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Introduction. Although this topic has been treated in a number of papers

[2; 5; 6; 9; 13], important further progress is now possible thanks to a highly

useful theorem on the conformal mapping of multiply connected regions [12];

this new theorem is used in combination with suitable refinements of older

methods. Previous results have dealt primarily with rather rough (geometric)

degrees of convergence and their relations to regions of convergence and re-

gions of analyticity of functions approximated. The new theorem on con-

formal mapping combined with new results [13] on series of interpolation of

rational functions enables us to treat here more refined degrees of conver-

gence and their relations to regions of analyticity and to smoothness (e.g.,

Lipschitz conditions) on the boundary, of functions approximated. We con-

sider (§§1-6) degree of approximation on the common boundary of a region

in which the approximating functions are analytic and of a smaller region in

which the approximated function is analytic, a problem which is relatively

new [13], and consider also (§7) measure of approximation on a suitable

curve or set of curves interior to a given region in which the functions are

analytic, an older problem [2].

A function f(z) analytic in a one-sided neighborhood of a Jordan curve C

and continuous on C is said to be of class L(p, a) on C, where p (^0) is inte-

gral and 0 <a < 1, if'f(z) has a one-dimensional pth derivative on C which satis-

fies there a Lipschitz condition of order a. If C is analytic or even fulfills merely

mild geometric conditions, then/(p)(z) exists [7, Theorem 2.2] also as a two-

dimensional derivative. Of course /<0) (2) =f(z).

The definition just given has no meaning if p<0; for such integral values

of p, 0<a^l, if C is an analytic Jordan curve, we say that f(z) is of class

L(p, a) on C provided f(z) is analytic in a one-sided neighborhood of C and C

can be expressed as the level locus u(z) = 1 of a nonconstant function u(z)

harmonic in an annulus containing C and having no critical point in the

annulus, and where in the neighborhood of C we have \f(z)\ ^M(l—p)p+a on

the locus u(z) =p, -po <p < 1, po < 1; here M is to be independent of 2 and p. To

be sure, this requirement is a restriction on the behavior of f(z) not on C but

in a one-sided neighborhood of C. Nevertheless, as Hardy and Littlewood

have shown, if C is the unit circle, and as also is true for C an arbitrary
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analytic Jordan curve [4, §5.2], whenever f(z) is of class L(p, a) on C,

0<a<l, the derivative and integral if single valued of f(z) are of respective

classes L(p — 1, a) and L(p-\-l, a) on C when suitably defined on C (ii neces-

sary) ; so even in the case p <0 the class L(p, a) is closely related to behavior

on C. The classes L(p, a) are invariant under one-to-one conformal mapping

of a region containing C. [Compare 8, §5].

1. Theorem 1, direct. Our main theorem is

Theorem 1. Let D be a finite region of the z-plane whose boundary consists

of mutually disjoint Jordan curves Bi, Bi, ■ ■ • , B^, Ci, d, • • • , C„ and let

U(z) be the function harmonic in D, continuous in the closure of D, and equal to

zero and unity on B= zZfiian<^ C~ Z~L^i respectively. For every a, 0 <cr< 1, let

Y, denote the locus U(z) —a in D, and let D„ denote the subregion 0< U(z) <cr

of D, whose boundary is B+Y,.

If Y„ has no multiple point, and if the function f(z) is analytic in D„, con-

tinuous on B, and of class L(p, a) on Yp, 0<a<l, then there exist functions

f,.(z) analytic in D and continuous on B such that (n = l, 2, 3, • • • )

(1) |/(«) - /.(*) |   ^ Aie-»>i*/n»+°', z on B,

(2) \U(z)\   ^ Aie^1-^'T/n"+a, z in D,

where 2tt is the total variation along Yp of the function conjugate to U(z).

Reciprocally, if f(z) is defined on B, if the functions fn(z) are continuous on

B and analytic in D, and if (1) and (2) are valid for some integer p and 0 <ct < 1,

thenf(z) can be defined so as to be analytic in Dp, continuous on B, and of class

L(p-1, a) onY„.

Here and below letters A with or without subscripts represent constants,

which can change from one formula to another, but which are independent

of n and z.

The region D can be mapped [12] on a region D': ed"< | u(z) \ <edi,

(z- o,)-i(« - ai)"» • • • (z - a„)"V
(3) u(z) =->

(z- bi)«i(z - bi)»' • • • (z - *,)"»

m}- > 0, wy > 0, z^mj = zZ, ni = 1,

where the a, and bj are finite and are separated from D' by the images of the

Bj and Cy respectively. Thus it is no loss of generality to prove Theorem 1,

as we do, for the case that D is the region D'. We suppose D = D' to lie

interior to Ci, and we use a series of interpolation designed specifically for

this specialized region D, namely the series [13, Theorem l]

" (z — ai) ■ • ■ (z — an)
(4) fx(z)   =   2Z CnUn(z), Uo(z)   =   1, Un(z)   =-—,

0 (z - j8i)  •  •  • (z - ftn)

where each a, is some ak and each ftj is some bk, and we have
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Un(z)

(5) 0 < A3 ^   —K—   = Ai,
[u(z)]n

uniformly for all re and for all z on any compact containing no a, or bj.

