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1. In 1936 Rademacher found an expression for the partition function

p(n) in the form of a convergent series:

(1.1) p(n) = 53 cthkehk gk(n), A = 1, 2, • • • ; A mod A, (A, A) = 1
h,k

where

a.hk = kll2oihk/Tr2112,

cohk being a complicated root of unity, e/„t = exp (2irih/k), and

d  ^sinh C\(z)/A)

rfs I       X(z)       ;

is an entire function of z of order 1/2.

The generating function of p(n) is

00 00

(1.2) /(*) = JI (1 - x-)-1 = 1 + 53 p(n)x«, |*|   < 1.
i i

Rademacher inserted the series for p(n) into (1.2) and obtained in this way

a new representation of f(x):

(i.3) /(*) = i + 53 ««**(*/**).
h,k

Here

50

(i.4) **(*) = 53 {?*(») *"

is, by virtue of the properties(2) of gk(z), an analytic function of x which is

regular everywhere (inch °o) except at x=l. Thus the natural boundary

(|x| =1) of/(x) is here represented as made up of contributions from "gen-

eralized partial fractions," 3?k(x/e„k), one for each root of unity ekk.

Received by the editors September 10, 1956.

(l) Work performed under the auspices of the Atomic Energy Commission.  This paper

was read by title at the Number Theory Conference (Pasadena, June, 1955).

(8) This holds under the more general condition that gk{z) is at most of the zero type of

order 1, by Wigert's theorem. See beginning of §2.
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Rademacher also studied the series in (1.3) when \x\ >1. He found that

it converged uniformly and defined a function

CO

(1.5) f*(x) = 1 + E ahk$k(x/thk) = - E P(-n)x-", \ x \   > 1
h,k 1

where p( — n) is the expression obtained by formally replacing n by —n in

the series for p(n). Rademacher conjectured [l, p. 84] and later proved(3)

the surprising fact that p( — n)=0, n = l, 2, ■ • ■ ;in other words that

(1.6) /*(*) = 0.

Equation (1.6) is called an "expansion of zero." Equations of this type

involving modular forms (f(x) is essentially a modular form) were known to

Poincare(4).

The object of this paper is to generalize the situation described above.

For {gfc(z)} we shall take entire functions of class (1, 0), i.e., functions be-

longing to at most the minimum type of order 1. We assume that

/    « \l/l«l

(1.7) limsup    E \gk{n)\ )        £ 1,

where the lim sup is taken over all integral n. Let {ek}, k = 0, 1, 2, • • ■ be a

set of arbitrary, distinct complex numbers of absolute value 1, and {ak},

k = 0, 1, 2, • • • , a set of bounded numbers. Then, defining $k(x) by (1.4),

we prove that $k(x) can be continued to the exterior of the unit circle and

that the series

00

(1.8) z =£«*#*(*/«*)
fc-0

converges uniformly both inside and outside the unit circle. The Taylor

coefficients of the two analytic functions defined by 2 are given by the

formula

00

(1.9) an = E 0LktT-gk(n), n = 0, +1, ±2, • ■ ■ .
k=0

This is Theorem 1(§2). It includes Rademacher's example, for we have

only to replace «aa by ««/V21/2, gk(n) by k1!2gk(n), and (h, k) by an index

which runs over all the rational numbers in (0, 1). Condition (1.7) is seen to

be satisfied for(6) \kll2<p(k)gk(n)}.

Theorem 2 is a converse theorem. We assume there is an expansion of the

type (1.8) converging inside and outside the unit circle. We then show the

(3) Unpublished. The only published proof is in Petersson [2].

(4) A discussion of other types of expansions of zero can be found in [6],

(5) The factor cp(k) appears because each gk(n) occurs 0(£) times as h runs mod k, {h, k) =1.
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existence of functions {g*(z)j connected with $k(x) by (1.4) and satisfying

(1.9) and (1.7).

In §3 we consider the possibility of continuing the series (1.8) analytically

across the unit circle. If the set {ek} is not dense in the unit circle, there is

an arc on which the function defined by the series will be regular, provided

a certain condition, (3.3), (possibly stronger than (1.7)) is satisfied by

{&k(z)}. Then the analytic functions defined by the series inside and outside

the unit circle are continuations of each other. The proof is made by finding

a representation of $k(x) which is perhaps of some interest in itself.

