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1. Introduction. The principal advantage of finite difference methods for

approximating the solutions of partial differential equations over classical

techniques of solving boundary value problems, such as separation of vari-

ables, transform methods, or the use of Green's functions, is that the differ-

ence methods may be applied successfully to nonlinear differential equations.

We shall be concerned in this paper with the question of convergence of the

solutions of various analogues of the quasi-linear parabolic differential equa-

tion

d / du\ du
(1.1) —I p(x, t) — J - q(x, t, u) = r(x, t, u) —

dx \ dx/ dt

to the solution of (1.1) for the first boundary value problem

u(x, 0) = f(x), 0 < x < 1,

(1.2) u(0,t)=g(t), t>0,

u(l, t) = h(t), t > 0.

The (& + l)-dimensional generalization of (1.1),

d   /     du\ d   /     du\ du
(1.3) -(p -)+•••+-[p—)-q = r — ,

dxi \     dxJ dXk \     dXkl dt

will also be treated. The only previous articles of a rigorous mathematical

nature treating the convergence problem for quasi-linear parabolic equations

are the extensive discussion by Fritz John [ll] on the use of explicit differ-

ence equations for the initial value problem on the infinite interval — oo <x

< oo and a short article [3] of the author's on the application of the backward

difference equation to a slight specialization of (1.1).

Specifically, it is the object here to extend results known previously for

a number of difference equations for less general differential equations, ac-

tually with the one exception mentioned above linear and with constant

coefficients, to convergence theorems for (1.1) and (1.3). An alternative proof

to the one given in [3] that the solution of the backward difference equation

converges to the solution of (1.1) or (1.3) is given. The Crank-Nicolson equa-
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tion [5; 12; 16] is treated in two forms, one which is a straight-forward gen-

eralization of the usual Crank-Nicolson equation for the heat flow equation

and requires the solution (by iteration, presumably) of a system of nonlinear

algebraic equations at each time level and a modified form applicable to (1.1)

requiring the solution of only linear algebraic equations at each time level.

In addition, a high order correct difference equation [4; 5] is extended to a

specialization of (1.1).

It should be noted that each of the difference equations to be treated is

implicit. In distinction to John's case of the initial value problem on the

entire axis, the advantage in the bounded region case of taking considerably

larger time steps than one can with the usual explicit relations more than

makes up for the slightly larger amount of computation necessary to move

ahead one time step for analogues of (1.1). For example, the number of cal-

culations per grid point for evaluating the solution of the most obvious ex-

plicit analogue of the heat flow equation is five, while for the Crank-Nicolson

method it is eleven by use of elimination; however, as p, q, and r become more

complex, the ratio of these numbers becomes somewhat smaller. Since for

(1.3) a rather good initial guess is easily obtained, the number of iterations

necessary for adequate precision in the solutions of the linear or nonlinear

algebraic equations is small enough again to provide an advantage to the

implicit methods.

There are quite a few physical problems which appear not to be in the

form (1.1) that can be reduced to this form by simple variable transfoima-

tions. For example, the equtaion

d / dv\ dv
(1.4) lp(XttjV) — \-q(x,t,v) = r(x,t,v) —

dx \ dx/ dt

when p=px(x, t)p2(v) can be transformed into the form (1.1) in terms of the

dependent variable (

(1.5) „ =   I    pi(z)dz.

The method of proof used throughout this paper is basically a generaliza-

tion of the technique based on stability analysis introduced recently [5].

This is combined with a variational attack based on the Courant minimax

principle [l, Chapter VI] applicable when the various matrices arising in a

related eigenvalue problem are symmetric and with a fixed point argument

otherwise. It is convenient to treat the linear case of (1.1) first for two

reasons: first, the results obtained can be applied in the nonlinear case to

simplify several arguments, and, second, each of the devices used in the

proofs for the nonlinear equation is illustrated in a somewhat simpler prob-

lem. Two preliminary sections precede the main body of the discussion. The

first summarizes the minimax principle and the lemmas that follow from it
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that we shall need, and the second outlines stability and its consequences for

linear difference and differential equations.

The following notation will be convenient. Let Ax divide one, xt = iAx,

and tn = nAt. Denotef(x{, tn) by/,„, and let A2Jin= (/i+i.„-2/,-„+/,-_i,n)/(Ax)2

be the centered, divided second x-difference of/ We shall indicate the vector

with components fo, fi, • • • ,fN, NAx=l, by/n.

2. Some preliminary remarks on eigenvalues. The location of the eigen-

values of the self-adjoint, second order, ordinary difference operator

(2.1) Ax(pAxw)i — qtWi,

where

pi+l,i(wi+i -  Wt)   -  pi-in(Wi -  Wi-i)
(2.2) Ax(pAxw)i =-—-,

(Ax)2

will be of considerable interest in the analysis of the stability of various

analogues of parabolic differential equations. It is well known [l, Chapter

VI ] that variational methods are very useful in determining qualitative be-

havior of the eigenvalues of the differential analogue

d /    dw\

dx\     dx J

of (2.1). Fortunately, it is a simple matter to translate the desired results

in the differential case to the difference case; for completeness, these results

will be sketched here.

For simplicity, let us consider the boundary conditions

(2.3) wo = wn = 0.

Let T denote the operator (endomorphism) on the space 5 of (7V+l)-tuples

of complex numbers corresponding to (2.1) and (2.3); i.e.,

0, i = 0,

(2.4) (Tw)i = ■ Ax(pAxw)i - qiWi, i = 1, • • • , N - 1,

0, i = N.

Let

1      ^
(2.5) (w,z) = X Wizf

iV + 1 ,_o

be the inner product on S; thus, 5 is an (TV+l^dimensional unitary space.

The norm ||w|| of w is the positive square root of (w, w).

The eigenvalues of T are those complex numbers X such that there exists

a solution of the pair of equations
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(2.6) Tw + \pw = 0,        (w, pw) = 1,

where p,->0; the solutions are the eigenfunctions. Now, it is clear that the

transformation T is real and symmetric for real p and q; consequently, in

this case, it is well known [9] that the eigenvalues are real and that the eigen-

functions can be chosen to be real and are complete. Moreover, if p and q

are positive, the eigenvalues are positive. For, if w is a real eigenfunction

corresponding to the eigenvalue X,

J N-l

X = — (Tw, w) =-Z \Ax(pAxw)i — qiwAwt
N+ltfi

(2.7)
1          »                  /Wi-Wi-l\2 1        *£? 2

=    „r    i     «   Z Pi-l/A -"-J    +    „     ,     i    __   liWi,
N + 1 i=i \      Ax      /       N+1 ,_i

by Abel's transformation [18, p. 3].

One of the most useful ideas in the study of the qualitative behavior of

eigenvalues of differential equations is Courant's minimax principle. The

following is a special case of the minimax theorem for Hermitian operators

on a finite dimensional unitary space [9, p. 151]:

Theorem 2.1. Let the eigenvalues (not necessarily distinct) o/ T be ordered

by XigX2g • • • gXjv+i. Let M be a linear mani/old in S, and write

n(M) = sup {(Tw, w)/(w, pw) :0^ipG M ].

Define, for k = l, ■ ■ ■ , N+1,

Pt = inf \n(M): M £ S, dimension (M) = k\.

Then, \k=p.k, k = l, ■ ■ ■ , N+1.

If in S we use the natural basis e(4), e<f) = (N+l)hik, k = 0, • • • , N, then

it is obvious that e(0) and em are orthogonal eigenvectors with eigenvalues

zero corresponding to the boundary conditions (2.3). Moreover, if we set

(2.8) S* = \w: wo = wn = 0],

it is clear that the remaining, interesting eigenvalues are determined by the

restriction of the minimax principle to S*. We shall restrict our attention to

S* and renumber the remaining eigenvalues Xi, ■ • ■ , X^_i.

Let us apply the minimax principle to find the variation of the eigen-

values of (2.6) with the variation of the coefficients p, q, and p. Let the de-

pendence of the eigenvalues on these coefficients be denoted by X,-(£, q, p).

First consider the case gt=t0.

Theorem 2.2. Let p?21/2^p?21/2^0, q^^qfAO, 0<p<1,gpf. Then,
X,(P(1), <z(1\ p™)^MPw, Qm, P(2>), »-_,■•■, N-l.

Proof. By (2.7),



488 JIM DOUGLAS, JR. [November

(Tw, w)       (  » (Wi- Wi-X\      *£»       A   / ^        2
--r = 1 2-, Pi-1/2 I-:-) + 2^ <liWi 1 /   2^ PWi-

(w, pw)       \ ,_i \       Ax      /        ,_i        / /     i_i

Hence, it is clear that p(M; p<-l), q^\ p<») ^n(M; p(2), g(2), p(2)) and, con-

sequently, that p.k(pw, o(1), p(1)) ̂ uk(pm, o(2), p(2)). By the minimax principle,

the theorem is proved.

