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1. Introduction. Let {X(t), t^O} be a symmetric stable process on the

real line, with exponent a, 0<a<2, and with the initial value A"(0)=0. We

may assume [3] that with proper normalization the paths X(-) are right

continuous functions of <^0, bounded on finite /-intervals.

For such a process, if I=(a, b) is an arbitrary (finite or infinite) open

interval containing the origin, the random variable

T = T(X) =inf [t ^ 0| X(t) ($/},

that is, the time of first passage from the interval /, is measurable on the

sample space of the process. So likewise is the place of first passage, X(T).

The process in question is known [5] to satisfy an extended Markov prop-

erty:

Y(t) = X(T + t) - X(T), t ^ 0,

defines a process equivalent to the original one and independent of the values

{X(t), 0^/g/j of the original process up to the first passage time.

Using the extended Markov property and a method of analytic con-

tinuation, we will derive some properties of the joint distribution of T and

X(T). One explicit formula will appear: for o= — », the distribution of the

place X(T) of first passage from the origin across the point 6>0 has the

dcnsity

d       , ,      sinira/2   1 /    b    \a'2
-Vr{X(T)gx\ =-(--)    , x^b,

(1) dx ir x \x — b /

= 0, x < b.

In particular, for 0<a<2, the first passage occurs continuously with proba-

bility zero.

An equivalent formula can be given for the stable process with an absorb-

ing barrier at b: the derivative

d
Po(x, t) = — Pr {X(t) £x;T> t]

dx
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exists, and

/»oo 1 *■ min(6,&—z)

p0(x, t)dt = ——— d^'2-Ki +\x\ y>2-\   x s b,
o (T(a/2))2J0

(2)
= 0, x > b.

Although explicit formulas have been found for the distribution of T in

the case a= — oo [l, 2] and for fo*Po(x, t)dt in the case a = l, a, b finite [6],

our method does not yield them. However, some information can be derived

concerning the resolvent of the absorbing barrier process in the general case.

Similar properties to those which follow have been proved recently by Joanne

Elliott [4] by analytic methods.

Note added in proof: The combinatorial lemma which forms the basis

of [l ] and [2 ] has recently been proved by methods similar to those of this

paper. An equivalent proof, by J. G. Wendel, will appear in the Bulletin of

the American Mathematical Society.

For (a, b) an arbitrary open interval containing the origin, but not the

entire real line, let Po(x, t) be defined as above. The resolvent fc7e~>LtPo(x, t)dt,

X^O, vanishes for x outside (a, b), and is continuous at the boundaries a

and b; in fact, as x decreases to a,

)    truP0(x, t)dt = 0((x - a)"'2), a> - oo, X £ 0,

(3) ° .    .
= 0(|*|-<1+«>), a=-oo,X>0,

= 0(|a;|-(1-«/2'),        o= - oo, x = 0,

with a similar behavior at b. The resolvent is the sum of a singular part and

a regular part:

f   e~^Po(x, t)dt = 5x( | * | ) - R\(x -a)- R^(b - x),
(4) Jo

X ^ 0, a < x < b.

The singular part, independent of a and b, is the resolvent of the original

process, if X>0, or its finite part, if X = 0:

1   r°°   cos £z
Sx(?) = - —-dz, X > 0,

TT  Jo        X + Z"

(5) = (2 cos xa/2 r(a))-1{«-1, X = 0, a ^ 1,

1 1
= — log — > X = 0, a = 1.

The regular part R\(!-) =R% (I) depends on a and b as well as X as parameters,
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and vanishes if the corresponding boundary is infinite. 5\(£) and R\(£) are

each infinitely differentiable for 0<£< oo. If X>0, S\(£) and R\(£) are com-

pletely monotonic: that is,

d"
(-1)" —Sx(*)£0, X>0, n = 0,1,2, •• -,

d$?

(-1)- —*x({) £0, X> 0,n = 0,1,2, •• • ,
dp

while if X = 0, —(d/d£)S\($i) and —(d/d£)R\(£) are completely monotonic: the

above equations hold for » = 1, 2, • • • .