§4 is devoted to the inverse problem: given a suitably restricted function

G(x) regular in the unit circle, is there a series (1.8) which represents G(x)?

This amounts to solving the infinite system (1.9) for {ock} when {an} is given

(«s=?0), which can be done by treating this system as a linear mapping be-

tween Banach spaces. We assume G(x) has bounded Taylor coefficients, and

find in Theorem 4 a sufficient condition on \gk(z)}.

Finally, in §5, Theorem 4 is used to develop series of type (1.8) which

represent zero identically in the interior of the unit circle.

2. The developments of this section depend on

Wigert's theorem. 2/ g(z) is a function of class (1, 0), then the function

defined by the series

oo

(2.1) /(*) = c + 53 «(«)*", | x|   < 1

and its analytic continuation is regular in the whole plane (inch <x>) except at

x = l. Conversely, if f(x) is a function with the above regularity properties then

there is a function g(z) of class (1, 0) such that (2.1) holds in \x\ <1. If g(z) is

a polynomial, f(x) is a rational function of 1/(1 — x), and conversely.

For a proof, see [3, pp. 297-300]. By a function g(z) of class (1, 0), we

mean an entire function belonging to at most the zero type of order 1, i.e.,

g(z) satisfies

max | g(re">) |   < e", r > ra(e)
e

for every e>0.

We need the following slight extension of Wigert's theroem.

Lemma 1. If g(z) is a function of class (1, 0), and

OO

(2.2) /(*) = Zg(«)xn,

thenf( oo) = 0. Iff(x) is regular except at x = 1, there is a g(z) of class (1,0) such

that (2.2) holds.
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The proof of this lemma will be made in §3.

We also require a few results on sequence spaces. Let B be the Banach

space of bounded sequences x=(xo, Xi, x2, • ■ ■ ) with

||x|| = sup I xk\ .
t

Let B' be the Banach space of bounded doubly-infinite sequences y

= (••■, y_2, y-i, yo, yi, yt, • • • ) with the same norm. We consider a linear

transformation T from B into B' defined by an infinite matrix (/„*), — °° <n

<°o, k^O:

00

(2.3) r:yn=E'»***, all(6) n.
k=a

Denote the norm of T by | T\ ; as usual we have

\T\   = sup\\Tx\\.
1x1-1

Concerning the Transformation T, we wish to prove two lemmas.

Lemma 2a. A necessary and sufficient condition that T in (2.3), should define

a linear transformation from B into B' is that

00

(2.4) sup E |'«*|   < °°
»       A-0

If this condition is satisfied, T is a bounded transformation and \T\ is equal to

the constant (2.4).

The lemma implies, in particular, that every linear transformation on B

to B' of the form (2.3) is bounded. To prove it, let T be from B to B'. Define

the linear functionals

00

^>n(x) = E <»***> ah »,
fc=0

and the vectors, of norm one,

({I/„*| A.*},      u^o,
XM   =   <

I       1, /-* = o.

By hypothesis {0„(x)} is bounded when x= {xk\ is bounded; in particular

(j>„(xM) is finite. I.e.,

00

<t>n(xM)   =   E   l<»*|     =   An   <   CO.
k=0

This implies that, for each n, cj>n(x) is a bounded linear functional, for

(*) The expression "all n" shall mean that n assumes all integral values.
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00

I 0n(x) |     ̂    53    I  tnk\\  Xk\     g   ̂ „||x||.
k=0

Also, sup„ |<£n(x)| < oo for all xEB, since (</>„(x)} EB'. It follows from

Banach's theorem on functionals 4, p. 25] that there is an A such that

|<An(x)| ̂ 4 for all n and all x£P,  |x|| gl. Hence,

4>n(*M)   =   E    \tnk\     ̂    A,
k

as required.

Now
00

sup 531 tnA ^ sup sup 53 inkxk — sup ||rx|| = I t\
»       k=0 11*11-1      » A W-l

^   SUp||rX     II    =   SUp   SUp     2-4 tnkXk
I I        n        k

£=?   SUp     53 tnkXk =   SUp   53    I  tnk |   •
n k n        k

If (2.4) is fulfilled, | T\ < oo, and the proof is complete.

Lemma 2b. If T is given by (2.3), and
00

(2.5) sup 53 \ ^k — 8nk\   < 1,

P-1 exi^is as a bounded linear transformation from B' into B.