For z in Dp, the function f(z) can be expressed

f(z) = d>i(z) + #2(2),     0i(z) = X) 0*1(2),     <pi(z) = X) 0*2(2),

(6) 0*1(2) s —— I    -,       4>k2(z) = —- I      -,
2m J yk t — z 25tj J Bk   t — 2

where yk is a suitably chosen rectifiable Jordan curve in P>p near Tp, depending

on z, precisely one such curve near each component of rp, z interior to a

region bounded by B and the yk, and where the integrals are taken in the

positive sense with respect to that region. The function <f>i(z) is analytic

throughout D0' '.\u(z)\ <eda+f'<-di~d<'), and can be represented there by a

series (4). Moreover <f>2(z) is analytic on rp, so <f>i(z) is of class L(p, a) on Tp.

The poles Bj of un(z) are to be found among the bk, so lie exterior to Do' ■

Suppose now p^O. If sn(z) is the sum of the first re + 1 terms of the series in

(4), we have for z in D0' the interpolation formula

If   o>n(z)d>i(l)dt
0i(z) - sn(z) = — I    ——- ,        7 = 2^ yk,

(7) 2m J y un(t)(t - z)

w»(z) = (z - an+i)re„(2);

here 5„(2) is the unique rational function of degree re whose poles lie in the set

(81, Bi, ■ ■ ■ , 8n) and which interpolates to <pi(z) in the points (ai, a2, • ■ • ,

a„+i). A particular case of (7) occurs if <pi(z) is replaced by an arbitrary ra-

tional function Rn(z) of degree re all of whose poles lie in the set (Bi, 82, • ■ • ,

Pn),

1    r  wn(z)Rn(t)dt
(8) 0 ^-; W     W    ,  s in Di.

2TriJy  oin(t)(t — z)

We shall use a combination of (7) and (8):

,Q. ... ., 1       C    ^(z)[<Pl(t)   ~   Rn(l)]dl .
(9) <t>i(z) - sn(z) m -—        -—-,   z in Do'.

2m J y u>n(t)(t — z)

Under the present circumstances, that <f>i(z) is of class L(p, a) on Tp, it

follows from a result due to J. H. Curtiss, W. E. Sewell, H. M. Elliott [ll,

§2], and Walsh [14] that functions Rn(z) exist such that (re>0)

(10) I friz) - Rn(z) I   g A/n'+i, 2 on Tp.

Moreover we may replace 7 in (9) by Tp. The inequality

(11) I ^1(2) - sn(z) I    g Aie-n'lr/nP+a, 2 on B,



470 J. L. WALSH [March

now follows from (10), (9), (7), (5), and (3), when we note the relations

log | u(z) I   -do 1
U(z)   =  - I T  =  -   •

di — do cf i — do

We may now set

sn+i(z) — sn(z) = Cn+lUn+i(z),

whence from (11)

| cn+iun+i(z) |   ^ 2Aie-n"lT/np+a, z on B,

and by means of a lemma [13, Lemma 3] concerning the functions un(z), for

allre(>0)

(12) | Cn+iun+i(z) |   ^ ASfi*u-»i*/nP+-, z on C,

(13) | sn+i(z) |   ^ Ase^-oVr/n'*", z on C;

this last step will be discussed in more detail below. Since/(z) is continuous

on B and <pi(z) is analytic there, <pi(z)=f(z) — <bi(z) is continuous on B and is

analytic in D + C, so we have (1) and (2) from (11) and (13) by setting

fn(z)=Sn(z)+4>2(z).

It remains to justify the derivation of (13) from (12), which we do by re-

marking that for pi>l, p-\~ot>0, we have

n m

(14) £^<^»
!    wp+a mp+a

where A is independent of m. It is sufficient to take m even, and we write

m/2 " m/2
■V       Pi -^        n m/2

2, -— = 2- pi = ^ pi   >
i    n"+" i

n m

i -*-*—-— £ pr^"-^,
(m/2)+l   Wp+a (w/2 +  l)p+"  („/2)+l Wp+»

so (14) follows, as does the first part of Theorem 1 for p^O.

Incidentally, we remark that (12) and (5) yield

(15) \c„\   g Ae^"-1)i<'-'"il]n/np+a.

If f(z) is of class L(p, a), p<0, we use (7) with the choice of YT for y,

r = rn=p(l —1/«). For 2 on 5 we have by (5) with re>0

| c6i(z) - sn(z) I   ^ Aendo(p/ny+a/en^+"(-1-1Mlr],

(16) | 0,(z) - *,(i) |   ^ Aie-H'/tr*,

which in form is identical with (11).

To operate conveniently with (16) we need the remark that for pi>l,
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p+a<0, we have
n m

(17) ±J±*AJ!L.,
n=i  «"+<* m"+a

where A is independent of m. We need merely write

m        n, 1        m

2^ ~t" = —I" ^ Pl>
„_!  «"+<"      m"+«„_i

from which (17) follows.

We now set sH+i(z) — sn(z) =cn+iun+i(z), whence by (16) for re sufficiently

large

| cn+iUn+1(z) |   ^ 2Aie-n'lT/n»+a, z on B,

so (12) follows [13, Lemma 3] for all re (>0), and (13) is a consequence of

(17). As before, the function 062(2) =/(z) —<pi(z) is continuous on B and is

analytic in DA-C, so (1) and (2) are deduced from (16) and (13) by setting

fn(z)=sn(z)-r-(p2(z). Incidentally, (15) also follows.

2. Theorem 1, indirect. We have now completed the proof of the first

part of Theorem 1, and proceed to prove the second part. With p = 1, 0 <a <1,

and with (1) and (2) as hypothesis, we write for re sufficiently large

(18) I fn+i(z) - fn(z) I   £ A*->*/n?+-, 2 on B,

(19) \fn+i(z) - /.(*) I   = Aie^-'VT/n'+o, z on C.

