
ON THE IDEAL STRUCTURE OF CERTAIN SEMIRINGS AND
COMPACTIFICATION OF TOPOLOGICAL SPACES

BV

J. G. HORNE, JR.(!)

Introduction. Let Zbea topological space, R(X) its family of real-valued

continuous functions, and &(X) its family of open subsets. When it comes to

reflecting the topological properties of X, there are many similarities between

the ring and the lattice on R(X), and a certain "strongly ordered" structure

on @(X). In this connection the works of Stone [17], Alexandrov [l], Kap-

lansky [lo], Hewitt [8], Milgram [12], Shirota [15], and Henriksen [7]

should be mentioned.

One similarity is that each has various families of "ideals" which admit

intrinsically defined, compact topologies. A natural domain in which to study

this situation is the semiring. It was recently called to our attention that one

such study has already been made. Slowiskowski and Zawadowski studied

the space of maximal ideals in "positive" semirings [16]. Our principal re-

sults concern the family of R-ideals in a class of semirings suggested by the

$?-lattices of Shirota [15 ]. These semirings include various rings of continuous

functions and the biregular rings (with identity) of Arens and Kaplansky [2],

in addition to 7?-lattices. The notion of i?-ideal is a generalization of the no-

tions of lattice ideal and O-ideal of Milgram [12]. The present paper and

[16] seem to overlap very little, except in some of the applications.
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most useful properties of maximal P-ideals, obtained in §4, seem to derive

from their being prime-like (P).

The third section contains a general study of the Stone and dual Stone

closure operations on an arbitrary family of subsets of an abstract set S.

Criteria for compactness are obtained which seem particularly natural for

application to families of subsets. An example shows that neither the maxi-

mal nor prime-like O-ideal space of a commutative ring with identity need

be compact in the dual Stone topology.

We come to semirings in §4. For the sake of completeness, we have in-

cluded the definition of Pi-lattice. A definition of P-semiring at an element is

given. It is for such semirings that we obtain some ideal structure theorems.

The final section consists of applications to the study of P-ideals in the

family of open subsets of a topological space X, the O-ideal structure of

P(X), and the ideal structure of biregular rings with identity.

0. Preliminaries. The symbol C denotes inclusion, while < is used for

proper inclusion. For sets 5 and 4 we write S\A = {sES: sEA }. Ii A is not

empty and 4 <S, then 4 is a proper subset of S .The empty set is denoted 0.

A relation on 5 is a subset of SXS. If Pi and R2 are two relations on 5

then Pi is as strong as R2 if P1CP2; that is, a Rib implies a P2 b. Those rela-

tions which are dense are of special interest here. R is dense on 5 if for

a, bES such that a Rb, there is cES satisfying a Re and c R b. A relation R

directs a subset 4 (or 4 is P-directed) if for every pair a and a'G4, there

exists eG4 such that a Re and a' Re. A frequently used relation on the

family of subsets of a topological space X is defined in terms of complete

separation. Two subsets 4 and B of X are said to be completely separated

(written 4 | B) if there is a continuous real-valued function / such that

f\ A =0 and/| B = l. For subsets G and H, G R 77 sometimes means 77| (A\G).

If .S is endowed with a binary associative multiplication (indicated by

juxtaposition or " ■ ") then 5 is a semigroup. For any subsets 4 and B, the set

{ab: aEA and bEB} is, as usual, denoted by AB. A nonempty subset 7 is a

left semigroup ideal (abbreviated l.s.g. ideal) if SIEJ- It is a semigroup ideal

(abbreviated s.g. ideal) if JSEJ also. The center C(5) of 5 is the collection

of elements xES such that xf=fx for all fES. An element eES is a relative

unit ior fES if eECiS) and fe=f. An identity 1 and zero 0 satisfy l/=/l =/

and 0/=/0 =0, for all fES. Two relations on S are especially important:

Definition 0.1. The canonical order on S is the relation 0= {if, e): e is

a relative unit for/}.