By the preceding lemma, T is a bounded transformation on B to P', for

(2.6) |   P|     =  SUP    53   I <»t|     g   1 + SUp    53    I  tnk  -  8nk\     <   2.
»        k n        k

Also I T—1| <1. The proof is completed by quoting a known result:

If T is a bounded linear operator from a Banach space X into a Banach

space Y such that \ T— 11 < 1, then P_1 exists and is a bounded operator from Y

into X. See [5, p. 52] where the proof is given for X= F= Hilbert space, but

the same proof applies to the present case.

We come now to the proofs of the theorems mentioned in §1. Pi, P2 shall

denote the regions |x| < 1, |x| > 1, respectively, and Q the unit circle |x| = 1.

By S we shall mean the series (1.8).

Theorem 1. Let gk(z), A = l, 2, 3, ■ • • , be functions of class (1, 0). Let

{tk\ be distinct complex constants of modulus one. Let the series 53™=o | g*(») |

converge for all n, and

/    <*> \l/|n|

(2.7) limsupf £  \gk(n)\  )        f£ 1.
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Then if {ak} is any bounded sequence, the series 2 converges uniformly on every

set S at a positive distance from Q, and defines two regular functions

00 00

(2.8) Gi(x) = E anxn, x E Ri\        G2(x) = - E a-nx-», x E Ri
o 1

where, for all n,

CO

(2.9) an = E «*«* ngk(n).
*=o

$k(x) is defined by (1.4).

Proof. By Wigert's theorem, the functions $k(x) are defined in the whole

plane and are everywhere regular (inch °°) except at x=l. The hypothesis

(2.7) implies

CO

E I £*(») I   ^ A*e'M, all n;
fc-0

hence,

(2.10) |«*(»)|   ^ i4.e«l"i, all*, A^O.

We use this result for non-negative w to provide a uniform estimate of

$*(*):

oo

(2.11) |**(*)|   ^ E | «*(»)|  |*|n ^ A.(l -  \xe'\)-\        |w|<l.
71-0

Since \ak} is bounded, this proves the uniform convergence of the series 2

on every subset of Ri at a positive distance from Q.

The convergence of 2 in R2 is next discussed. We have from (1.4)

(2.12) gk(n) = — f    **(r)r(B+1)#, » fc i.
2m*7 iri-,

Define(7)

h(t) = - — f     **(r)r(m)#,   i? < i, r = e' *>«»■
2irw |f_i|_,

where log 1=0. Since log f is uniform on the path of integration, we find that

/*(/) is an entire function of /, and indeed is of class (1, 0). For

I h(t)\   ^   max   I $*(f)| -^'I'+H = Ae*iW
\t-i\-*

for every 0 < ?7 < 1/2. Now

O Cf. [3, p. 298].
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(2.13) Ik(n) = — f      Mt)r<n+1)di;, n = 1, 2, 3, • • • ,
2« J |f|_,

for when P is large enough

—      **(r)r(B+1># ^ 21 $4(ao)| -i?-"-.o,      p-> oo.
I 2xw iri-B

Thus, by comparison of (2.12) and (2.13), we see that Ik(t) =gk(t) on the posi-

tive integers, and hence, by a known theorem, everywhere(8). In particular

for large P and » = 1, 2, 3, • • • ,

&(-») = -—f   **(f)f-!* = -—r ^(j-)f-1^,
27rt^ ir-n-, 2«^|f|_s

which implies
00

(2.14) *t(x) = - X) gt(»)ar», x G P2
i

since, by Lemma 1, $*( oo) = 0.

The last equation furnishes the continuation of $k(x) to the outside of the

unit circle. Again from (2.10) we obtain the estimate

(2.15) \Mx)\   ^-j-r> \xe~'\   > 1,
1 -  | arV |

from which the uniform convergence of 2 on the required subsets of P2 fol-

lows.

Let xGPi- We have

OO 00 00 00 00

s = 53 <*k 53 gk(n)tk x = 53 x 53 «*«* g*(») = 53 °ix •
k=0 n=0 n=0 k=0 n=0

The interchange of order is justified by (2.10):

oo oo oo

23 I x\n 53 I «*H g*(«) I   ̂  23  I x\"-MAee'1^ < oo
n-0 Ar=0 n=0

where |a*| <Af, A = 0, 1, 2, • • • . This proves (2.9) when «^0; when w<0

we proceed in the same way using (2.14).

Next, we prove a converse theorem.