Equation (18) requires no special interpretation, for the/„(z) are continuous

on B, but (19) may be valid merely in the sense of (Fatou) limiting values,

which exist on C for almost all values of the conjugate of U(z). The two-

constant theorem, a generalization of Hadamard's three circle theorem, relat-

ing the modulus of/n+i(z) —fn(z) on B, T„, and C, can be written

log A 3 — np/r — (p + a) log re        0    1

log Mn p    1     SO,

log Ai + re(l — p)/r — (p + a) log re    1    1

where Mn= [max |/„+i(z) —fn(z) |, z on rp]. Subtraction of the first row from

the third row yields

Mn ^ Ab/nf+a.

The sequence fn(z) converges uniformly throughout the closure of Dp, nec-

essarily by (1) to a function analytic in Dp and coinciding with f(z) on B,

because we have for z on T„

1/(2)   -/„« I     S    \fn+l(z)  ~fn(z) I    +   |/„+2(2)  -/n+1(2) I   +   •   •   •

SMn + Mn+i + ■ • ■ ̂  At/nP+*-K
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It follows from a theorem due to the present writer [9, Theorem l], by virtue

also of (2), that/(z) belongs to L(p — 1, a) on Yp.

If p<l, we again use the two-constant theorem to determine a bound for

Mn(r) = [max \fn+i(z) -fn(z)\, z on Yr], 0<r<p, by means of (18) and (19).

We obtain

(20) Mn(r) g ^7e-"("-r)/T/«p+a,

which is indeed valid for all values of p, where A-, is independent of re and r

For z on Yr we have

oo r* M

\f(z)\   ^ i«2r"'('-rl,T/«'+'' ^ Ao I    e-<-<>-r)xlrx-i>-adx

(2D        -2       r j_:
= A»T(1 - p - a)(-J ^ A9'(p - r)*+"-\

where At is independent of r, so f(z) is L(p — \, a) on rp, and Theorem 1 is

established.

In the second part of Theorem 1, we may replace (1) and (2) as hypothesis

by (18) and (19), and define/(z) on B as the limit of the convergent sequence

/»(*)•
In the first part of Theorem 1 we have established (1) and (2) where 27tt

denotes the total variation of the conjugate of U(z) along Yp; this is of course

more specific than leaving r unrestricted. But in the second part of Theorem

1, the number r (>0) is entirely arbitrary; compare §8 below.

3. Convergence on other level loci. We add several complements to Theo-

rem 1. From (1) and (2) we deduce (18) and (19) and hence (20), for all p

and for all r, 0 5=r^ 1. For p+a>0 and r <p we obviously have

00 co

\^   g—n(p—i-)/t /fiP+a  < m~p—a   V"*   g— n(/>—i-)/t  <   ^4 g—m(P—r)/r/^p+« •

n=m n=m

for p+a<0 and r <p this same inequality between the two extremes results

through repeated integration by parts of the integral (0<s<l, ft>l)

/►CO                                                                                               1 f*   00sTx-v-adx =-I e-yly-p-"dy
fi (-log  s)-"~a+1 J-fi iae s

=-—   s"( — log s)-''-aft-P"a
(-logs)-p-"+1 L

e-yy-p-a-idy   ,

-fi log s

whose modulus is then not greater than A'sBft~"~a, where .s is constant and

A' is independent of ft. Thus we estimate \f(z) — fn(z)\ on Yr. For r>p we use

(14) and (17) with (20) to estimate |/n(z)| on Tr. There results



1958] BOUNDED ANALYTIC FUNCTIONS 473

Corollary 1. Under the conditions of either the first or second part of

Theorem 1 we have

1/(2) ~fn(z) I   ^ A3e-ni"-r'>lT/n'>+a, zonTr, 0 ^ r < p,

\fn(z) I   ^ Aienir-^lT/np+a,   zonYT, p < r ^ 1.

Although Theorem 1 does not admit the possibility p+a = 0, Corollary 1

is valid as a consequence of (1) and (2) even if p+a = 0.

In the proof of (1) and (2) for p>0, it is necessary for the reasoning as

given that Tp have no multiple point, because otherwise (10) has not been

established; but this restriction on Tp is not necessary for the other parts of

Theorem 1. To be sure, the classes L(p, a) on rp, p <0, have not been formally

defined for the case that rp has multiple points; but the definition extends in

a natural and obvious way, in terms of the level loci of the function U(z). The

discrepancy of unity in the exponents of re between the direct and indirect

parts of Theorem 1 is inherent in the nature of the problem [4, §6.4; compare

also §4 below].

4. Other classes of functions. Theorem 1 intentionally omits considera-

tion of the class L(p, a) for cv = 1. A suitable new class with properties anal-

ogous to those of L(p, a) for p^O, 0<a<l, was introduced into the study of

degree of trigonometric approximation by Zygmund, a class whose present

analogue we denote by Zp. If C is a rectifiable Jordan curve, and ilfi(s) =f(z)

rerepresents the boundary values on C of a function f(z) analytic in a one-

sided neighborhood of C and continuous on C, where s is arc length on C,

then f(z) is said to belong to Zp (p ^ 0) ore C ifflv) (s) exists and is continuous on

C, and there satisfies the condition

(22) I /iP\s + h)+ f?\s -h)- 2f[P\s) I   SA\h\,

where A is independent of h and s. If the curve C is analytic, then that f(z)

belong to Zp is both necessary and sufficient for the existence of a sequence

of polynomials in z of respective degrees re converging to f(z) on C with degree

of convergence Ai/np+1 [see 8, §4].