Definition 0.2. The strong canonical order on 5 is the relation O2

= {if, e): for some e'ECiS), fO e' and e' 0 e}.

Ii there is also a binary addition (written " + ") which is associative and

commutative, and satisfies both aib+c) =ab+ac and ib+c)a = ba+ca, then

5 is a semiring. S is a semiring with identity or zero according as the semi-

group (5, ■) has an identity or zero. A left ideal (abbreviated 1.ideal) 7 in a
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semiring is a l.s.g. ideal of (S, ■) which also satisfies J+JCJ- It is a (two-

sided) ideal if it is also a s.g. ideal of (S, ■).

For a topological space X, we use K(X) and R(X) respectively to denote

the rings of all continuous complex- and continuous real-valued functions on

X. K*(X) and R*(X) denote the bounded members of K(X) and R(X). If

fCK(X) then Z(/) = {x€I:/(x)=0j and N(f)=X\Z(f). If A CAT we use
A~ and A" respectively for the closure and interior of 4. If A" is locally com-

pact and Hausdorff, K„(X) is the sub-ring of K*(X) of functions which van-

ish at infinity, and K„(X) is the sub-ring of K„(X) of functions with compact

support: that is, those fCKw(X) with N(f)~ compact.

1. T?-ideals and Silov subsets. In this section, 5 is a set with transitive

relation R, no algebraic structure being assumed.

Definition 1.1. A subset / of 5 is an ideal with respect to R if fCP hCS

and h Rf imply hCI-
The following definition is derived from Milgram's notion of O-ideal [12]

and that of lattice ideal [3].

Definition 1.2. A nonempty subset / of 5 is an R-ideal if (i) / is an ideal

with respect to R, and (ii) / is T?-directed; that is, for/, gCI there is eCI

such that f Re and g Re.
An i?-ideal M is maximal if M is a proper subset of S and M<M' <S is

false for every J?-ideal M'.

From some points of view certain subsets of S can be much simpler than 5

itself, and yet have essentially the same i?-ideal structure (using the induced

relation). Particularly easy to handle, yet of frequent occurrence, are the

Silov subsets:

Definition 1.3. A subset S0 of S is a Silov (R) subset (or simply a Silov

subset) provided the statements f R e and e R g for a triple e, f, gCS imply

there is e'CS0 such that/ R e' and e' R g. If 5 is a semigroup and S0 is a sub-

semigroup then S„ is a Silov (R) semigroup.

Example 1.4. Let Ibea locally compact Hausdorff space and let S be

the multiplicative semigroup on K0(X). Suppose R = 0, the canonical order

on S. It is straightforward to prove that a subset S0 of 5 is a Silov subset if

and only if whenever Fand F' are disjoint closed subsets of X with F compact,

then there is f'CS0 such that/'| F=l and/'| F'=0. A sub-semigroup having

this property was called a Silov semigroup by Civin and Yood [5], and was

characterized algebraically in a way different from above.

Example 1.5. Let X he an arbitrary topological space and let 5 be the

multiplicative semigroup on K(X). If S0 is the collection of those functions

taking their values in the closed unit interval, then S0 is a Silov (0) semigroup

of 5. For suppose fe=f and eg = e. Let e denote the complex conjugate of e, and

set e' = (ee)/\l. Then fe' =f and e'g=e'. Since any semigroup in S which is

larger than a Silov semigroup is also a Silov semigroup, other examples are

easy to obtain. In particular, K*(X) and R*(X) are Silov semigroups of K(X)

and R(X), respectively.
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Example 1.6. Let A" be a topological space. If G R II means either

(i) GZ)H~ or (ii) 771 (X\G) then the regular open sets form a Silov (P) subset

of the family of all open sets. For in either case, if P R E and ERG then

F R (E~)° and (E~)° R G. Thus it is apparent that Silov subsets of a semi-

group need not be sub-semigroups.