Theorem 2. Suppose we are given that 2 converges uniformly on every set

S at a positive distance from Q, where {ek} is a fixed sequence of distinct com-

(8) This result actually follows from Wigert's theorem. Suppose A(z) is of class (1, 0) and

A(n)=0, n = \, 2, 3, • • • . Then *(x) = TJo A(n)x" = A(0). I.e., * is a rational function of

(1 —x)'1 and so, by the converse part of Wigert's theorem, A(z) is a polynomial. Since A van-

ishes on the positive integers, it vanishes identically.
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plex numbers of modulus one, \$k(x)} is a fixed sequence of functions regular

everywhere except at x = l, $k(<*>) =0, and {ak} is any bounded sequence. Then

there exist functions {gk(z)\ of class (1,0) and constants {an} such that (1.4),

(2.7)-(2.9), and (2.14) hold.

Proof. By hypothesis 2 converges uniformly and, therefore, defines two

regular functions:

(2.16) X = d(x), xE Ru       s = G2(x), x E R2.

In particular,
00

lim G2(x) = lim  E «*$*(*/«*) = 0>
X—» 00 X —* 00        Q

since $*(<*>) =0. Put

00 00

(2.17) d(x) = E anX", x E Ru       G2(x) = E a-nx~n, x E Rt,
0 n=l

this being a definition of {an}. By repeated differentiation of (2.16) we find

00

G[n)(0) = n\a„ = E W^O), n = 0, 1, 2, • • • .
o

Now by Lemma 1 and the argument following (2.12), there is associated with

each $k(x) a function gk(z) of class (1, 0) such that (1.4) and (2.14) hold.

Differentiating (1.4) gives

$,(n)(0) = n\gk(n), n = 0, 1, 2, • • •

and substituting this into the preceding equation we get the expression (2.9)

for an when ra^O. The discussion for w<0 is similar using (2.14) instead of

(1.4).
It follows from the convergence of Gi and G2 in their respective regions

that

(2.18) limsup | on J1""' ^ 1.
n

Multiply (2.9) by «r--l»l, e>0:

Ea4e       €* gk(n)} = ane        , all n.
o

By (2.18) the right member is bounded in n, and so the matrix (ekne~^n^gk(n))

defines a linear transformation from B into B'. Lemma 2a now shows that

sup E «        I «*V(M) | = sup e ' *  X | g*(») |   = Ae < oo.
»        0 »0
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Since this holds for each e>0, we have (2.7)

3. Define

(3.1) M = closure of {tk}, A = 0, 1, 2, • • • .

Ii M = Q there is nothing further to be said; 2 converges wherever it can be

expected to. However, ii M^Q there is an arc on Q which is free of points of

M. Under certain conditions, the series converges on this arc also.

Let

CO

(3.2) gk(z) = 53 ckjz'\ A = 0, 1, 2, •••.

We shall impose the condition

00

(3.3) El ckj |   g At(t/(j + 1))/, j = 0, 1, 2, • • • .
k=0

Theorem 3. If the hypotheses of Theorem 1 are fulfilled, and if, in addition,

(3.3) is satisfied, then 2 converges uniformly on every subset of Q — M at a posi-

tive distance from M, and the functions Gi, G2 of (2.7) are analytic continuations

of each other.

Remark. If ckj^0, or if ckj = akftj, it is easy to see that (3.3) follows from

the hypotheses in Theorem 1. Whether this is true in general, the author is

unable to decide.

Proof. By hypothesis, both (3.3) and (3.4) are satisfied. Let x£Pi, then

00 oo 00 00 oo

(3.4) *4(x) = 53 gk(n)xn = 53 xn 53 ckjnj = 53 % 53 n'xn,
n=0 n=0 i—O j—0 n=0

the inversion being justified by (3.3). Define

(3.5) 4>j(x) = 53 »''*", j = 0, 1, 2, • • • ,xE Pi
n=0

so that the above equation may be written

oo

(3.6) <*>i(x) = 53 cki 4>i(x),        A = 0, 1, 2, • • • , x E Pi-
y-o

We now prove two lemmas.

Lemma 3. For w^l we have

(3.7) frM = E „     ''      » J"i=0
;=l    (1  — w)!

wfiA
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(3.8) Ah = (-1)«* E (-1)'Ci-i,,-iW, / ^ 0.
»=i

As usual we put Cm,„ = 0, n>m, Cm,o = l, m^O.