In defining a sequence of new classes of analytic functions on an analytic

Jordan curve C, we take Z-2 = L( — 2, 1), as defined in the Introduction, to be

fundamental; the class ZP_2, p>0, is the class of pth iterated integrals of

functions of class Z-2; the class Zp-2, p<0, is the class of pth derivatives of

functions of class Z_2. Thus we have a sequence of classes • • • , Z-2, Z_i,

Zo, Z\, • • • , where the derivative and integral of a function of any class be-

long respectively to the next lower and next higher class. It is then true

[8, §5] that the class Zp-2, p<0, is precisely the class L(p — 2, 1), and the

class Zp-2 for p ^ 2 is identical with the class Zp_2 previously defined.

The methods used above apply ilpj^ — l to the study of these new classes

Zp of functions, so we have
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Corollary 2. With the hypothesis and notation of Theorem 1 on D, Bj, Cj,

B, C, U(z), Y„, and D„, the conclusions of Theorem 1 persist if L(p, a) and

L(p — 1, a) are replaced by Zp and Zp_i respectively and if we set a = l in (1)

and (2), provided pj£ —1 in the first part of Theorem 1 and py^O in the second

part.

The inequality (15) follows in the nonexceptional case p^ —1 of the first

part of Corollary 2.

The case p = — 1 is exceptional in the treatment already given of the first

part of Theorem 1. Indeed, a function of class Z_i on a Jordan curve C is not

defined directly in terms of its own properties on C, but rather as the integral

of a function of class Z_2 or the derivative of a function of class Z0, so the

preceding methods do not apply. The class Z_i itself is unusual in its proper-

ties. The function f(z) = 1/(1 —z) is of class Z_2 = A( —2, 1) on 7: |z| = 1, so

its indefinite integral —log (1 — z) is by definition of class Z_i, yet is obvi-

ously not of class L( — 1, 1) on 7; that is to say, the indefinite integral of f(z)

is not bounded in the neighborhood of 7. Likewise the case p = 0, a=l is

exceptional in the treatment already given of the second part of Theorem 1.

Suppose (1) and (2) are given with p = 0, a = l. We deduce (20) with p-\-a = \,

but (21) for z on Yr (0<r<p) is replaced by

00

I/CO I   = As zZ e-('-r)/7" S - A*\og (1 - e-tf-*"*) ̂  Ai log (p - r),

so this method does not establish the boundedness of \f(z)\ in Dp; such

boundedness is the analogue of the requirement on the modulus of f(z) for

p<—\. Indeed, inequalities (1) and (2) with p+a—1, p = 0, do not imply the

boundedness of f(z) in Dp, as is shown by the counterexample f(z) =dog (1 — z),

B:\z\ =1/2, C: \z\ = 2,f„(z) = - zZ" zm/m, whence for z on B

00 00

|/(z) -fn(z) I   ^ zZ \z\m/m =2 (1/n) zZ l/2m = l/2"-n,
tl+l n+l

and by (14) for z on C
n

|/n(z)|   = zZ 2mA» ̂  A2"/n.
1

These inequalities are precisely of form (1) and (2), for we have

U(z) =- log (2 I z I )/(2 log 2),        p = 1/2,        r = 1/(2 log 2).

We later (Theorem 3) remove the restrictions p9^ — 1 and p^O oi Corol-

lary 2.

5. Differentiation of sequences. In order to discuss the exceptional cases

of Corollary 2, and also for its own intrinsic interest, we prove

Theorem 2. In the first part of Theorem 1, or Corollary 2, where D (interior
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to Ci) is the region edo< \u(z)\ <edl and u(z) is given by (3), with cpi(z) analytic

throughout the region | u(z) | <.ed<>+plT and of class L(p, a) or Zp on the boundary,

then whether p is positive, negative (but p?^ —1 for Zp) or zero we have

(23) | 4>{ (z) - Sn (z) |   g A1e~n"ir/np+a-\  z on B,

(24) | s,i(z) |   ^ ^2en(I-p)/T/«p+a"1,  2 in D,

Sn(z)   =   2 CkUk(z),
0

where sn(z) is the partial sum of the formal expansion of type (4) of 061(2), and

a = l for Zp.

It is convenient first to establish a lemma (new notation).

Lemma 1. If the function u(z) is analytic and has no critical point on the

locus C\: I u(z) I =X, and if the function un(z) is analytic in the neighborhood of

C\ and on every locus Cn: \u(z)\ =rj satisfies the inequalities (X"<X<X')

(25) I un(z) I   g Ay",  zonC„, X ̂  17 ̂  X',

(26) I u„(z) I S A\», z on C„ X" g 77 ̂ X,

/or suitably chosen X' arec? X", where A is independent of w, then we have on C\

(27) I «„'(z)|   ^ ^'»Xn.

We use a method of proof which has already been employed by Sewell [4,

p. 38] for the case of polynomials. If z0 is a point of C\, the distance 5 from

Zo to the nearest point of Cx+x/" is not less than k\/n, lor re sufficiently large,

where k (>0) is suitably chosen independent of z0. For re sufficiently large we

write

1    r             un(z)dz
«» (20) =« — I- »

2x«^ [2_zo|=5     (z —  Zo)2

whence by (25) and (26)

I w„'(zo) I   ^ ^4(X + X/n)"/8 ^ A\"(l + 1 /n)"/(k\/n),

which implies (27)(2).