In the general case, a complete description is a bit messy. Actually, it is

sufficient for our purposes to be able to bound the eigenvalues from above

and below. Assuming the eigenvalues to be ordered by Xi^X2^ ■ ■ ■ ̂ Xjv-i.

we can prove the following result:

Theorem 2.3. Let 0<p*Spi-inSp*, \q,\ Sq*, 0<p*SpiSp*. Then,

Xi(i>i_i/2, q„ Pi) > - q*/p*

and

XN-i(pi-i/i, qi, Pi) < q*/p* + 4p*/p*(Ax)2.

Proof. For any w^O,

(Tw, w)        »=}       2   / ™       2        -q*
-- > 2-, qw* /  lu Piw< = — •

(W,pw) i=i I        ,-_i p*

Hence, by Theorem 2.1, the inequality for Xi is proved. To demonstrate the

inequality for Xjv-i, it is sufficient to note that the method of proof of Theo-

rem 2.2 implies that

\N-i(pi-i/2, qit pi) S \N-i(p*, q*, P*),

since the unnormalized (N-l)st eigenfunction of

2
p*Ax cbi - q*cbi + \p*cbi = 0, cb0 = cpN = 0,

is </>j = sin (N—l)irXi and its corresponding eigenvalue is

q* Ap* (N - l)x
\N-i(p*, q*, p*) = — + sin2-—-

p*       p*(Ax)2 2N

3. Stability. The concept of stability of difference equations is due to von

Neumann and was first described in the literature by O'Brien, Hyman, and

Kaplan [16]; however, they gave no demonstration of the relation between

stability and convergence. Later, Lax and Richtmyer [13] and the author

[5] independently gave proofs that, under certain other conditions, stability

is sufficient to imply convergence of solutions of linear partial difference

equations to solutions of linear partial differential equations. In addition,

Lax and Richtmyer proved that in a rather natural sense stability is also

necessary for convergence.
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The aproach to the problem of the relation between stability and con-

vergence taken by Lax and Richtmyer and the author differ somewhat. Their

results are limited to systems of difference equations involving the values of

several dependent variables at two time levels, and those of the author to a

single difference equation in one dependent variable involving its values at

several time levels. The number of independent variables is immaterial in

either case. Finally, they obtain convergence under much less restrictive con-

ditions, but do not obtain the rate of convergence, as the author does.

In this paper we shall be interested only in difference equations of the

form

(3.1) AnWn+l   =   B„W„ +  bn

where An is a nonsingular matrix for every w. Equation (3.1) is linear if An

and Bn do not depend on wn or wn+i and is nonlinear if either does. We shall

treat several difference equations for which both An and Bn depend on both

wn and Wn+i-

Definition. The linear difference equation of the form (3.1) will be called

stable if, for every possible choice of the vector wn, 6„ = 0 implies that

H-VhII = (1 + ^A/)|jw„||,

where A is independent of w and At.

There will be no need to define stability for nonlinear equations (3.1),

since stability will be used in a modified manner then.

A method [5] of demonstrating convergence from stability for linear par-

tial difference and differential equations will be outlined. The solution w of

the difference equation for which (3.1) is a difference analogue can usually

be shown to satisfy a difference equation

(3.2) AnUn+l   =   BnUn + 0„ +  hn,

where A„, Bn, and o„ are the same as in (3.1) and hn is the elemental trunca-

tion error resulting from replacing derivatives by finite differences at a point.

Let

(3.3) Vn   =   Un  —  Wn

denote the overall truncation error. Then, z/„ satisfies the difference equation

(3.4) AnV„+-i = Bnvn + hn.

The analysis of vn can be simplified by the following time-wise superposition:

»-l     (i)

(3.5) Vn =   JZvn    ,
i-0

where vnl) satisfies the difference relations
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(A)
vn    =0, n S k,

(fc)

(3.6) AnVn+l  =   K, W  =   k,
(A) (A)

AnVn+l = B„vn    , n ^  k + 1.

Assume that

(3.7) \\A~)\ S M = M(At,Axu- ■ ■), n = 1, 2, • • • ,

and that (3.1) is stable. Then,

(3.8) H^ll <S M(l + AAt)n-k-)\hk\\

and
n-l

(3.9) \\vn\\ S M \Z (1 + ^A/)"-MW|.
A=0

Now, with T^jAt,

(1 + AAt)> g (1 + AT/j)> < eAT.

Thus, for /„ S T,

n-l

(3.10) ||»,|| S MeAT 2Z \\hk\\ ̂  MeATH/At,
A=0

if ||^a|| SH. In the problems we shall treat later, the stability of the backward

difference equation will imply that M—0(At), and H=0((Aty) under cer-

tain restrictions; hence

(3.11) IWI = 0((AtY).

This can be extended to imply that an interpolation of w converges to u

in L2 with an error which is 0((AtY).

The question of determining the stability of (3.1) arises. The following

procedure, which is used repeatedly throughout this paper, is sufficient to

imply the desired stability. Consider the homogeneous equation

(3.12) A„zm+i = Bnzm, m ^ n

for each n. We shall attempt to solve it by the separation of variables tech-

nique by assuming

(3.13) Zi,m = amcj>i.

Substituting,

Om+l        Bn<t>

(3.14) -=- = - X.
am Ancj>

Let N denote dimensionality of the vector space. Then, if for each n there
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exist N linearly independent vectors which are solutions of the eigenvalue

problem

(3.15) Bn<p + \An<t> = 0

such that the corresponding eigenvalues are bounded in magnitude by

1+0(A/) uniformly in w and At, clearly the definition of stability is satisfied.

The establishing of the existence of these eigenfunctions will frequently

involve considerable complexity, as in many cases the matrices An and Bn

will not be symmetric.

4. Linear parabolic equations. Consider the first boundary value problem

for the linear parabolic differential equation

d / du\ du
(4.1) — \p(x,t)—)- q(x,t)u = r(x,t)—,

dx \ dx/ dt

where p and r are positive, on the rectangle 0<x<l, 0</</*. Numerous

methods have been studied in the literature for the numerical solution of the

heat flow equation; i.e., p(x, t) =r(x, t) = 1, q(x, t) =0. As an introduction to

the methods to be applied to the quasi-linear problem later and to provide

some useful lemmas for that work, we shall extend several of these difference

techniques to the more general equation (4.1).

As a first example, let us treat the backward difference equation

Ax(pAxw) ,-,n+i — g,-,n+r->,-,n+1 = r,-,n+i(_i,-,n+i — Wij) I At, i = 1, ■ ■ ■ ,N — 1,
(4.2)

WiO  =   UiO,  Wo,n+1   =   MO,n+1,   ~W,n+l  =   MjV.n+l-

To show stability of (4.2) it is sufficient to show for the boundary conditions

(4.3) WO,n+1   =   WN,n+l  =   0

that

(4-4) l^4<l + AAt,
\\Wn\\

where A is independent of w and At. To do this, let us separate variables at

each time step as follows. Let

P(x) = p(x, tn+j),

(4-5) Q(x) = q(x,tn+j),

R(x) = r(x, tn+j),

and consider the difference equation

Ax(PAxz)i,m+i — QiZi,m+i = Ri(zi,m+i — zim)/At,

(4.6) i= 1,- ■ ■ ,N - l,m^n,

Zin  =  Win, Zo,ro+l  =  Zn,m+l  =  0.
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Then, wn+i=zn+i. Now assume

(4.7) ztm = amcbi.

Substituting,

.„    D. <Wl -(Ri/Al)cbi
(4.8) -=-= X,

am        Ax(PAx<b)i - Qrti - (Ri/At)cbi

where X is a constant. For stability of (4.6) it is clearly sufficient that there

be a complete set of TV—1 linearly independent solutions (p(/) of (4.8) such

that |x| Sl+A^l for each of these solutions. Thus, we are concerned with

the eigenvalue problem

/Ri        \ Ri
A^PA^i -(— + Qi)<i>i + --<t>i = 0, i = 1, ■ ■ ■ , N - 1,

(4.9) \Al / XAi

<j>o = cj>n = 0,

which is of the form (2.1).

Let us make the following assumptions on the coefficients p, q, and r of

(4.1) and on At;

(4 io)        P(x' l) = P*>0' I ?(x'l) I  =Q*<CC'

R* ^ r(x, t) ^ R*> 0, R*/At - Q* > 0.