2. The D6sire-Andre equation. The basis of our study is the form of the

extended Markov property which is sometimes called the Desire-Andre equa-

tion. Denote by I the open interval (a, b), by /' its complement, and by

p(x, t) the transition density for the stable process,

p(x, t) — — I    dz cos zx e~~'*a.
ir J o

Denote again by Po(x, t) the derivative of the distribution function

Pr{ X(t) <x,T> t],

the existence of which follows from the fact that

Pr \x < X(t) <x',T> t\ g Pr {x < X(t) < x'\

= f pfotw.

Then the extended Markov property immediately implies the Desire-Andre

equation

(6)     p(x, t) = P0(x, t)+  f   f   p(x-y,t-t')Fr{TG dt', X(t) G dy].
J I' J 0

We note for future reference that because of (6) P0(x, t) is for each t>0 a

continuous function of x; hence in particular Po(a, t) =Po(b, t) =0.

For X>0, z real, define

*(X, z) = f  e~u f eu* Pr { / G dt, X(l) G dx}
Jo J I'

= £{r*Vr<*>},

^(X, z) =   \    dt I dxe-uei!XP0(x, t).
Jo       JI
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Then upon taking the Laplace transform with respect to t and the Fourier

transform wth respect to x of equation (6),

X+ I z\a X+ | z|a

for X>0, z real.

3. The single absorbing barrier. Specializing to the case a= — oo, b>0,

we can make use of the fact that since 1= (— oo, b), I' = [b, oo), the integrals

defining cf>(\, t) and ^(X, t) for fixed X>0 converge for Im z^O, Im z^O, re-

spectively, and that e~ubcf>(\, z) and e~Ub^(\, z) are bounded analytic func-

tions in the upper and lower half planes, respectively. Set

$(z) = e-ubz-"l2cb(X, z)

for O^arg zS-ir- $ is analytic in the upper half plane and because of (7), $

has the analytic continuation

*(z) = e-"bz-ai2(l - (X + z°)f(\, z))

for —7r^argz^0. We have, again using (7),

$(reiT) = eirbe~iTal2r-al2cb(\, —r)

= eirbe-iral2r-"l2(l - (X + ra)^(X, -r)),

$(re-iT) = eirbeiTanr~aiiri - (X + e-"ara)^(\, —r))

1 — (X + e-ilara)
= eirbeiral2r-a'2- cb(\, -r).

1 - (X + i-)

If a.= 2, then

&(rew) =<b(re~iT):

it follows that e~"\p(X, z) is a bounded entire function, hence a constant:

<KX, z) = cxeub,

1 — c\eitb

w'"-T+7-

Since ^(X, z) is analytic in the lower half plane,

ex = <r(X)1'\

yielding the well known formula for the first passage time distribution for

Brownian motion.

When 0<a<2, <J>(z) is bounded for — irgarg zr^ir, \z\ ^5>0, and tends

to zero as z becomes infinite along the rays arg z= ±w. Hence by the Phrag-
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men-Lindelof Theorem [7], $(z) tends to zero as z becomes infinite, uniformly

for |argz|^7r. By a similar argument, zal2$(z) is bounded for \z\ ^5,

|argz| ^tt.

We next apply the Cauchy integral formula to<J>, integrating (w — z)~^(w),

for fixed z>0, about a contour consisting of the circles |z| =5, \z\ =R, con-

nected by line segments along argw = ir and argw=— ir. Because of the

properties of <t> given in the last paragraph, the contributions to the Cauchy

integral formula from the circular parts of the contour vanish as 7? becomes

infinite, and 5 tends to zero. In the limit, the formula becomes

*(z) = e-izbz-"l2a,(\, z)

1     /•"     dr

2m Jo    r + z

sinira/2  r*     dr
=- —— r-'*e«(l - X*(X, ~r)),

ir      Jo    r + z

or,

sinW2  r°°     dr
(8) d>(\, Z)   =  -—   I -r-<,/2e,(r+l),6(1   _  X^,(X)   _rz))_

ir      Jb    r + 1

Now as X decreases to zero, d>(\, t) increases to

remaining bounded in absolute value by one. Likewise, (7) implies that

X^(X, — r) tends boundedly to zero, whereas r-a/2(r + l)_I is integrable on

(0, oo). Thus (8) becomes

sina-a/2  /*°°     dr
4,(0, Z)   =  -—   | - r-a/2gi(r+l)z»

ir      Jo    r + 1

sinira/2  C" dx/    b    \"12

ir J b     x\x — b)

This equation and the uniqueness of the Fourier-Stieltjes transform imply

the result (1).