Under the hypothesis of Theorem 2, inequalities (15) and (27) yield (23)

and (24) by the further inequalities used in proving Corollary 1. Both Lemma

1 and Theorem 2 clearly extend to differentiation of higher order.

Theorem 2 is of significance in removing the restrictions of Corollary 2:

(2) For immediate application to the proof of Theorem 2, it is sufficient here to use the

lemma: If R„(z) is a rational function of degree not greater than n whose poles are in modulus greater

than R (>l),then the inequality |i?„(z)| ^1 for \z\ gl implies | R„ (2) | gAn for \z\ gl.This

hypothesis implies [l, p. 250] \Rn(z)\ g [{RZ-l)/(R-Z)]"on \z\ gZ, 1 £Z<A,so the hypoth-
esis of Lemma 1 is fulfilled, with u(z)=z, X = l.
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Theorem 3. Theorem 1 remains valid if f(z) is given of class Zp on Yp,

where we deduce (1) and (2) with a= 1, and if (1) and (2) are given with a=l,

where we conclude that f(z) belongs to class Zp_x on Yp.

Thanks to Corollary 2 to Theorem 1, we need treat here merely the re-

spective cases p= — 1 and p = 0.

A rough indication of the proof of the first part of Theorem 3 is that we

transform the z-plane onto the s'-plane [as in 12], in which D' is the image of

D, D' interior to the image of G, and we integrate the transform F(z') oi

f(z) (of class Z_i), employ the development (4) for a suitable component of

F(z'), and by differentiation complete the proof. However, the integral of

F(z') is not necessarily single-valued in Dp , the image of Dp, so we choose a

suitable rational function

i    z  — ak 2    z   — bk

so that the indefinite integral $>(z') of F(z')-\-r(z') is single-valued in Dp . The

given function/(z) is by hypothesis of class Z_i on rp, so F(z') is of class Z_i

on the image Yp of Tp, and ^(z') is of class Z0 on Yp. Moreover, since B' is

composed of a finite number of mutually disjoint analytic Jordan curves,

<£>(z') has a continuous derivative on the image B' of B.

By the method used in (6), we express <£(z') in D' as the sum $(z') =-<i>i(z')

+3>2(z'), where (J)i(z') is analytic in Dp and in the closed interiors of the curves

composing B', and where $2(z') is analytic exterior to the curves composing

B. The development with partial sums sn(z') of $1(3') similar to (4) is such

that the analogue of (15) holds with p = 0, <x = l, whence by Theorem 2

I *i (2') - Sn'(z') I   g Aitr"'!*,      z on B',

I sl(z')\   ^ A2en<-l-")/T, zin D'.

We now set *,'(»')■*'(«')-« (z') = F(z')+r(z')-& (2'), A„(z') =-5n'(z')

— r(z') +$2' (z')t whence

I F(z') - Fn(z') I   ^ Axe-n"'\      z on B',

I Fn(z') I   ^ AiC^-^1*, zin D'.

The singularities of Fn(z') on 5' are precisely those of F(z') on B', and A(z')

is continuous on B', so transformation to the z-plane now yields the first part

of Theorem 3.

To prove the second part of Theorem 3, we note that the hypothesis (1)

and (2) implies (18) and (19) with p = 0,a= 1. The two-constant theorem then

implies

I fn+i(z) - fn(z) I   ^ 4,e-<>-«>/7«,     z on I\,

I /»+i(z) -U(z) I   ^ ^4e-"("-1+"/V«, z on IV,,
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where 0<e<l— p, e<p; the constants A3 and A\ vary continuously with e.

The functions un(z) =fn+i(z) —fn(z) satisfy the conditions of Lemma 1 on

both the curves Tf and Fi_t, if we define Te by the equation eluiz)~'']lr = e<-'~','"r

and (as is allowable) take A in Lemma 1 as A3/n, so we have

|/:+1(z) -f'n(z) |   g A6e-^-'»\     z on r„

\fUi(z) -/n(2) |   S Aoe-"0-i+'»r, 2 on ri_e.

The methods already developed show that/„(z) converges to/(z) throughout

D„, uniformly on any compact in Dp. It now follows by Corollary 2 to Theo-

rem 1 that/'(2) is of class Z_i on T„, so f(z) is of class Z0 on rp, and Theorem 3

is established.

In connection with Theorem 1, of course we may differentiate in the

original z-plane or in the auxiliary z'-plane used in the proof of the first part

of Theorem 3. A consequence of Lemma 1 and of Corollary 1 in extended

form is

Theorem 4. Under the hypothesis of the first or second part of Theorem 1

or of Theorem 3, but with D interior to C\, we have

I/'(2) -/»'(2) I   g Aie-^^^/H**"-1, zonVr, 0 < r < p,

|/n (2) I   ^ Aoen{r~")lr/np+a-\    zonTr, p < r < 1.

It is not to be expected that these inequalities should be valid also on B

and C respectively, for the derivatives f'(z) and /„' (2) need not exist on B

and C. But if the bounding curves B, and Cj are analytic, and if f(z) is analytic

on B, these inequalities for r = 0 and r = 1 respectively follow from Theorem 2,

where the/„(z) are the particular functions used in the proof of the first parts

of Theorem 1 and Theorem 3.

6. Integration of sequences. The study of the integration of approximat-

ing sequences depends on a further lemma.