Under these restrictions we know from §2 that there is a complete set of

eigenfunctions and that, by (2.7), the eigenvaluesp;=X_1 are real and positive.

Hence, it is sufficient to show that juy =s 1 — BAt, j=l, • ■ • , N—1. To do this

it is convenient to rearrange the terms in (4.9) as follows:

Ax(PAxcb)i - Qicbi + ( — - 1 ) — cj>i = 0,
(4.11) \X /At

4>0  =  CJ>N =  0.

Then, setting v =X_1 — 1, X<1+^4A< is equivalent to v> —BAt. By Theorem

2.3,

(4.12) Vj(Pi-m, Qh Ri/At) > - — At.

Hence, we have proved the following:

Theorem 4.1. If the relations (4.10) are satisfied, then the backward differ-

ence analogue (4.6) of the linear parabolic equation (4.1) is stable.

Note that no relationship between At and Ax was required. This is, of

course, typical of most implicit difference analogues of the heat flow equation.

If the coefficients p, q, and r of (4.1) are twice boundedly differentiable
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in the region Ogxgl, Og/g/*, and uxxxx and uu are bounded in this region,

then by [5] w, as extended to the whole region by bi-linear interpolation,

converges in L2 to w with an error which is 0((Ax)2+A/). Under much less

restrictive conditions on the initial and boundary conditions than are nec-

essary to make uxxxx and utt bounded in the closed region, w still converges to

u in Li [13]; however the convergence will in general be slower than that

above.

The Crank-Nicolson difference equation is well known [5; 12] to be

superior to the backward difference equation for the heat flow equation.

Consequently, it should be of interest to see that it remains stable and con-

vergent for (4.1). Let

.„«„.., . pi+l/2,-m(Wi+l,n  —   Wi„)   ~   />,_l/2,m(w,»   —   Wi-l.j)
(4.13) Ax(pmAxwn)i =-——-

(Ax)2

Then, the Crank-Nicolson equation may be written as

Ax(pn+l/2AxW„+j)i +  Ax(pn+x/iAxW„)i  —  0,-,n+l/2(w,-,n+l +  Win)

Wi,n+1  —  Win

(4.14) = 2r,-.n+l/2-1-, i= 1,- ■ ■ ,N - 1,
At

WO,n+1   =   Wo,n+1,   ~W,„+l  =   MjV,n+l, WiO  =   MiO-

If

Pi—Hi   =   ^,'-l/2,n+l/2,

(4-15) Qi  =   qi.n+1/2,

Ri =  r,-,„+i/2,

a stability analysis of (4.14) may be reduced to the eigenvalue problem

1 - X 22?,
fA  i^ &x(PAx<p)i - Qi<pi + —— — fr = 0,     • = 1, • • • , /V - 1,
(4.16) 1 + X   At

in exactly the same manner as for the backward difference equation. Set

Clearly, a sufficient condition that |x| <1+^4A/ is that p,> — BAt. Now, by
Theorem 2.3,

(4-18) Pi(Pi-m, Qi, 2Ri/At) > - ^— At;
27?*

consequently, the Crank-Nicolson difference equation is stable.

Theorem 4.2. The Crank-Nicolson difference equation (4.14) is a stable



494 JIM DOUGLAS, JR. [November

analogue of the parabolic differential equation (4.1) for all positive Ax and At.

Again this result implies .^-convergence of w to u under quite general

conditions [13]. If p, q, and r are twice boundedly differentiable in the closed

region and uxxxx and uttt are bounded there, the error is

0((Ax)2 + (At)2 + (At)3/Ax),

[5]. The (A/)3/Ax term arises from the use of pi,n+in in both second differ-

ences.

While the Crank-Nicolson equation is a quite good difference analogue

for the heat flow equation, a slight modification [4; 5] of it leads to a con-

siderably better analogue for which the error is 0((Ax)i + (At)2). We shall

now generalize this result to treat the differential equation

d2u du
(4.19) -q(x, t)u = r(x, t) — , q ^ 0, r > 0.

dx2 dt

The specialization of (4.1) to (4.19) is done for two reasons. First, p is taken

to be constant to avoid having its derivatives appearing in the difference

equation, since frequently in practice p is obtained by interpolating experi-

mental data and its derivatives probably do not match the physical facts

very well. The restriction g^O results from the method of proof; since the

difference equation to be derived can easily be shown to be stable for q a

negative constant and r a positive constant, it is not inherent in the difference

equation.

As it can be proved [5, for uxx = ut] that the best choice of At as a function

of Ax as Ax tends to zero for the high order correct difference equation is

Aj = 0((Ax)2), we shall assume throughout the discussion that

(4.20) A//(Ax)2 = constant.

Then, to terms of the order of (Ax)4, (Ax)2A«, or (A*)2, [4],

d2Ui,n+l/i 1.2 1 1       d4tti,n+l/2

-*n- " t (AlMi-+1 + AxUin) " n ~^r- (A*)2-

From (4.19)

d4Ui,n+Ui       d2
-= - (qu + rut)i,„+X/i

dx* dx2

i r 1 Mj,n+1 —  M,„~]
~   AJ  -  0i,n+l/2(Wi,n+l   +   «in)   +   riin+X/i  -"-     ,

L 2 At J

except for terms which when multiplied by (Ax)2 are of the order of (Ax)4.

Thus, we are led to the difference equation
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*(/,       (Ax)2 (Ax)2 \ )
Ax\[  1-■   qi,n+l/2- r,\n+l/2 I -"i,n+l>

(\ 12 6A/ / ;

2// (Ax)2 (Ax)2 \        ^

Wi,n+1 — Win

— qi,n+l/i(Wi,n+l + Win)  =  2r,-,n+i/2   - !        I =  1,  •   •   •  , N —  1.
At

WO,n+1   =   «0,n+1, WN,n+l  =   UN,n+1, W,'0  =   M»0.

Although (4.21) is rather formidable in appearance, it is easy to discover

that it takes less than twenty per cent more work per grid point to evaluate

the solution of (4.21) than that of the Crank-Nicolson equation; in so far

as many fewer grid points are required to obtain a solution of equal accuracy,

(4.21) is usually preferable.

Again defining Qi and i?,- by (4.15), we can reduce the stability analysis

to the treatment of the difference equation

2 {( (Ax)2 (Ax)2      \ )

Ax<(   1-Qi-Ri; )Zf,n+l>
IV 12 6A/       / )

2 (/ (Ax)2 (Ax)2      \     )
+   Aj!!-Qi+^~Ri)Zin>

(4.22) l\ 12 6A/       /     /

. . 2, .n+1 Zin

— Qi(zi,n+i + zin) = 2Ri-, % = 1, • • • , N — 1,
At

Z0,n+1  =   ZjV,n+l   =   0.

Assuming Zin = a„4>i and separating variables,

2 (/ (Ax)2 (Ax)2     \    ) 2Ri
A JI 1 - —— Qi + —— RM - Qi<Pi + — <pi

ffln+i (\ 12 6AZ       /    J At
4.23   —- =-■ = X.

an 2 (/ (Ax)2 (Ax)2     \    ) 2Ri

(A 12 6A/       /    J At

Thus, we must treat the eigenvalue problem

2 U        (Ax)2 1 - X   (Ax)2     \    ) 1 - X 2R(

(4.24)
i=l,...,N-l,

<j>0 = <t>N = 0.

Equation (4.24) is certainly not in the desired form. First, transform the

dependent variable <p; as follows:
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/         (Ax)2             1 - X   (Ax)2      \
4.25) ^ = (i_A_Lq.+-^J-RiU^

\ 12 1 + X    6At       )

Then,

2T _ Q&i      _

(Ax)2 1 - X   (Ax)2
1 - ^—- Qi +- ^— Ri

12 1 + X    6A/

(4.26) 1 - X 2RJAt
+-'-*,■ = 0,

1 + X (Ax)2 1 - X   (Ax)2
1 - ±—!- Qi +- ±—t- R,

12 1 + X    6Ai

^o = VN = 0.

The existence of (N—1) real eigenvalues Xi^S ■ • • ^Xat_i for (4.26) will be

proved by a fixed point argument; moreover, it will be implied in the argu-

ment that Xi> — 1 and Xw_i<l. As soon as the linear independence of the

corresponding eigenfunctions is established, stability will have been demon-

strated.

Consider the associated problem with a parameter v, — 1 <v S1, for eigen-

values JUl, • • • , pn-i'-

_      Q&i
l\  ty ■ —  -

(Ax)2 1 - v  (Ax)2
1 - ^—^- Qi +- ±—t- Ri

12 1 + v    6At

1 - p 2Ri/Al
(4.27) -I-Vi = 0,

1 + p (Ax)2 1 - v  (Ax)2
1 - ^-L Qi +- —- Ri

12 1 + v    6At

Vo = Vn = 0.