In the following theorem we do not distinguish between a relation on 5

and its restriction to a subset of 5.

Theorem 1.7. Let S„ be a Silov (R) subset of S. Then these hold:

(1)7/7 is an R-ideal in S then 7P\50 is an R-ideal in S0.

(2) If I„ is an R-ideal in S„ then I = L(I0) = {fES:fR e tor some eEL}
is an R-ideal in S such that I0 = ir\S„.

(3) If Ii and I2 are distinct R-ideals in S then IiC\S0 and I2C\S0 are distinct

R-ideals in S„.

Proof. Suppose 7 is an P-ideal in 5 and take/i,/2G7P\50. Let ei, e2, e^EI

be elements such that/,- P ei for i = l, 2 and ei Re2R e3- Then there is g2ES0

such that ei R g2 R e-z. Since e%EI, we have g2EIC\S0, and since R is transi-

tive fi R g2 for i= 1, 2. Therefore IC\So is P-directed. Since there exists hEI,

this argument also shows that IC\So^0. Now if fEIC\So and h Rf ior some

hES0, then hEI; hence IC\S0 is also an ideal with respect to R. It is therefore

an P-ideal in S„.

If I„ is an P-ideal in S0 then I0EL(I0) so that L(7„) is P-directed. Since P

is transitive 7(7,,) is an ideal with respect to P. To see that L(I„)r\S„ = I0,

take fEL(I0)r\S0. There is e„EIo such that/P e0. Since I„ is an P-ideal in S0,

we have/G70.

Finally, suppose 7i and 72 are P-ideals in 5 with giEIi\h- Take ei, e2G7i

so that gi R ei R e2. Then neither ei nor e2 is in 72. Since Sa is a Silov subset

there is e"ES0 such that gi R e" R e2. The right hand relation implies e"Eli,

and hence e"Eh(~^S0. The first relation places e" in 5\72.

For a topological space X, we have the following corollary, in virtue of

Example 1.5.

Corollary 1.8. The correspondence I-^IC\K*(X) is one-to-one from the

0-ideals in K(X) onto the 0-ideals in K*(X). If M is a maximal 0-ideal in

K(X) then M(~\K*(X) is a maximal O-ideal in K*(X).

The following result implies that the correspondence I-^>ir\S0 induces a

homeomorphism between P-ideals of 5 and those of S„, if these families of

P-ideals are assigned the dual Stone paratopology, and S„ is a Silov subset of

S. (For a discussion of the dual Stone paratopology see §3.)

Theorem 1.9. Let M be an R-ideal of S and 21 a family of R-ideals of S.

Then MCU {7: 7G2I} if and only if Mr\S„EU {mS0: 7G?I}.

Proof. Obviously, if il7CU {7: 7G2l} then MHS.CU {ir\S0: 7GSl}. On
the other hand, if Mr\S0CV {mSB: 7G2l}, and fEM is arbitrary, then
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elements e, gCM exist such that f Re and e R g. Since S0 is a Silov subset

there is e'CS0 such that fRe' and e' R g. The second relation implies

e'CMC\S„, so that for some JG21, we have e'CIC\S0. From the first relation,

fCI follows.
2. O-ideals and prime-like (R) ideals. Now assume that 5 is a semigroup.

Recall that f 0 e means: fe=f and e is in the center C(S) of 5. Hence an

O-ideal is actually a (two-sided) s.g. ideal. In fact, we have the characteriza-

tion:

(4) A subset / of S is an O-ideal if and only if 7 is an 1. (or r.) s.g. ideal such

that for every pair/i,/2G-f there is eCI such that/i 0 e for i = l, 2.

Lemma 2.1. If Ii and I2 are O-ideals then IX(~\I2 and IXI2 are O-ideals, and

ixr\i2=ixi2.

Proof. We have IxI2CIiC^Ii for any pair of s.g. ideals. Take fCIiC\I2;

then fCI\I2 holds since there is eCI2 such that/=/e.