Lemma 2. With the hypothesis of Lemma 1 on u(z), suppose u(z) has no

critical point in the closed region Di bounded by C\ and C\-, and suppose (re>0)

(28) I «„(z)|   =5 An\u(z)\"

in D\. Let z be an arbitrary point of D\, and let Zo be the point on C\ on the level

curve through z of the function conjugate to u(z). Set

U„(z) sb   I    un(z)dz,

where the path of integration is the arc in D\ of this level curve. Then we have

I Un(z)\   g ^,^n|re(z)|V(re+l),

where A1 is independent of re and of z.
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We write, by use of the fact that u'(z)^0 in the closure of Dit

~tt]^f        \^rd[\u(z)\],\u(z)\   gX',
uUo)     U(z) I        J\ | u'(z) I

where l/|w'(z)| is bounded, whence the conclusion follows from (28).

Lemma 2 obviously has numerous applications in the situation of Theo-

rem 1, applications that are limited by the fact that D is by definition multi-

ply connected (even if p = v = l) and hence that indefinite integrals of the

functions/(z) and/„(z) need not be single-valued. For instance (20) and the

inequalities of Corollary 1 are precisely of the form of (28). Instead of formu-

lating rather complicated results to include broad classes of multiple valued

integrals, we prove merely

Theorem 5. Under the hypothesis of the first part of Theorem 1 or of Theorem

3, with D interior to G, suppose p = v = l, and suppose f(z) and the fn(z) to be

analytic throughout the closed interior of Bi. Let z — a be an arbitrary point on

or within Bi. Then we have

(29) [f(z) -fn(z)]dz    g Ae-"(',-r)/7«p+a+\ z on Yr,        0 < r < p,
I J a

(30) I    fn(z)dz    g Aoen<r-<')lT/n*+a+1,    z on TT,        p < r < 1.

I J a

In connection with the hypothesis of Theorem 5, compare Theorem 6

below. The function U(z) has no critical point in D under the conditions of

Theorem 5. These integrals may all be taken over a rectilinear path from

z — a to some fixed point Zi on rr<, OO'O, then along rr- to Zo of Lemma 2,

and along the level locus of the conjugate function of U(z) to z. Along the first

two parts of this path we have by Corollary 1 to Theorem 1 (extended to

include a = 1)

\f(z) -fn(z) |   ^ A3e-"("-r">iT/n"+a, 0 < r' < r < p,

\fn(z) |   ^ Aien(-r'~i>)iTnp+a, p < r' < r < 1,

so (29) and (30) follow from (1) and (2) by Corollary 1 and Lemma 2.

Theorem 5 applies in part under the conditions of Theorem 1 whenever

Tp consists of a single Jordan curve, D interior to G, the/(z) and/„(z) analytic

throughout the closed interior of every Bj; for in that case Yr also consists of

a single Jordan curve when r is sufficiently near p, and inequalities (29) and

(30) are valid for such values of r. Theorem 5 does not extend without change

to the general case v> 1, for then the/„(z) may have multiple valued integrals.

Theorem 5 does not extend without change to the case p>l, for it may be

impossible to choose the indefinite integrals of all the/„(z) interior to Bj as

the analytic extensions of the indefinite integrals of the /»(z) interior to B2,
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while preserving the inequalities of form (30); for an illustration of this fact

compare [l, §4.7].

Lemmas 1 and 2 apply with a hypothesis less precise than (1) and (2).

If we require merely that/(z) be analytic in Dp, we may replace (1) and (2)

by [compare 2]

lim sup [max | f(z) — f„(z) | , z on B]]/n g e~plT,

lim sup [l.u.b.  |/n(2) | , 2-+ C]1/n ^ ea-e>/r.

Lemma 1 yields at once by the analogue of Corollary 1

lim sup [max | f'(z) - /„' (z) | , z on rr]1/n ^ e~('-r'>lT, 0 < r <p,

lim sup [max | /„' (z) | , z on Tr]1/n g eiT-^<T, p < r < 1.

These inequalities can also be obtained by differentiation from Cauchy's

integral formula, with integration over rr/2 and rr<, r'>r, r'—*r. With the

hypothesis of Theorem 5 except that f(z) is required merely to be analytic

throughout Dp, it follows by Lemma 2 that (29) and (30) may be replaced by

" j     /» 2 "1  1/n

lim sup   max    I    [f(z) —fn(z)]dz\, z on Tr        ^ e~(-f-r)lT,        0 < r < p,
L I J a

[I     /» z —| 1/n

max fn(z)dz , z on Tr        ^ e{r~p)lr, p < r < 1.

These relations can also be obtained by elementary inequalities on the inte-

grals.

7. Further analyticity requirements. We add a complement to Theorem 1

of somewhat different character:

Theorem 6. Suppose that the region D of Theorem 1 lies interior to Ci, that

the Jordan curves Bj are analytic, and that in the first part of Theorem 1 or of

Theorem 3 the function f(z) is analytic on and within each Bj. Then the functions

fn(z) in (1) and (2) can also be chosen analytic on and within each Bj.

We need to consider the map already used of the given region D of Theo-

rem 1, together with the entities Bj, Cj, B, C, U(z), Tv, £>„, onto a region

D': ed"<\u'(z')\ <edl of the z'-plane where u'(z) is given by (3), where the

other entities are denoted by Bj , CJ, B', C, U'(z'), TJ, DJ respectively, and

where the transform of f(z) is P(2'). The map of D onto D' is one-to-one and

analytic not merely in those regions but if suitably extended, also in com-

plete neighborhoods of B and B', say throughout the closure of the region

D'_a: —a< U'(z') <0, o->0. If a is suitably chosen, the functions fn(z) in (1)

and (2) are analytic throughout the closure of D-„. Moreover it follows from

the proof of Theorem 1 that for z on r_„ we have [13, Equation (10)] for

arbitrary 5 (>0)

(31) [max |/(z) -fn(z) \ , z on r_„] ^ ^,e-»<H-P-5)/r.
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We split f(z) and the fn(z) into their components by integrating over a

locus r„, where r„ is in D near Tp, and integrating over B or T_„ indifferently.

