion and has mo-

ments of all orders. (This distribution is contained as a special case in the

present model, from which it can be obtained by letting 8—-K), and R—»=o

so that R sin 8 = const.) The time to absorption in a wedge is now found to

have the interesting behavior that the existence of moments depends on the

angle of the wedge.

Theorem 2. For 52:0, (TR,„^y has finite expected value if and only if

288 <ir. This criterion is independent of the initial position R>0 and of a with

0<a<8.

Proof. In the terminology of Markov processes all states inside the wedge

communicate. Hence the moment of order 8 is either finite or infinite, inde-

pendent of R and of a. For simplicity we therefore set a = 8/2, and equations

(2.2) and (2.4) imply that

E[TR,fi,2,p] = —  I    tdtulR,—, IJ

is finite or infinite according as the integral

converges or diverges. Making use of (2.6), the criterion of Theorem 2 is read-

ily verified.

Next we let B—+x to obtain one-sided absorption probabilities. Because

of the evident symmetry of the process dii(t) about 0/j(O)=O, we can write

uo(R, a, t) = lim u(R, a, t) = Pr    min 6,<(t) > 0 | 0„(O) = a

(2-7)

= Pr    max 0,,(r) < a | 0,,(O) = 0   .
JirS| J

Since
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2 a
lim u(a, y) = — tan x —,
0->oo t y

we have from (2.2) and (2.4)

/2\1'2 f"                     .              2                                   a
(2.8)      — ) u0(r, a, t)e~r '2sdr = — tan"1-■- •
V    '   W   Jo tt \og[(l+ t/sy>2+(t/sy'2]

Before inverting the integral transform in (2.8) we prove a lemma which

shows how to obtain the transition probabilities of the process #«(/).

Lemma 2. The transition probability Pr(c(, t) = Pr [#«(/) <{x\6r(0) =0]

= l/2+M0(P, a, t)/2,for a^O. For a^O it is defined by the requirement that

6n(t) be a symmetric random variable.

Proof. We make use of the continuity of the sample functions 0r(1) as

well as the above mentioned symmetry of Or(I). The argument used is nothing

but the well known reflection principle, and it is interesting to note that it

goes through for a process which is not Markovian.

Let A be the event that max0<r<f Qr(t) >a, and B the event that #«(/) >a,

both subject to the initial condition 6r(0) = 0. 12 is the space of all sample func-

tions. Symmetry and continuity together imply Pr [P|^4] = Pr [12 —P|^l].

Hence Pr [BC\A] = Pr [(U-B)C\A]. But BC.A, so that Pr [P] = Pr [A-B]
= Pr [A-B], or Pr [12-5] = 1/2 + Pr [Q-A]/2. But that is the content of

the lemma.

From the above Lemma and from equation (2.8) we obtain

/ 2\1'2  /•» 1        1 f a 1
( — ) PR(a,t)e-Ri2°dR = — + — tan-1   -,-.-   .
W     Jo 2       it llog((l + t/sy2+(t/sy'2)J

If the characteristic function of 8r(() is

4>(\, t; R) = E[e»«*«> | 8R(0) = 0] =   I    e*adPB(a, t),
J -oo

it follows that

C* <p(\,t;(2xy2) /^\1/2r
<2-9> ,*\u,     c-^dx = (-)   [(tp+iyn-t1'2^'2]^.

Jo (2x)1/2 \2p/

It is not difficult to verify that the (unique) inversion of the Laplace trans-

form in (2.9) gives

/tY'YJFV"   .  r /R2\ /P2M
(2.10)       4>(\l;P) = (j)    (jj    e-^/(|X|-i)/2(^-J + /(|xi+i,/2^jJ,

where P(z) is the modified Bessel function of the first kind of order.
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Finally, (2.10) enables us to find the normalized limiting distribution of

6R(t). Let

X
8 = R(8ty1'2,       n =-, X > 0.

log 8

lim</,(,     ,o,™' l'R) = lim T1/25e-2i2[/(M-i)/2(252) + /CM+1)/2(252)]
<->»    \log (8t/Ri) /      5-.o

<»    r g4n+/i—1 g4n+ji+l "1

= lim ^28e-2i2 E   -+-•
«-o n=oL«!r(« + u/2+ 1/2)      w!r(» + M/2 + 3/2)J

Only the first term of the first series contributes to the limit, which becomes

irl'2e-2l28» ( 2X \

lim-= e~x = lim <b (-> t; R ).
s^o r(l/2 + n/2) i—    Vlog t J

Due to the continuity theorem for characteristic functions, we have indeed

proved

Theorem 3. i/0K(O) =0, then the characteristic function of 8r(I) is given by

equation (2.10), and

r a       "1      1   ra     dx
limPr \dR(t) <— log/    =— —— •
«-.»     L 2        J      t^-ooI + x2

The limit theorem could have been obtained with little effort directly from

Equation (2.8) and from Lemma 2, or alternatively, directly from Equation

(2.9).
3. The Cauchy process C(t) is defined as the separable process with sta-

tionary independent increments, whose distribution is given by

(3.1) Pr [C(l + s) - C(s)< x] = -J      —— •
T   J -x   t2 +  $?