Proof. Define Bh, l^0;j^0by

(3.9) 4>j(w) = E „     " ,. > B0J = 0.
i=i  (1 — w)1

From the definition (3.5) we have the recursion

(3.10) fciW = w<p',(w), j^O.

This makes it clear that <f>,(w) is a finite sum of terms of the form (3.7).

Hence in (3.9), we have 7i»y = 0, l>j-\-l, the series converges, and we can

differentiate term by term in (3.10). This gives

(3.11) Bu+i = - lBh +(l- 1)5.-1,,-, f £ 1, J fc 0

where we have used B0j = 0. Our first object is to show that the B^ have the

values Aij.

We first prove, by induction on/, that {Atj} satisfies the recursion (3.11).

Let j' = 0. .4>0 = 5i(. We must verify that

i

E (-l>CVi.,_i»< = - 18U +(l- 1)5M_,, / ^ 1.
r=l

For 1=1, 2 we easily calculate that both members have the values —1, +1,

respectively. When 1 = 2, the right member obviously vanishes, while the left

member is

i i i

E (-i)-ci_1,„_i+ E (-i)'C«_i.,_,(* -1) = o + (/ - i) E (-i)'CV2.,_2 = o.
V— 1 *=2 v—2

Now suppose that {Atj} satisfies (3.11) lorj^k — 1, where we may take k^.1.

Putting/ = k, /^2we have

i i

-iAa = (-i)*E (-mci-i.,-1^ = (-i)*E (-i)'Ci.^1
v=l r=l

= (-i)ft E (-i)'{Ci_i,^i + Ci_w}f*«
v=l

l-l

= At,k+i + (-1)4(/ - 1) E (-1)'Ci_i,^i^ = Ai,k+i -(I- l)Ai-i,k.
y—l

When 1=1, (3.11) reduces to the easily checked formula Ai,k+i= —Ai,k.

Hence {Ah\ satisfies (3.10) for all 1^1, j^0.
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Next, 4f0 = Pio, ls£l, i.e., Bi0 = Su. This is a trivial consequence of (3.5)

and (3.9).
This completes the proof that the Bis, defined by (3.9), have the values

(3.8) when l^/^/'+l. Since, as already noted, P;; = 0 for />j + l, it is evi-

dent that Btj=Ati, Z^l./^O, and the lemma is established.

Lemma 4. For/ ^ 1, 11 — w\ ^ e > 0 (e<2), we have

(3.12) |*/-iM|   ^ (2/A)''.

From the preceding lemma we have

i

\Ah\   ^ ECu.^iWg 2<-H>-;
i

hence, by (3.7),

y      2J-i/i-i >  /2V /2j\>
I *Uw) I ^ E t;-17 ^ Sl-)^-1 ^ (-) •

i_i   | 1 — w|' 1   \ e / \e/

Lemma 4 shows that in (3.6) the series converges for all W9^\. For (3.3)

implies that

| ckj\   g A<(—)> / = 1, 2, 3, • • • , A = 0, 1, 2, • • • ,

so

E|c,ll^)|^e/8E(^^Y+1(^.Y
(3.13) " 4

g —^./sEi-2-', | 1 - W|  ^ €
e y

and the right member is finite for each e>0. Hence, (3.6) is valid for all X5^1.

We can now prove Theorem 3. Let 5 be a subset of Q — M, and rf (0<d<2)

be the distance from 5 to M. If xES, we have | x/e* — 1 \^d, A = 0, 1, 2, •••.

Hence, using (3.6) and (3.3) we get

oo CO

E I **(*/«*) I ^ E E I %■ I I <t>Ax/(k) |
i=o *    y=o

/2(i+i)y+i ,2 » /4£y+'

if we choose ie/d<l. Since {a*} is bounded, this proves that 2 converges

uniformly on S. The last statement of the theorem is obvious.

It is convenient at this point to prove Lemma 1. In analogy with (3.6)

we are permitted to write
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00

(3.14) f(x) = Y,Cj<t>j(x), x*l.
i=o

In view of (3.7) we have limx^x <pj(x) =0, je^O. Because of the uniform con-

vergence of the series in (3.14) we now have limx_„,f(x)=0. Conversely, if

f(x) is regular except at x = 1, we have, by Wigert's theorem,

00 00

f(x) = c + E <?(»)*" " c - g(°) + E g(n)xn, xERi
1 0

CO

= C - g(0) + E Cj<t>j(x), X9*l.
,-0

Letting x—»°°, we see by the argument just made that c = g(0).

