ERRATA, VOLUME 85

Extensions of normal bases and completely basic fields. By Carl C. Faith. Pages 406-427.
Page 421. First line of Lemma 3.1: . . . , and let u be a normal basis element defined by (3.4).

Page 422. Lemma 3.4 (IV): . . the element $u=u^{*}+\left(1-\delta_{1}\right) \xi$ generates

ERRATA, VOLUME 88

A new class of continued fraction expansions for the ratios of Heino functions. By Evelyn Frank. Pages 288-300.
Page 289. First line of formula (2.1) should read:

$$
\frac{\phi(a, b, \iota, q, z)}{\phi(a, b+1, c+1, q, z)} \sim 1+\frac{d_{1} z}{f_{1} z+1}+\frac{d_{2} z}{f_{2} z+1}+\frac{d_{3} z}{f_{3} z+1}+\cdots=K_{1},
$$

Page 290. First line of formula (2.3) should read:

$$
\frac{\phi(a, b, c, q, z)}{\phi(a+1, b, c, q, z)} \sim 1+\frac{d_{1} z}{f_{1} z+1}+\frac{d_{2} z}{f_{2} z+1}+\frac{d_{3} z}{f_{3} z+1}+\ldots=K_{2} .
$$

Page 296. The paragraph following Theorem 3.1 should read:
"In order to investigate the convergence of (2.3), the roots of the auxiliary equation one finds are $q^{a} z \cdots "\left(\right.$ not $\left.v^{a} z\right)$.

Page 297. The first line of formula (3.6) should read:

$$
\frac{1}{q^{a} z} \cdot\left[K_{2}-1\right]+1=\frac{\phi\left(b-c, b, b-a, q, q^{c-a-b} / z\right)}{\phi\left(b-c+1, b, b-a, q, q^{c-a-b} / z\right)}
$$

Page 298. First formula in Theorem 3.3, the numerator should read:

$$
\left(1-q^{a-c}\right) \cdot \phi\left(a, a-c+1, a-b+1, q, q^{c+1-a-b} / z\right)
$$