Equation (4.27) is of the form to which Theorems 2.2 and 2.3 may be applied

directly. Thus,

1 - Pj(v) 45(c) rj
(4.28) Ogg <A(v)B(v)+-\-sin2-^-,     j = 1, • • • , TV - 1

1 + Pi(v) (Ax)2        2N

where

Qi Q*
A (v) = max —-<-

(4.29) (Ax)2 1 - v (Ax)2 (Ax)2' 1 - ——- Qi +- —-— Ri      1 - ^—^- Q*
12    V        1 + v    6At 12

and
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(Ax)2 1 - v  (Ax)2
1 - A-A Q,. + -  -_-- R.

12 1 + v    6A/
ff(v) = max-A/

27?,-
(4.30)

l-i-  (Ax)2
1 +- ^—— _?,-

1 + v    6A/
< max-A/.

2Ri

The last expression increases as v decreases toward — 1. Clearly,

1 - v (Ax)2
(4.31) B(v) = —-— + 0(A/),        v I  - 1.

1 + v      12

Thus, as v i — 1,

.  .   «7
sm'-

1 - p.j(v) 2N    1 - v
(4.32) ——- g- -— + 0(1).

1   + py(l') 3 1   +   V

Hence, there exists M>0 such that (1 — v)/(l+v) > M implies that

1 ~ uj(v)       1 - v

1 + hj(v)       1 + v'

Consequently, there exists e>0 such that, if

(4.33) -1 + e g v g 1,

then

(4.34) -l + egpy«gl, j = 1, ■ ■ ■ , N - 1.

As p.j(v) is a continuous function of v, we are now in a position to apply a

fixed point theorem. It is well known [14] that a continuous mapping of a

compact interval into itself must contain a fixed point. Thus, there exist

Vj,j = l, ■ ■ ■ , N—1, such that

(4-35) uj(vj) = vj,       j = 1, ■ • • , AT - 1.

This demonstates the existence of N—1 eigenvalues of (4.26) and, conse-

quently, of (4.24). Let ^(v) be the /th eigenfunction of (4.27). Then,

^tV/). j = l, ■ ■ v, N-l, are N-l eigenfunctions of (4.26). (In case

i»y=j»y+i= • • • =Vj+h, then there exist h + 1 linearly independent eigenfunc-

tions of (4.27) for >' = J'y.) Thus,

(;) *i
(4.36) 4>i    =-—-, / = 1, • • -,iV- 1,

(Ax 2 1 - vj (Ax)2 J
1 - ^—A Qi + —^ A-1- Ri

12 1 + vj   6At
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is a set of TV—1 eigenfunctions for (4.24).

Remaining to be shown is that the <p(j), j=l, ■ ■ ■ , TV—1, are linearly

independent, or, equivalently, that the dimension of the manifold spanned

by them is TV—1. Consider first the independence of eigenfunctions cor-

responding to the same eigenvalue. Letcj)^, k=j,j+l, ■ ■ ■ , j+h, be eigen-

functions all with eigenvalue Vj. Assume

i+h

(4.37) 2Z*rii    =0, * = 1, • • ■ ,N - 1.
k=i

Then, as the! denominators in (4.36) do not depend on k and are positive for

sufficiently small Ax,

i+h

(4.38) E<n*f    =0, »= 1, • • -,7V- 1.

Since the V-k) are independent, ak = 0, k=j, ■ - ■ , j+h, and the <p(t) are inde-

pendent. Thus, if Xi, • • • , Xa are the distinct eigenvalues of (4.24) and Mj

is the linear manifold spanned by the eigenfunctions corresponding to Xy,

we have proved that

a

(4.39) X)dim iMi) = TV - 1.

To facilitate completing the proof, let us rearrange (4.24) as follows:

a'|[i--^-Q,1^|  -Qicbi

1 - X ( 2 (Ax)2    2 )
(4.40) -\-< — Ri<t>i +-Ax(Ricbt) }  = 0,

1 + X (At 6At )

4>o = 4>n = 0.

Then, this is of the matrix form

Acb + £Bcb = 0.

The following lemma of Hestenes and Karush [10, p. 477] is applicable:

Lemma. Let Xy, j=l, • • • , a, be distinct eigenvalues of Acp+\Bcp = 0, and

let Mj be the linear manifold spanned by the eigenfunctions corresponding to Xy.

Then,

dim (Mi © Mi © • • ■ © Ma) = ]£ dim (My).
j-i

Thus, by (4.39) the manifold spanned by the TV—1 eigenfunctions cp(') of

(4.24) has dimensionality TV—1, and, consequently, they form a complete
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set. This completes the proof of stability for difference equation (4.21).

Theorem 4.3. The high order correct difference analogue (4.21) of the linear

parabolic differential equation (4.19) is stable for Ax<(12/max q(x, t))112.

Again under sufficient hypotheses on the coefficients q and r and on the

solution u the solution w of (4.21) will converge to that of (4.1). Since the

difference approximations were correct, in the small, to terms involving

(Ax)4, it is appropriate to consider the interpolation of w to the region

Ogxgl, Og/g/*, to be correct to the same order. Then, if q and r are four

times boundedly differentiable and u six times, w converges in L2 to u with

an error 0((Ax)4) for positive constant value of A//(Ax)2>r*/6. The latter

condition arises so that the M of (3.7) is 0(A/).

5. Quasi-linear equation: backward difference equation. Consider the

boundary value problem

d / du\ du
— ( p(x, /) — ) — q(x, I, u) = r(x, t,u) — >        0 < x < 1, 0 < / < /*,

(5.1) dxV dx)      H dt

u(x, 0) = f(x), w(0, /) = g(t), u(l, t) = h(t).

This quasi-linear parabolic equation is of sufficient generality to include

quite a number of problems of practical interest that cannot be satisfactorily

described by solutions of linear equations.

The simplest implicit difference analogue of (5.1) is the backward differ-

ence equation

Wi,„+i   —   Wi„

,.  „N      Ax(pn+xAxwn+j)i — q(xt, /„+i, Wij) = r(x{, tn+i, w,„)-,
(5.2) At

Wo,n+l   =   Wo,n+1, WN,n+l  =   Un,n+1, W,o   =   W,0.

Notice that in case (5.1) were linear, (5.2) differs slightly from the backward

difference equation (4.2) in that w is evaluated at the known time level in the

second term; both q and r are evaluated at the known level so that the result-

ing algebraic equations at each time step remain linear and can be solved

easily by elimination. This is, of course, an important practical consideration.

For the case of constant p the solution of (5.2) is known [3] to converge

to that of (5.1) under sufficient hypotheses on/, g, and h. This proof is based

on a different, and less general [6], technique, and it is perhaps of interest

to give an alternative demonstration.

The truncation error introduced at one time level is propagated forward

in time for linear difference equations as a solution of the same difference

equation subject to the homogeneous form of the boundary conditions. Un-

fortunately, this does not remain true for nonlinear systems. Consequently,

the first step in the analysis in this case must be a derivation of a difference

equation satisfied by the truncation error.
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We shall assume throughout this section that p has three bounded de-

rivatives with respect to x and that q and r have a bounded derivative with

respect to u. Also, u will be assumed boundedly differentiable four times with

respect to x and twice with respect to /. Although the proof to be given below

can be carried out for At and Ax going to zero independently, we shall take

At
(5.3) - = constant,

(Ax)2

since it can also be proved [3] that this is the most efficient choice.

Under these assumptions, it is easy to see [3] that

Ui,n+1 — Uin

(5.4) Ax(pn+xAxun+x)i — q(xh tn+i, uin) = r(xi, tn+i, uin)-h ainAl,
At

where ai„ = 0(l). Let the overall truncation error be denoted by Vjn:

(5.5) Din   =   Uin  —  Win.

Then,

dq
Ax(pn+lAxVn+l) i-Vin

du
(5.6)

Vi,n+1  —   Vin Or   Ui,n+X ~  «in

= r(Xi, tn+X, Win)-1-vin + ainAt,
At du At

where dq/du and dr/du are evaluated at points called for by the mean value

theorem. Rearranging,

Vi,n+X  —   Vin

Ax(pn+xAxv„+x)i = r(xit tn+x, Win)-h binvin + ainAt,
(5.7) At

ViO  =   Vo,n+l  =   VN,n+l  =   0,

With 0i„ = 0(1).
The following decomposition of Vi,n+i will simplify the treatment of the

growth of v as a function of n. Let

(5.8) »i,n+l   =   Bi,„+1 +  yi,n+l,

where

.   Pi.n+l  —   Vin

Ax(P„+XAx8n+X)i  =   r(Xi, tn+X, Win) - >
At

(5.9)

Ax(pn+XAxyn+i)i =  r(Xi,ln+l,Win) -[-• + binVin +  ainAt.
At

By Theorem 4.1 and (4.12),
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(5.10) \\8n+l\\   g IHI-

Set

(5.11) Zin   =   (binVin +   OinAt)At/f(Xi, t„+X, Win).