For z in D„ we have/„(z) =fn\(z) +fm(z), with

i   f /oo<a                    if /»(0*
'« s — I-»      U(z) - —-1

Z« J T^ t — Z 2« J Vp  t —  z

1    f     /OO*         ,   .,         If    /„(<)*
0 = __ I      -,       fn2(z) = __ I      -,

2irt J r-c t — z 2-m JT-a t — z

-If         [f(t)   ~ fn(t)]dt
fni(z)   = —   I-

2-mJ r-i7 I — z

By virtue of (31) we may now replace /„(z) in (1) and (2) by/„i(z), with a

suitable modification of ^4i and Ai if necessary, which completes the proof of

Theorem 6.

The first studies [2; 5] of approximation by bounded analytic functions

were, like Theorem 6, concerned with functions/(z) and/„(z) analytic on and

within each Bj; there the results were concerned primarily with geometric

degree of convergence, as in the last part of §6.

Except for the case that Tp has multiple points, Theorem 1 with Theorems

3 and 6 represents a relatively complete and satisfactory treatment of Prob-

lem ft, the study of approximating functions bounded in a region Z>0 = .D+the

closed interiors of the Bj, ior approximation on a subset D0 — D of D0, where

the function approximated is analytic on D0 — D but not throughout D0 and

satisfies certain continuity conditions on a larger set Do — D-\-Dp-\-Yp. This

was formulated [6] in 1946 as an open problem which it would be desirable

to solve.

By way of contrast, Problem a is concerned with the relation of con-

tinuity properties on Tp of a function analytic on D0 — D-\-Dp, to degree of

convergence on Tp itself [compare 9 and 10].

No method is known for treating this Problem ft other than the one

presented here, and indeed this Problem ft was the occasion for the prelimi-

nary investigation of the conformal mapping [12 ] used, and for the study of the

special series of interpolation [13] whose properties are essential in our treat-

ment. We have needed the relation

Wn(z)
0<ii^   y-V   ^ Ai,

[«(«)]-
which itself is satisfied [compare 4, Theorem 2.5.7] if points of interpolation

are chosen equally distributed on a level locus of | u(z) \, and the poles also

equally distributed on such a level locus, the curves Cy being analytic. But

unless the development of f(z) is a series of interpolation, such that the

difference of two approximating functions s„+i(z) —sn(z) is a rational function

of degree re + 1, whose poles are known at least roughly in location, we are not
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in a position to derive (12) and (13) as a consequence of (11), and thus are

not in a position to derive (2).

8. Extensions. Inequalities (1) and (2) are expressed for discrete values of

re = l, 2, 3, • ■ • . Functions f\(z) exist for continuous values of X (=il) as

well, if we set f\(z) =fn(z) when l^w^X<re + l. The analogues of (1) and (2)

persist:

| f(z) - fx(z) | £ A { e-x''7X»+a,      z on B,

\fx(z) |   S AUx{1-<,)lT/^+", z in D.

A change of variable here eliminates r, and we may still assume for the new

X,X^1.
Theorems 1 and 3 have immediate applications to the study of extremal

approximating functions. If M (>0) is given, there exists [2] an extremal

function cpM(z) analytic and in modulus not greater than M in D such that

[max |/(z)—c6m(z)| , z on B] is least. Indeed, for fixed M we consider a se-

quence of functions o6$(z) each analytic and of modulus not greater than

M in D such that the measure of approximation of <pm(z) to f(z) on B ap-

proaches the greatest lower bound mia of measures for all such functions. In

both parts of Theorem 1 (extended in the first part so that /(z) is bounded

but not necessarily continuous in a neighborhood of B and in the second part

so that fn(z) is not necessarily continuous on B) the function f(z) exists

analytic and bounded in some D„(a<p) taking almost everywhere on B the

given boundary values, so any limit of the sequence log | <pm (z) — f(z) | is

dominated in D„ by a fixed function harmonic in D„ whose continuous bound-

ary value taken on B is log tkm and on T, is some log M0 independent of j;

thus an extremal <j>m(z) exists. Let P„(2) denote these extremal functions for

the sequence

(32) M = Aoen<-1-^lr/n"+c',

where ^40(>0) is arbitrary. For suitably chosen but fixed k we have with the

notation of (2) for every re sufficiently large

^2g(n-A)(l-p)/r/(-w  _   ky+a  g   4oe»(l-,,)/'/n"+a,

so it follows from Theorems 1 and 3 (slightly extended to admit discontinui-

ties of f(z) and the/„(2) on B) that we have for re sufficiently large and with

suitable choice of A 0'

[max I /(z) - Fn(z) I , z on B] g [max | f(z) - f„-k(z) \ , z on B]

= ^ie-(B-*)"/V(» - k)p+a = Aoe~nplr/np+a;

with suitable choice of A0' the inequality between these extreme members is

valid for all re. Thus we have shown that under the hypothesis of Theorems 1

and 3, if the Fn(z) are the extremal functions corresponding to (32), then the ex-

treme inequalities of (33) are valid.
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Again under the hypothesis of Theorems 1 and 3, if m (>0) is given,

there exists [2] an extremal function <pm(z) analytic and of least maximum (or

supremum) modulus in D such that [max \f(z)—<bm(z)\, z on B]^m. If

f>„(z) is the sequence of extremal functions for the sequence m=Ae~nt,lr/np+a,

where A is arbitrary, it follows by the method just used that we have for every re

| $n(z) |   ^ A'en<-1-":ilT/np+a, z in D.