Turning to the result (2), we use (6) and the remark after (6) to write

Po(x, t) = P0(x, t) - Po(b, t)

= P(x, I) - p(b, t)

-  f     f  Pr {T G dt', X(T) G dy\(p(x - y, t - t') - p(b - y, I - t')).
J b   Jo

Now when neither y nor / are zero, p(y, t) —p(y', t) is integrable with respect
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to t, and in fact,

/"*                                       1   c°°  cos yz — cos y'z
(p(y, t) - p(y', t))dt = - -'--'— dz

0 IT  Jo Z"

sinira/2  r°°                              dw
=-'— |    (e-\v\» - e-\y'\")-

t      J o wa

Thus for x<b, X5*0, the above and (1) imply

/,x                       sin7ra/2  ["*                            dw
Po(x, t)dt =-— j    (e-i^» - e-b")-

0                                                  T          J 0                                               W"

/sinxa/2\2 /•"   dy/    b    \"12 r'  dw

\      T     / J 6     y \y — b /    Jo     wa

/ sin ira/2 \2 /* °°     d-y r x dw
— [   ___   1 _1_y-a/2   I _(g-|i|w _ g-bw _[- e-i>v"> _ g-(.bv+b-z)w\

\       ir       /Jo^+l J o     w"

(sin7ra/2\2  /»»/•» dy<fw
__ j   I      |     __(yw)~al2 (e~Mw — e~biv+w)+xw)

t      JJ0Joy + w

/sinira/2\2  /•«/•«> rfWw
= ( -— I   I      J     —— (p)-«^ (e-i*i» - *-»(»+»>+*»).

\ 7T JJoJoy + W

But

g—|x|w^—min (6,6—x) (y+u>)   __   g— 6(i/+u>)+xw #  < 0

= e-» <»+«>+« a; > 0.

Hence in either case

Po(x, t)dt

/sinra/2\2 r°° f<*> dydw
—  I  _—   J     I I        _L_ (aito)-"'2 ^—l*l»(l  _  e-(v+«>) min (6,6-z))

\     ir     /JoJoy + w

(sinira/2\2  /• °°       7* °° /.min (6,6-1)
-— )   I    dy I    &(ya))-«'2rlIl» I «-<»+«>{#

7T          /    J o            J 0                                                  Jo

/sin7ra/2\2 -min (6.6-z)

= ( —^~ ) (r(! - «/2))2J rf^(1-/2)a +  1*1 )-«-<"»,

which is just the result (2).

4. The resolvent in the general case. If a and b are finite, then ^(X, z) is

entire and </>(X, z) =<£r(X, z)+cj>i(K, z), with #r and cpi analytic in the upper

and lower half planes, respectively. The analysis of the preceding section

leads to an equation similar to (8), but yields no explicit formulas. An ap-
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proach based on (6) appears more fruitful in deriving general properties of

the resolvent of the absorbing barrier process.

We assume, as we may without loss of generality, that b < °o. Then as

in the preceding section

/> 00 y*  00 /% 00Po(x, t)dt =  I    Po(x, t)dt -  I    Po(b, t)dt
o J o "Jo

sin 7ra/2  ("°                            dw
= - I     (("-"'M — g-"!-) -

IT J 0 W"

sin™*/2  f       .                     .   f °°                                      dw
-— j     Pr \X(T) G dy\  j    (<>-«> <»-*> - e-w<-"-^)-

IT J b Jo W"

sin ira/2 /* °       .                     .   f"                                     dw
-I     Pr {X(T) G dy]  f    (*—<*-»> - e—"->/))-

IT J-«, Jo Wa

But by (5), if y and y' are positive,

sin 7ra/2  C °°                            rfw       sin ira/2 /•»'   d£
- I     («-» - «~"Q -= - T(2 - a)  I      —

K Jo W T Jy       i,2-"

= So(y) - So(y').