Then,

T»,n+1 Zjn
(5.12) Ax(pn+xAxy„+x)i = r(xi, t„+x, win) —-— ;

At

consequently,

(5.13) |!-yn+i|| g \\zin\\ g A[\\vn\\At + (At)2].

Thus,

||f-+i|| g(l + .4A/)||t>n|| + .4(A/)2,

(5.14) II   II      n

Hence,

(5.15) ||*>„H g [(1 + AAt)n - l]AZ < eA'"At.

Therefore, if w is extended to Ogxgl, O^t^t* by bilinear interpolation,

(5.16) if     f v(x,t)2dxdt\      =0(At).

Theorem 5.1. Under the restrictions on p, q, r, and u stated above, the solu-

tion of the backward difference equation (5.2) converges in Li to the solution of

the quasi-linear parabolic equation (5.1). For any constant At/(Ax)2 the error is

0(At) in L^

6. Quasi-linear equation: Crank-Nicolson type difference equations. Again

we shall consider the boundary value problem

d / du\ du
r.  <s -~[p(x,t)—)-q(x,t,u) = r(x,t,u) — ,       0 < x < 1, 0 < / < /*,
(6.1) dx\ dx/ dt

u(x, 0) = f(x), w(0, /) = g(t), _(1, /) = h(t).

The Crank-Nicolson method for linear equations, as described in §4, con-

sists of evaluating "the coefficients at (x,-, Zn+1/2) and averaging the values of u

at /„ and /n+i in the evaluation of u and its x-derivatives. This leads at each

time step to the usual simple system of linear algebraic equations which can

be solved by elimination. Unfortunately, if this is done in (6.1), the resulting

algebraic equations are nonlinear and must be solved by an iterative process.

A modification in the manner in which q(x, t, u) and r(x, /, u) are evaluated

will allow us to regain the more readily handled linear algebraic equations.
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However, to insure convergence, it will be necessary to satisfy a restriction

between Ax and At; no such restriction arises in the standard Crank-Nicolson

equation. Thus, from a practical standpoint one must decide which disad-

vantage is the less serious for each problem.

Since the argument is somewhat simpler, we shall treat first the ordinary

Crank-Nicolson equation:

Ax(p„+i/iAxwn+i)i + Ax(pn+i/iAxWn)i — q(xi, tn+m, Wi,n+i) — q(xh tn+m, win)

. .    Wi,„+l —   Win

(6.2) = \r(xi, tn+m, Wi,«+i) + r ixu ln+ui, win)\-,
At

WO,n+l  =  Mo,n+l, WN,n+l  =   Un,n+l, 10 id =  Mjo.

Assume throughout this section that u is four times boundedly differentiable

in x and t and that p is three times with respect to x and q and r once with

respect to u. Moreover, assume that

(6.3) At/Ax = constant,

which again is an optimum choice of their functional dependence.

Then,

d /    du\
2 — I p — ) = Ax(pn+i/iAxUn+i)i + Ax(pn+i/2Axun)i + 0((At)2),

dx\     dx/i,n+l/i

(6.4) 2q(xi, tn+m, Ui,n+i/i) = q(xi, tn+m, «.\n+i) + q(xf, tn+m, ««) + 0((Ai)2),

2r(xi, tn+m, Ui.n+m) = r(xi; tn+m, «,-.n+i) + r(x,-, /„+i/2, uin) + 0((At2));

consequently,

Ax(pn+X/iAUn+l) i + Ax(p„+X/iAxUn) i ~ q(Xi,  tn+l/i, Mi,n+l)   ~ 9(*i,  4+1/2,  Uin)

(6.5) . ,   Mi,n+l   —  Uin
=   \r(Xi, tn+l/i, M,-,n+i) + r(Xi, /n+i/2, uin))-1- 0((A/2)).

Thus, the truncation error Vin = Uin — iOin satisfies the difference equation

(suppressing showing the dependence on Xi and tn+1/2)

Ax[pAx(vn+i + vn)] = {r(wn+i) + r(wn)\ -
At

.   M„+l —  Mn

(6.6) + lr(M„+i) + r(un) — r(wn+i) — r(wn)\ -
At

+ {q(u„+i) + q(un) - q(wn+i) — q(ion)]

+ 0((At)2).

Applying the assumptions made above,
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Ax[pAx(vn+i + vj)]i + aiVi,n+i

(6.7) , ,     fli,n+l  —   Vin
= \r(wn+j) + r(wn)\i-h b{vin + c,(A/)2,

At

where

(6.8) ait bit a = 0(1).

The coefficients a,-, bi, and Ci depend on w as well as i, of course.

The analysis of vn+i can be aided by the decomposition

(6.9) Di,n+1   =  Bi,n+1 + ti.n+1,

where

Ax(pAx8n+l)i +  OiBi.n+l

= {r(w„+i) + r(wj) )i8i,n+ i/At + (bi+aj)vin + c,(A/)2,
(6.10) 1

Ax^A^^n+i +  Vn)]i +  a,-(7,-,„+l + Vij)

= {r(w„+i) + r(wn)} i(y,,n+i — vin)/At.

Then, Theorems 4.1 and 4.2 may be applied as in §5 to obtain

.      n) \\0n+l\\   ^A(\\vn\\At+(Aty),

||Tn+i||g(l + 7iA/)||i;„||.

Hence,

(6.12) IH+,11 g (1 + CA/)||S„|| + C(A/)».

Consequently,

(6.13) ||0n|| = 0((A/)2).

Theorem 6.1. Under the restrictions on p, q, r, and u stated above, the solu-

tion of the ordinary Crank-Nicolson difference equation (6.2) converges in L^ to

the solution of the quasi-linear differential equation (6.1) for At/Ax any positive

constant with an error which is 0((At)2).

Let us turn now to a modified Crank-Nicolson equation involving linear

algebraic equations. The nonlinear algebraic equations in (6.2) arise from the

use of

—   [?(x,-,/n+l/2,  W,,„+l)   +  q(X{, /„+l/2,  Win)]

to approximate o(x,-, /„+i/2, w,-,n+i/2) and a similar relation for r. What we

need, of course, is an approximation for w,-,„+i/2 in terms of w,-„ that is second

order correct. Restricting p, q, r, and w as above and using the differential

equation such an approximation is easily obtained:
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At     dUin
Mi,n+l/2  =   M,n + —    - +  0((A/)2)

2       dt

= M,n + y{[£(^ y) - °ix>'.«)] /'(*» *>«)}. + o((A0*)

(6.14) *
A/

=   Mi„ + —-~ Ax(pnAxUn)i  ~   q(x{,  tn,  Min) J   + O(A02

At
=  Uin + ~T~,-: [Ax(pn+l/iAxUn)i — q(Xi, tn, Uin)] + 0((At)2).

2r(Xi, tn, Uin)

The evaluation of p at t = tn+m is done to simplify what will be a somewhat

messy proof. It does not harm the order of the error, as we need only first

order correctness in approximating ut.

Again, we have taken

At
(6.15) -= constant.

Ax

Define

* At
(6.16) w^ = Win H-■—- [Ax(pn+i/2AIw„)f — q(x{, t„, win)].

2r(Xi, tn, Win)

Then, the modification of the Crank-Nicolson equation to be studied here is

the difference equation:

Ax(pn+U2AxWn+X)i +  Ax(pn+l/iAxWn)i  ~   2q(xi:  tn+l/i,  Win)

. *.    Wi,„+l —   Wi„
(6.17) = 2r(x,-, i„+i/2, w,„) —-,

Al

Wo,n+l =  «0,n+l,      WiV,n+l =  Un ,n+l,      W,o =  M.o.

In deriving the truncation error equation, the writing of the explicit de-

pendence on x and / will be suppressed. Thus, if

(6.18) Vin  =  Uin —  Win,

then

r ., *     "•".»+l — v'"
AI[p„+i/2AI(ii„+i + vn)]i = 2r(win) -

At
* *     i   Mi« + 1 — Min

(6.19) + 2[r(«,„) + 0((A/)2) - r(win)] -
At

+ 2[q(ut) + 0((AI)2) - q(w*n)] + 0((At))2.