This process has a very simple representation in terms of our 2-dimensional

brownian motion X(t)-yiY(t). We assume throughout that X(Q)=x0,

F(0) =0, and define for y 2:0 the random variable

T(y) = min [l\ Y(t) 2i y].

We shall leave aside the measure theoretical justification which should ac-

company each such definition. (Since Y(t) is separable, a proof that T(y) is a

random variable is obtained by representing the set [T(y) <r] as a countable

union of simpler measurable subsets of the space of sample functions Z(t).)

Now the Cauchy process is represented by Z(t), i.e., the sets [C(yk) ^ak,

k = l, ■ ■ ■ , m] are in the Borel field of sets generated by [X(tk) ^ak, Y(tk)

SBk, k = 1, • ■ • , m], by virtue of
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Lemma 3.

C(y) = X[T(y)], if C(0) = Z(0).

Proof. X[7"(y)] is the x-coordinate of Z(t) at the first time when Im Z(t)

= y. Hence the fact that increments X[T(y-\-r])]— X[T(rj)] are independent

and stationary (their distribution is independent of n). Equation (3.1) fol-

lows from

Pr [T(y) ^ s] = 2 Pr [Y(s) >*] = ( — )      |       e'^^dx.
\7t/ Jy,.W

Hence

(* CO

Pr \X(T(y)) ^ x] =   I    Pr [X(s) g, x\ X(0) = x0]ds Pr [T(y) ^ s]
Jo

y r™>    y    ,,
7rJ_M    e + y2

The separability of C(y) follows from that of Z(t).

To exhibit the advantage of this representation we pose the simple but

not trivial problem of computing the probability P(x0) that the Cauchy

process C(t), with — KC(0)=x0<l enters the region x2:l before entering

x^ — 1. That the corresponding problem for 1-dimensional brownian motion

has the solution (l+Xo)/2 is an immediate consequence of the symmetry and

continuity of the process. The answer to the present problem should be differ-

ent due to the discontinuities of the sample functions C(t).

We define a new process

M(t) =   max   Y(t),        Y(0) = 0.
OS'S!

Now we have a picture, albeit not a simple one, of P(x0) as the probability

of a certain set of paths of Z(t) with Z(0) =x0-P(x0) is the probability that,

if we observe X(t) only at the instants r when M(t) — Y(t) =0, the event

X(t) 2: 1 should occur before the event X(t) ^ — 1. This picture is rendered

simple by a theorem of P. Levy [3, Theorem 49.1]:

"If Y(0) =0, then M(t) — Y(t) is the same stochastic process as | Y(t) \."

A proof based on Doob's theory of separability would be similar to that of

Lemma 3. It is necessary to show that each process is Markovian, that both

processes have the same one-step transition probabilities, and that both are

separable.

Since X(t) and Y(t) are independent processes, we can replace M(t) — Y(t)

by I Y(t)\ in the above description of P(x0). Let E2 be the complex plane, A

and B its subsets
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A = [x ^ 1; y = 0],       B = [x g - 1; y = 0].

Let

u(x, y) = Pr [Z(t) E A   before Z(t) E B \ Z(0) = x + iy],

with x+iyEE2— ^4UP. Then P(x0)=m(x0, 0). But it is well known that

u(x, y) is the solution of the Dirichlet problem

d2u      d2u
(3.2) -H-= 0,       x + iyEE2- A\J B,

dx2       dy2

u(x, y) — 1 for x + iy E A,

u(x, y) = 0 for x + iy E B.

The solution is

1 2 Im (u>)
u(x, y) — — tan-1-•->

it ww — 1

1 + w2
x + iy =-j        Im w > 0,

1 — w2

so that

2 (1 + xV'2       1        1
(3.3) P(x) = — tan-1 ( —-)     = —-]-sin"1 x.

t \1 - x) 2        x

This is

Theorem 4. The Cauchy process starting at xE( — 1, 1) is absorbed on the

right with probability l/2+sin_1x/ir.

It is possible to do more. By changing the boundary condition in (3.2) to

u(x, y) = l ior x+iy in a measurable subset 5 of AVJB, and u(x, y) =0 for

x-\-iy in AUB — S, one can deduce that a Cauchy process C(t) with — 1 < C(0)

= x0<l, will first be absorbed in A^JB at a point y with the probability

density

f(xo;y) = — (1 - x20)1/2-|-■-r—-— , |y|>L
v I y — x0| (y2 — l)1'2

Both/(x; y) and P(x) satisfy the equation

T1 df(x;y)/dx r1 P'(x) .   .
(3.4) P.V.   I      j    ""     dx=VN. -^—dx=0, \t\   < 1.

J_l        X — / ^-1 x — /

It is difficult to derive these equations directly, and to impose appropriate
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conditions. -P(x) for instance, as given by (3.3), happens to be the unique

solution of (3.4) with P(l) = 1, P(-l) =0, and P'(x) ■ (1-x2)1'2 in L2(-l, 1).
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