Theorem 1 can be generalized by considering more general conditions

than those of Lipschitz. If in the first part of Theorem 1 we replace the condi-

tion that f(z) shall belong to L(p, a) by the condition that f(z) be analytic

in D„, continuous on rp, and that/(p)(z) should exist on Tp and possess there

the modulus of continuity oi(5), the second member of (10) is replaced by

Au(l/n)/np, the analogue (and extension) of (14) is valid, and we have (1)

and (2) except that l/rep+a is replaced by co(l/w)/rep (compare [ll, Theorem

2.1; 14]). Conversely, suppose for p^l that the/„(z) exist analytic in D and

continuous on B such that

(34) |/(z)-/n(z)|   ^ Aie-n"lrQ(n)/np,     z on B,

(35) | fn(z) |   S /l2e"(1-',>/T0(»)/«p, z in D,

where Q.(x) is a non-negative function which is nonincreasing for x sufficiently

large such that f™[£l(x)/x]dx exists. Then the two-constant theorem yields

M„^AbQ(n)/np on Tp by (34) and (35), and we have

Mn + Mn+i + ■ ■ ■ S Ao^(n)/np-\

from which it follows [10, Theorem l] that/(p_1)(z) exists and has a modulus

of continuity co(5) in terms of arc length on Tp such that

t/» a/8 /» oo -

5 I       Q(x)dx +  J     [0(x)/x]cfx   ,     0 < 8 ^ 1/a,
J a J 1/S J

where a is suitably chosen independent of 5.

9. Further remarks. Although results on the theory of approximation by

polynomials [l] historically preceded results on approximation by bounded

analytic functions, the latter can at times be used to yield simple proofs of

known results [4] on approximation by polynomials. For instance let B be

a finite set of mutually exterior Jordan curves Bj, and suppose polynomials

fn(z) of respective degrees re (>0) are given such that

(36) \f(z) -fn(z)\   ^ Aie-»s/np+a, z on B,

is valid (0<a^l, 5>0). Then we have

(37) | /n+1(z) - fn(z) |   g Aie-»s/np+", z on B,

and fn+i(z)—fn(z) is a polynomial of degree re-f-1. Let G(z) denote Green's

function with pole at infinity for the infinite region D' bounded by B, and let



1958] BOUNDED ANALYTIC FUNCTIONS 483

G„ denote generically the locus G(z)=cr (>0) in D'. It follows by the gen-

eralized Bernstein Lemma [l, p. 77] from (37) that we have (7>5)

|/n+i(2) -/„(*) |   g A2e^-V/np+o, z on Gy,

from which we have by (14) and (17)

(38) | fn(z) |   g ^3en(7-S)/wp+a, 2 on Gy.

Inequalities (36) and (38) can be identified with (1) and (2), for in the nota-

tion of Theorem 1, where D is bounded by B and Gy, U(z)=G(z)/y, r = 1/7,

5=p/r, 7 —5 = (1—p)/r, whence rp is Gi, namely the locus G(z)=7p = 5. The

conclusion of the second part of Theorem 3, a consequence merely of (36),

is that/(z) is of class L(p — I, a) or 2p_i (if a = 1) on Gs provided G& has no mul-

tiple points; this conclusion is independent of the auxiliary number 7 (>8).

It is in fact immaterial here whether the locus Gy consists of one or of

several Jordan curves; in the latter case the second part of Theorem 1 applies

to each region bounded by one of these Jordan curves and the subset of B

interior to it.

Theorem 1, thus applied to the study of approximation by polynomials,

admits also a corresponding application to the study of approximation by

more general rational functions, under suitable conditions. As an illustration,

suppose u(z) is defined by (3), and that for a function/(z) defined merely on

B: \u(z)\ =ed° we have (d>d0, 0<a^l) for w=l, 2, 3, • • •

(39) |/(z) - /„(*) I   g Aie-»(d-d°)/np+°, 2 on B,

where (in the notation of §1) B is also 77(z) =0, and/„(z) is a rational function

of degree re whose poles lie in the set (Bi, B2, • • • , Bn); of course fn(z) need not

be determined by interpolation, but may be for instance the rational function

of the type prescribed of best approximation to f(z) on B in the sense of

Tchebycheff with continuous norm function. From (39) we deduce for re

sufficiently large

(40) I /»+i(z) - fn(z) I   ^ 2Aie-^d~d^/np+'', z on P.

The function fn+i(z) —f„(z) is a rational function of degree re + 1 whose

poles lie in the set (Bi, 82, • • • , Pn+i), from which by (40) there follow [13,

Lemma 3] with C: |m(z)| = e*i, di>d,

(41) |/»+iO0 -/.(*) I   ^ A,e*<*-*>/nr*>, 2 on C,

(42) |/„(z)|   gi4«»(JH)/«f+«)ZOnC.

Inequalities (39) and (42) can be identified with (1) and (2), sufficient for

the conclusion of the second part of Theorem 1 or of Theorem 3. It thus

follows merely as a consequence of (39) that f(z) can be extended from B so

as to be analytic interior to, and of class L(p—1, a) or ZP_i (if a = 1) on, the

locus |«(z)| =ed.
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