4. This section will be devoted to a proof of

Theorem 4. Let G(x) be an analytic function, regular in R, having bounded

Taylor coefficients. Let {«*}, k = 0, 1, 2, • • • , be arbitrary complex numbers of

modulus one. If

CO

(4.1) sup E I **"<?*(») ~ 8kn\   = k < 1,
»=0    *=0

there exists a bounded sequence {ak \ such that

2 = G(x), x E Ri-

The conditions of the theorem are fulfilled, for example, by the set

1 /sin(8k(z-k)yyk

8k{z)=Jc<(8k(2-k)yi2)> k>0>

i
go(z) = —■ ;        «i = exp 2iri/k, k > 0;        e0 = 1

4

in which case an upper bound for k is 9/10.

To prove the theorem, consider the system

CO

(4.2) 2-« otkekHgk(n) = an, n ^ 0
4=0

where G(x) = E"=o anxn. Denoting the matrix of the system by T=(tnk), we

see that the conditions of Lemma 2b(9) are satisfied in view of (4.1), and there-

fore T~l exists. Since {an} is bounded by hypothesis, the system (4.2) is

solved by a=T~1a, where a = (a0, «i, •    • ), a = (a0, ai, • • • )■

Multiply (4.2) by x" and sum. We get for xERi,

(9) We apply the obvious modification of this lemma which refers to mappings from B into

itself.
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00 CO 00

E anxn = G(x) = J2 xnJ2 aktk "gk(n)
n—0 n—0 4=0

00 00 00

= 1L <**!-, gk(n)(x/ek)n = E ak$k(x/ek) = 2.
k=0 n=0 k—0

The interchange of summation orders must be justified:

oo oo oo

E I gk(n) I  = E  I tk"gk(n) |   ^ E  I *kngk(n) — 8kn\ +lg«+l
*=o o o

for w^O; hence, if |q!*| ^4, we have

E I «* I   I gk(n) |  | x/ek |» g 4 E I * I" E  I g*(») I   ̂  2^ E I * I" < <» •
&,n » A: rt

This completes the proof.

Incidentally, a bound on {a*} is easily obtained:

IUII
(4.3)       \a\   = sup  | a*|   g   | T-1! ||a|| g   E I 1 ~ T\'\\a\\ = -iL-lL- »

* x-0 1   —  K

since (4.1) is equivalent to 11 —P| =k.

5. We can use the developments of the preceding sections to obtain a

class of expansions of zero, valid in the unit circle.

Let gk(z), A = 0, 1, 2, • ■ • , be functions fulfilling the hypotheses of Theo-

rem 4. By Theorem 4 we can, for each 1 = 1, 2, 3, • • ■ , determine constants

{a^} such that

(5.2) E «* $k(x/ek) = x    , x £ Pi.
fc-0

Since the series converges uniformly, we may differentiate / times and obtain

00

(5.3) E a*0 **.i(*/«t) = 0;      xERi,l= 1,2,3,- ■■ .
i-0

Here

_z d^
(5.4) ¥*.,(*) = ek  —**(*)

ax'

is a function of the same type as $k i.e., an entire function of 1/(1 —x).

The series (5.2) cannot reduce to a finite sum. Suppose otherwise, and let

P(x) be the sum of the finite series. F(x) is then regular in P2, and P(x)—>0,

|x| —><*, since this is true of each term of the series by Lemma 1. But this

contradicts (5.2), for P(x) = x'_1 in Pi and so everywhere.

It follows that (5.4) is an actually infinite representation of zero, as de-

sired.



1958] PARTIAL FRACTION DECOMPOSITIONS 143

Suppose the set {ek\ is dense in Q. It could happen that enough a® =0

(/ fixed) that the remaining set {ek} is no longer dense in Q. This can be

avoided by requiring that \gk(z)} satisfy the supplementary condition (3.3).

For then the function F(x) defined by the series can be continued across Q,

F(x) =xl_1 in R2, and the same contradiction results.

Note added in proof. After this paper was accepted for publication, I

learned that Professor Rademacher had published his proof of (1.6) in the

mimeographed notes of his lectures on number theory, delivered at the Tata

Institute of Fundamental Research (Bombay, India) in 1954-1955.
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