Now,
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* * dr     * *
r(uin) — r(w{j) = — (w,„ — Wij)

du

drT At
= —   vin -\-—;- {Ax(pAxuj) - q(uin) \

du L 2r(w,„)

A/      , ,1
(6.20) - —- {Ax(pAxwj) - q(wij))

2r(win) J

dr[ At     I dq     )
=  -     Vin -\-"- < Ax(pAxVn)-Vin>

duL 2r(Wi„) ( du     J

dr
At —

du . .      "I
+   —-—-"   \Ax(pAxUJ)   ~   q(Uin))Vin    .

2r(wl-„)r(w,„) J

A similar relation holds for q(u*„) — q(w*„). Thus,

r              /                  i            /  * s   Vi<n+l ~ Vin
Ax[p„+x/2Ax(Vn+x + v„)\i = 2r(win)-

(6.21) At

— aiAtAx(pn+xnAxvj)i + biVin + c,(A/)2,

where

1      rdq      dr du]
ai=-— +-= 0(1),

f ("">%,) Ldu     du   d/J
(6.22)

h, d = 0(1).

The derivatives in the expression for a< are each evaluated somewhere in the

rectangle |x —x,| <Ax, |/ — Zn+i/2| <A//2. The expression was written in detail

since we shall distinguish the three cases: o,- nonpositive, nonnegative, and

indeterminate.

As for both the backward difference equation and the ordinary Crank-

Nicolson equation, it is helpful to decompose viin+x. Let

(6.23) "i,n+l  = 8i,n+l + Yi.n+1,

where

r                      .                        xi            r,   /    * \   Bt.n+1         Vin . .
Ax[pn+l/2Ax(8n+l + Vn)]i  =   2r(win)-0,A/Ax(/>„+l/2A:,tl„),-,

AZ
(6.24)

Ai(/»n+i/2Axy„+i),- = 2r(win) —^— + b#>iH + c,(AZ)2.
At

As previously,

(6.25) ||yn+1|| g ^[||t.n||A/+(A/)«].
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The analysis of /3i,n+i will parallel roughly the stability analysis associated

with the high order correct difference analogue of the linear parabolic equa-

tion. Assume the following separation of variables:

.,  „,s 8i,n+i = an+xcbi,

(6.26)
Vin  =  CtnCpi.

Then,

2r{
(1 + aiAt)Ax(pAxcj>)i + — cbi

a„+i At

(6.27) —i- =--—-= X,
an 2r<

Ax(pAz4>)i-cpi
At

and we must treat the eigenvalue problem

2n
(6.28) (1 + aiAt + X)AI(pAI<^)i + (1 - X)-<*>, = 0.

At

Equation (6.28) may be rearranged in the following two ways:

1 - X 2ri
(6.29) Ax(pAz<p) i + —--——■ —- ^ = 0,

1 + aiAt + X   At

and

2r,- 1 r2r,- "1
(6.30) Ax(pAxcb)i-cpi + —\-cpi+ (1 + OiAt)Ax(pAxcb)i    = 0.

At X L At J

The fixed point technique used on the high order correct difference equation

will be applied to (6.29) to demonstrate the existence of TV—1 eigenvalues

and eigenfunctions, and the lemma of Hestenes and Karush will then be

applied, considering the eigenfunctions to be eigenfunctions of (6.30), to

demonstrate their linear independence.

Rewrite (6.29) as follows:

1 - X 1 2rt
(6.31) Ax(pAx<t>)i +-cpi = 0,

1 + X aiAt      At

1 + X

and consider the associated eigenvalue problem with parameter v, —KvS^-,

for eigenvalues Pj(v), j=l, ■ ■ ■ , N—1:

1 - pj(v) 1 2r<
(6.32) Ax(PAxcb)i + —-— -— — cbi = 0.

1 + uy(i') atAt       At
1+fc—

1.+ v
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The argument will be broken down into three cases. First, let a,-2:0. Then,

for — 1 <vgl, the coefficient of <pt is positive; consequently, there exist N—1

eigenvalues Uj(v) and eigenfunctions 4><-''>(v) such that

r o,A/   1*
1 +-

1 - fij(v)        4p* 1 + v 2p*At 2a*p*(At)2
(6.33) Og->-A^—L-g +-—-,

1+pyW       (Ax)2L      2r,/AZ      J        r*(Ax)2      (1 + v)r*(Ax)2

where p* = maxt pi, o* = maXi a,-, and r* = min< r,-. Hence,

2p*At 2a*p*(At)2

r*(Ax)2      (1 + v)r*(Ax)2
(6.34) 1 > pj(v) > -^—-AAA- .

~ 2p*At 2a*p*(At)2

r*(Ax)2     (1 + v)u(Ax)2

To be able to use the fixed point theorem, we need to know that some closed

subinterval of ( —1, l] is mapped into itself. To know this, it is sufficient to

know that for p + 1 sufficiently small, p,j(v)^v. In particular, it is sufficient

to show that

2p*At 2a*p*(At)2

~ H(Ax)2 ~ (1 + v)r*(Ax)2
(6.35) -^ v

2p*At 2a*p*(At)2
1 +—-h--^-A-

r*(Ax)2      (1 + y)r*(Ax)2

for »» + l sufficiently small. It is easy to show that, for v + 1 positive, (6.35) is

equivalent to

1       a*P*(At)2

r*(Ax)2
(6.36) l + y<2- •

2p*Al
1 + —-

r*(Ax)2

To insure positiveness of the right hand side of (6.36) is sufficient to establish

the existence of N—1 eigenvalues and eigenfunctions of (6.28). Let

A/-      /  r* Y'2

_w\ _*/!*/    '

which makes the right hand side positive. Then, after completing the argu-

ment by the use of the lemma of Hestenes and Karush, it is clear that the

difference equation for (3,-,„+i is stable and

(6.38) ||0„+i|| = |W|.
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Hence,

(6.39) ||d„+i|| g (1 + AAl)\\vn\\ + A(Al)*;

as this implies that

(6.40) \\v„\\ = O((A02),

we have proved the following theorem.

Theorem 6.2. Let the restrictions on p, q, r, and u as stated above hold, and

let (6.37) hold. Then, if a in as defined by (6.22) is non-negative, the solution of

the modified Crank-Nicolson difference equation (6.17) converges in Li to that

of the quasi-linear parabolic equation (6.1) with an error that is 0((At)2).

Note also that (6.37) is consistent with the lack of such a condition for

stability in the case of a linear differential equation if q = 0.

Consider next the case a^O. To prevent the possibility that

1 - pj(v)
- < 0,
l + wOO

which would imply that l/JyOOl >1, we need to maintain

a(At
1 + — > 0.

1 + v

Let

(6.41) a** = max (-a,).

Then, if

(6.42) v > - 1 + a**Al,

the above requirement is met. Thus, in this case, to apply the fixed point

theorem it is necessary to show that some closed subinterval of ( —l+a**A/,

l] is mapped into itself. By (6.33),

r aiAt   "I*
1 +-

1 - MjW        4/>* 1 + v 2p*At
(6.43) 0<-Zllrg—£-——     S

~1+Pj(v)       (Ax)2L      2r(/At     J        r+(Ax)2

Hence,

2p*Al
1-

r*(Ax)2

(6.44) py«^-^xr-
1 + —-

r*(Ax)2
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If At/Ax = B,

75V*

2p*At p*At
(6.45) pj(v) ^-A— « - 1 + A- •

B'r* B2r*

2p*At

Therefore, if

A/        /   p*   \1/2

Ax       \ a**r*/

Pj(v)>v, and a closed subinterval of ( — l+a**A/, l] is mapped into itself.

The remainder of the argument is identical with that of the first case.

Theorem 6.3. Let the restrictions on p, q, r, and u stated above hold, and let

(6.46) be satisfied. Then, if a in as defined by (6.22) be nonpositive, the solution

of (6.17) converges in L2 to the solution of (6.1) with an error that is 0((At)2).

Finally, let us consider the general case for which the sign of o,-« is in-

determinate. It is clear that if both (6.37) and (6.46) are satisfied, then as

AZ tends to zero with Az/Ax fixed, some closed subinterval of ( — 1, l] is

mapped into itself. Thus, convergence is again established.

Theorem 6.4. // both (6.37) owd (6.46) are satisfied, then the solution of

(6.17) converges in L2 to that of (6.1) with an error which is 0((At)2), provided

the restrictions on p, q, r, and u hold.