Hence, with reference to (4),

d sinira/2 C °°       , .
_      *„+(£) =- p(2 - a) I      Tr{X(T)G dy} ({ + y - 6)-«->;

di, it J b

it follows that — <7R<J"(£)/<f£ is completely monotonic for 0<£<°o, as are

also -<£7?0-(£)Af£and -dSo(£)/dk.
For X>0, taking the Laplace transform of (6),

/'°°                              1    C °°   cos xz
e~uPo(x, t)dt = — I      -dz

0                                           IT J o      X + Z"

/•x    .                                ,   1    f °°  cos (x — y)z
E{e~XT; X(T) G dy} — -— dz

b ir J o X + z"

/•    , .   I    f °°  cos (x — y)z
E{e~^; X(T) G dy} - dz,

-oo IT  J 0 X +  Za

where E{e~xr; X(T)Gdy} is the measure

/i  00

e-*'Yr{TGdt;X(T)Gdy}.
o

Now it is easy to show that for £>0, X>0,
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1    r °°   cos £z sin ira/2  Cw w"dw
Sxtt) = — -dz = - j    *-«"-;

tt J 0     X + z" ir      Jo X2 + 2\W cos ra/2 + w2a

from this and (4) it follows that

sin7ra/2 /*°°                           Wdw
Rj-(£) = -'— I    e-«»-

ir      J o X2 + 2\wa cos ira/2 + w2a

/OO

e_(!/_6>»£{e-xr. X(T) Edy).

The last two equations imply that for X>0, S\(^) and 7?x (£) are completely

monotonic for 0<£< <*>. A similar equation and result hold of course for

*r(*).
Suppose now that a = — oo ; then i?x (?) vanishes. By a change of variable

and an easily validated interchange of limit and integration,

sin 7ra/2 /* °° Wdw
lim Zl+aR>t(S) =-lim   I    e~w -
t^« tt      {-» Jo X2 + 2Xw°Ta cos 7ra/2 + w2afia

/e-(«-6)u,/i£|e-xr. X(T) E dy]
b

sin ira/2 , ,
= -T(l + a)E e-xr .

irX2 l '

Since, similarly,

sin ira/2
lim £1+"Sx(S) =-^- T(l + «),
{->» 7rX2

the second result under (3) has been verified.

If X = 0, a= — oo, then because of the explicit expression (2),

lim   I xl1-"'2 f   P0(x,t)dt=-   lim     f   ^a/2_1(l + £/ UI )a/2_1
»-.--'     ' J„ (r(a/2))2*-.-» J0 '     '

Ja/2

" r(«/2)r(i + «/2)'

yielding the third part of (3).

For a > — oo , the fact that for all x, x'

f   Po(i, t)dt, = Pr \x < £ < x'; a < X(t) <{,0^^/j
J z

£ Pr {* < £ < *'; a < X(t), O^rgl)
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implies, because of (2),

/l  00 y» 00e-xtPo(x, t)dt ^   I    Po(x, t)dt
o J 0

J r. min   (|a|,x— a)

^- | <*K"/,-,te + 1*1 )a/2_l(r(«/2))»J. wt i   m

for ;>c>a. Hence for X^O,

/i ooe-x,P0(*, 0*
o

g,r/        "f" (* - a)""'2 fI_V'2-1(l+ |*| )«'2-1(r(a/2))'! tla Jo

| a I"'2"1

~ r(«/2)r(i + o/2)'

which is the first part of (3).

We remark finally, without giving details, that using the methods of this

section and Equation (8) and its analogue for a and b finite, one can prove

that as x decreases to a,

/I  00

e-x'Po(*, t)dt ~ Cx(x - a)*'2;
o

hence the result (3) gives the correct orders of magnitude in all three cases.
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