The special case of (6.1) arising when

(6.47) q(x, t, u) = Qx(x, t)u + Q,(x, t),

with <2i = 0, can be handled a bit simpler by the difference equation

Ax[^„+i/2AI(wn+i + wj)], — Qx(xh /»+i/2)(w,-,„+i + Wij) — 2Q2(xi, Z„+i/2)

(6.48) *       Wi,n+X  —  Win
=   2f(x,-, /„+l/2, Win) - •

AZ

The restrictions (6.37) and (6.46) remain, except that o,-„ is now defined by

1      dr du
(6.49) a,- = - —_--

r(win) du dt

7. Quasi-linear equation: high order correct equation. In the study of

the higher order correct difference equation for the linear parabolic equation

we specialize the differential equation somewhat; here we shall limit ourselves

to the boundary value problem
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d2M dM
-= r(x, t,u)—, 0 < x < 1,0 < t < t*,

(7.1) dx2 dt

u(x, 0) = /(*),    u(0, I) = g(l),    u(l, t) = h(t).

Moreover, assume that r is boundedly differentiable four times with respect

to its arguments and u six times, and let

At
(7.2) -= constant.

(Ax)2

Then,

,„       v ^2Mi,n+l/2 1     r    2 2 . (Ax)2      d4Mi,„+l/2
(7.3) ——-- = — [A.M.-.n+i + A.Min] - —-—^- + 0((Ax)4),

dx' I 12 3x4

and

d4«i,„+l/2 d2    / dUi,n+l/2\
-"      ~~ T~^( riXi' '"+1/2' Mi.n+1/2) —-—)
dx4 dx2\ dt     )

d2  / dUi,n+iii\
(7.4) =-r(xi, tn+m, uin) -    + O(At)

dx2 \ dt      I

2/ Mi,„+l — Uin\

= AJ r(Xi, tn+m, Uin) -■-) + O(At).
\ At       J

Hence,

2 (F (zix)2 "I 1 2 (F (Ax)2 "1      )
Ax<      1-r(uin)      Mi,n+1>   +  Ax<     1 -\-r(uin)      Uin>

IL 6A/ J j IL 6A/ J      j
(7.5)

= {r(w,.„+i) + r(uin)} ^^-— + 0((Ax)4),
Al

where again the explicit dependence of r on xt and 4+1/2 has not been written.

Consequently, we shall define the high order correct analogue of (7.1) to be

the difference equation:

2 if (Ax)2 "I ) 2 (F (Ax)2 1       )
Ax<   1-r(win)   Wi,„+i>  + Ax<   1-1-r(win)   win>

IL 6A* J ) IL 6AI J      J

( ,    W,,„+i —   Win

(7.6) = }r(wi,„+i) + r(win)\-,
At

Wo,n+l  =  Mo,n+l,      WN,n+l  —  Un ,n+l,      W,o =  Mio.

Notice that the algebraic equations in (7.6) are nonlinear as a result of the

coefficient of the time difference. In general, they must be solved by iteration.
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This can be accomplished by predicting an approximate value w™+1 by some

means, such as either

2

(0)                                            AxWin
Wi, „+l   =   Win +  At —--

r(win)

or

CO r.
W,-,n+l   =   2W{„  —  W,-,n_i,

using w™„+i to evaluate the time difference coefficient, and solving the linear

equations for w[]l+x by elimination. Then, find w^+i from w^+i, etc. Unless

dr/du is quite large, the resulting iteration should converge quite rapidly.

To study convergence we must derive the truncation error equation. If

(7.7) Vin   =   Uin  —  Win,

then

2 t[        (Ax)2 "I T (Ax)2 "1
Ax <   1- r(w,-»)   »,-,„+1 +    1 H-r(win)   vin

IL 6A/ J L 6A/ J

(AX)2   du   dr ) Pi.n+l ~ Vin
(7.8) -vin> = (r(w,-,„+i) + r(win)\-

6       dt  du      ) At

du dr du dr
H-Vi,n+1 -\-' Vin + 0((Ax)4).

dt  du dt  du

Rearranging,

2 rr        (Ax)2 "I [" (Ax)2 1     )
Ax<\ 1-r(win)   Vi,n+i +    1 -]-r(win) + a,(Ax)2   vin\

,„    N IL 6AZ J L 6AZ J     j
(7.9)

"t,n+l Vin

= Pi-h  biVin  +   Ci(Ax)4,
At

where

1   du dr
«,= ---- = 0(1),

6    dt  du

(7.10) du dr
Pi = r(wi,„+j) + r(win) -\-■ — At,

dt  du

bi, a = 0(1).

As usual, the study of Vi,n+X can be facilitated by the decomposition

(7-H) Vi,n+1   =   8i,n+l  +  Ti.n+l,

where
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2 (r      (Ax)2   i r      (Ax)2 -i    )
Ax<   1-ri   8i,n+x +     IA-ri+Oi(Ax)2   »,-„>

IL 6At      J L 6At J     J

(1    \->\ ffi.n+l   -   I'in
(7.12) = pi-,

At

2 IV        (Ax)2rfl "J y,-,n+i ,     N
Ax<     1-yi,n+l>    =  Pi-V biVi„ + Ci(Ax)\

(L 6At   J ) At

It is easy to see that, if

At r*
(7.13) -> —, r* = max r(x, t, u),

(Ax)2       6

(7-14) ||7n+i]| S A[\\vn\\At+ (A/)3].

The analysis of p\n+i will be a separation of variables argument based on

the fixed point procedure used for the linear high order correct equation and

the modified Crank-Nicolson equation. Assume

Bi,„+X = an+i<j>i,

I' • *-J)
Vin   =   Oincf>i.

Then,

2 ,r        iAxY 1    )        Pi
A,      1 +-r{ + Oi(Ax)2   <fiS + — cbi

s      ocn+x IL 6A* J    j        A/
(7.16)    - =-= X.

Ctn 2   (T (Ax)2        "1        ) Pi
Ax<    1-r,   <t>i>-4>i

IL 6A/       J     ) At

The two arrangements of (7.16) of interest are

2 Cr        1 - X   (Ax)2 ai(Ax)2!    )        1 - X  P<
(7.17) AJ   1 +- -^-—r, +-   <t>i}+--** = 0

IL        1 + X    6A/ 1 + X J    J 1 + X At

and the natural one obtained by clearing the denominator of the right hand

equation of (7.16). We shall demonstrate the existence of TV—1 eigenvalues

and eigenfunctions of (7.17), and the lemma of Hestenes and Karush as

applied to the natural form of the equation will complete the stability argu-

ment for 8i,n+x-

Let

T        1 - X   (Ax)2 a,(Ax)n
(7.18) *<=    1 +--r< + --   4>i-

L        1 + X    6A* 1 + X J

Then,
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2 1 — X Pi/At
(7.19) A**,- +-—- -\ = 0.

1 + X             1 - X   (Ax)2           ai(Ax)2
1 _j-r. -f    -

1 + X    6AZ 1 + X

Let — 1 Ogl, and let Pj(v), j=l, • • • , N — 1, he the eigenvalues of

2 1  — Uj(v) pj At
(7.20) A, _\ +-AA -A--qr. = o.

1 + N(v) 1 - v  (Ax)2 ai(Ax)2
1 -\-ri -|-

1 + v    6AZ 1 + v

Consider first the case of ai2:0, and let a* = max a,-. Then, the denominator is

positive; hence

1 - v   (Ax)2 a.-(Ax)2 "I*

1 - m(v)         4AZ                1 + v    6A/              1 + v
0 g -iii. ^-.-

n      . 1 + My(«0        (Ax)2L p.-

4AZ 2   1 - »</r,\* 4a*AZ

' P*(A^ 3   1 + v\pj        (1 + v)p*

Now,

r, r(w,-„)
(7.22) — =-AA- <i

Pi      r(win) + r(wi,„+j) + 6,-AZ

for A/ sufficiently small. Hence, for Az sufficiently small and 1+v sufficiently

small,

o ̂  L^i^ < AZ1.~   1   + Uj(V) 1   +  V  '

i.e.

(7.23) nA)>v.

As before, this is adequate to assure the stability of Bt.n+i for o,>:0. We have

implied the existence of N—1 eigenvalues Xy and eigenfunctions _r(fl. That

these give eigenfunctions cpli) corresponding to the same eigenvalues follows

in the same manner as in the treatment of the high order correct difference

analogue of the linear parabolic equation.

The general case is mildly more complex in that we must force positive-

ness of the denominator in (7.20). Let a** = max (—aj). Then,

.„ „„, 1 - v   (Ax)2 a,(Ax)2 (Ax)2r r* 1
(7.24) l +-AA r. + _AA- ^ i + AA  (1 _ ,) ___. _ 0** .

1 + v    6AZ 1 + v 1+ v\_ 6AZ

For  0 g v g 1,   it  is  sufficient   that   1 — a**(Ax)2 > 0  or,   equivalently,
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Ax<(a**)"1'2. For -K^O,

r*
- a** > 0
6At

or, equivalently, At <r*/6a** implies positiveness. Thus, for sufficiently small

Ax and At, the denominator is positive and (7.21) and the following results

hold.
Therefore, for small Ax and At,

(7-25) HAm-JI S |M,
and

(7.26) \\vn+x\\ S (1 + AAt)\\vn\\ + A(At)\

It is clear that this implies that, if (7.13) is satisfied,

(7.27) if     f   \ u(x, t) - w(x, t) \2dxdt\     = 0((At)2) = 0((Ax)4).

In the above, w(x, t) is interpolated to fourth order correctness in x and sec-

ond order in t.

Theorem 7.1. If the restrictions on r and u called for above are satisfied and

(7.13) holds, the solution of the high order correct difference equation (7.6) con-

verges in L2 to the solution of (7.1) with an error which is 0((Ax)4).

It is easy to modify (7.6) so that the algebraic equations are linear.

Exactly the same replacement as in the Crank-Nicolson equation works.

However, it is apparently somewhat more difficult to show that the solution

converges to that of (7.1), for it appears that no simple variable transforma-

tion such as (7.18) will put the eigenvalue problem into self-adjoint form.

8. Several space variables. Most of the results of the previous sections

can be extended quite simply to problems in several space variables. We

shall be interested in approximating the solutions of

d   /     du\ d   /     du\ du

dxx\     dxJ dxk\     dxk) dt

where p = p(xx, ■ ■ ■ , xk, t), q = q(xx, • • • , xk, t), and r = r(xx, • • • , xk, t), in

the linear case or of

d   /     du\ d   /     du\ du
(8.2) T~\pT~ )+ "'+^(pT'}~q = rYl'

<3xi \     6x1/ dxk \     dxk/ dt

with q = q(xu • • • ,xk,t, u) and r = r(xi, ■ ■ ■ ,xk,t,u), in the quasi-linear case

for (xi, • • • , Xk)(£D and 0<tSt*. Let the boundary of D be denoted by C;

then we shall again limit ourselves to the first boundary value problem:
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«(*i, • • • , xk, 0) = f(xh ■ ■ ■ , xk), (xu • • • , xj) £ D,

u(xh ■ ■ ■ , xk, t) = g(xi, • • • , xk, /),        (xi, ■ • ■ , xj) £ C, 0 < / g/*

The region D will be assumed open and connected. Moreover, for sim-

plicity, let C be of such a nature that there exists a sequence {Ax(a)J, a

= 1, 2, • • • , AxM—>0, such that for each a some translation of the lattice

of points (iiAxM, ■ ■ ■ ,ikAxM),ij = 0, +1, • • • , has the property that every

neighboring lattice point of a lattice point falling in the interior of D lies

in DyJC. Two lattice points are neighboring if exactly one ij differs for the

two points and this difference is one.

The stability proofs for the linear difference equations rested very heavily

on the variational lemmas of §2, and these can easily be extended to the

higher dimensional case. In fact, it is really necessary only to obtain the

analogue of (2.7). Let

(8.4) (*,*)=—     Z    #ii.- •■.«*>«,. ••■.«_
A   ii, ••-,,'*

where the indices run over those combinations corresponding to interior

points of D and N is the number of such points. Define

k

Ax(pAx<p) = JZ Ax,(pAxj<p),

(8-5) 7
<Pi'i,- ■ -,»y+i,- ■ •,»"*        Vii,- ■ -,ij, ■ - -,ik

0xi<p -- •

Ax

Consider the eigenvalue problem

Ax(pAx<p) - q<t> + \p<t> = 0, (x,-„ • ■ • , Xij) £ D,
(o. 6)

<t> = 0, (x,-„ • • • , Xij) £ C.

Then, the analogue of (2.7) is the following:

(8.7) (p<p, 4>y=JZ (pSxrf, MO + (?«, 0).
1=1

Thus, the lemmas useful in the treatment of the one space variable case

hold for the arbitrary case. An additional lemma [15, p. 164] on matrices is

necessary in the general case.

Lemma. Let A = (aij), i, j=l, ■ ■ ■ , m, be a real symmetric matrix with

eigenvalues XigX2g ■ ■ • gXm. Let ff = (o,y), i,j=l, ■ ■ ■ , m — 1, be the matrix

obtained by deleting the last row and last column of A, owd let its eigenvalues be

Pigp2g • • • gp-m-i- Then, Xigpi aw^ pOT_igXm.

The extension of the backward difference equation to the higher dimen-



516 JIM DOUGLAS, JR. [November

sional case will be carried out, and the remainder of the results will be stated.

Let

Wn+i  —  Wn

Ax(pn+lAxWn+i) — qn+lWn+1 =  rn+i —■—■- > (Xl,  •  •   •  , Xk)  G  D.
At

(8.8)
W„+i =  M„+i, (xh  •  •  • , Xt) G C,

Wo = Mo, (Xi, •  •  • , X*) G D.

The stability analysis leads to the eigenvalue problem

(8.9) Ax(j>Axtf>) - (—+ ?W + — — 0 = 0,
\Al        / X   At

or, rearranging,

(8.10) Ax(pAx<b) -qcb + (-1 ) — cb = 0.
\ X /At

From (8.9) and (8.7) it is clear thatX>0 for sufficiently small At. Let v=\~l

— 1, and denote its dependence on the coefficients and the region by

(8.11) v(p,q,r/At;D).

Then,

(8.12) vx(p, q, r/At; D) ^ n(p*, -q*, r*/Al; D).

Let R be the least cube containing the lattice points in D and on C, and let

5 be its boundary. It is well known [15, p. 204] that any matrix correspond-

ing to the difference operator

At 2
(8.13) — [ptA.cb - qcj,],

r*

as applied to any lattice region, is symmetric; i.e., regardless of the ordering

of the points. Hence, by the lemma above, the lattice points in R and not in

D may be deleted one after the other without reducing vi\ consequently,

(8.14) vi(p, q, r/At; D) ^ nip*, -q*, r*/At; R).

If L is the side length of R, then the eigenfunctions for (8.13) on R may be

taken as

(8.15) cb = fi sin ^^ , ji = 1, • • • , L/Ax - 1.
i=l L

Thus,

Vx(p*, -q*, r*/At; R)> - A At,
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and

1
(8.16) \n <-

1 - AAt

This demonstrates the stability of the backward difference equation (8.8).

The Crank-Nicolson analogue of (8.1),

W„+l   —   Wn

(8.17) Ax[p„+i/2Ax(Wn+i + w„)J — qn+m(wn+i + w„) = 2r„+i/2 —->
At

can be shown in the same manner to be stable.

The nonlinear problem (8.2) can be treated either by the backward differ-

ence equation

Wn+1  —   Wn

(8.18) Ax(p„+iAxw„+i) - g(wn+i) = r(wn+i)-
At

or by the Crank-Nicolson equation

Ax[/»n+i/2Ax(w„+i + wn)] — q(wn+x) — q(wn)

(8.19) w„+i - wn
= [r(w„+i) + r(w„)]-•

At

Under the same restrictions on u and the coefficients as for one space vari-

able, the solutions of (8.18) and (8.19) converge to that of (8.2) with errors

which are, respectively, 0(At + (Ax)2) and 0((Af)2 + (Ax)2).

Note that (8.18) is not quite consistent with (5.2), since q and w are

evaluated for wn+x instead of w„. This reduces the elemental truncation errors

introduced at each time step somewhat and should reduce the constant in the

0(At + (Ax)2) error. Since (8.18) must be solved by iteration at each time step,

this probably does not increase the computational effort. As (8.19) must also

be solved by iteration regardless of how un+Xii is approximated, no advantage

can be gained by going to the modified form of the Crank-Nicolson equation.

The practical choice between the backward difference equation and the

Crank-Nicolson equation is rather clear in cases where both apply. The linear

equations that must be solved at each time step are of exactly the same form

for the two methods and require approximately the same amount of computa-

tion to solve. The Crank-Nicolson method, fortunately, requires many fewer

time steps and, thus, is much preferable.

The considerably less tedious noniterative difference methods for ap-

proximating the solution of the heat flow equation, such as the alternating

direction implicit method [2; 17] and the method of [8], give rise in the more

general case to error equations not amendable to the above techniques. Thus,

whether they may be extended is open; however, an example [7] indicates

that they do.
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