To see that IXI2 is an O-ideal, suppose hi=fig( with f,CIi and giCh for

i= 1, 2. There are elements eiCh and e2CIi such that /» 0 ex and gi 0 e2 for

i = l, 2. Hence Lh contains the relative unit eie2 lor hi and h2. Since pl2 is

also a s.g. ideal, it is an O-ideal by (4).

The following lemma implies that the family of O-ideals admits the dual

Stone topology (see Theorem 3.10).

Lemma 2.2. 7/ / is an O-ideal and Ji and J2 are s.g. ideals and ICJi^JJi

then ICIi or ICJi-

Proof. Take/G-f arbitrarily and suppose I(f_J2. There are elements/' and

eCI such that f C-Ii, f'e =f (therefore eCJi) and/e =/. Since ICJi^-JJ2 we

have eCJi- Therefore fCJi- Since fCI is arbitrary, we have ICIi-

The notion of prime ideal has proved useful in many circumstances.

However the notion of prime O-ideal is in general not fruitful. In many semi-

groups having an abundance of maximal O-ideals there are no proper prime

O-ideals (see Remark 5.8). In many of these semigroups the maximal O-ideals

may nonetheless be characterized as those O-ideals having a certain prime-

like property which we now define. R is an arbitrary relation on S.

Definition 2.3. A subset P of S is prime-like (R) provided

(S\P)(U(S\P))CS\P, where U(S\P) = {eCS:f Re lor some fCS\P}. We
refer to an i?-ideal which is also a prime-like (R) set as a prime-like R-ideal.

A prime-like (0) set is called simply a prime-like set.

An alternate form for the definition of "prime-like (R) set," and the form

most frequently used, is

(5) P is a prime-like (R) set if and only if whenever/, e, k are elements in

5 satisfying/GP, /-R e and keCP, then kCP.

The following definition reduces, when S is commutative and P is an

ideal, to the ordinary notion of prime-ness.
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Definition 2.4. A subset P of 5 is a prime set provided its complement

S\P is a sub-semigroup; that is, (S\P)(S\P)ES\P. A prime s.g. ideal or

prime O-ideal is a prime set which is also a s.g. ideal or O-ideal, etc.

Some connections between these two notions are given in the following

comments.

Remark 2.5. Prime sets are exactly the prime-like (E) sets, where E is the

identity relation.

Remark 2.6. A prime l.(r.) s.g. ideal is a prime-like (0) set, since in this

case U(S\P)E(S\P).
Remark 2.7. Suppose a commutative semigroup 5 has the property of

von Neumann's regular rings [13]: aES implies there is xES such that

axa = a. Then every prime-like (0) ideal P is a prime ideal and the two

notions coincide. For let/ and gES\P, and suppose g = gxg. Ii fgEP, then

fxgEP- However, g 0 (xg) and gGP. so fEP by (5). This is a contradiction,

so fgEP and P is prime.
Remark 2.8. A prime-like (0) ideal may be neither a prime ideal, nor an

O-ideal. Let 5 be the multiplicative semigroup of continuous complex-valued

functions on the closed unit interval. Choose 0<x<l; then the set

{/ G S: Z(f) 3 (x, x + e) tor some e > 0}

has the desired properties.

We conclude this section with a list of examples.

Example 2.9. Let 5 be the semigroup (L, A) of a lattice (L, V, A)- Then

7 is an O-ideal in 5 if and only if 7 is a (lattice) ideal [3], and is prime-like

if and only if it is prime (see Remark 2.7 above).

Example 2.10 (Milgram, [12]). Let A be a compact Hausdorff space.

For each closed set FEX, the set 7(P) = {fEK(X): Z(f)°Z)F} is an O-ideal

in the multiplicative semigroup on K(X); and for every O-ideal J of K(X)

there is a closed set PCA such that J = 1(F). Note that the members of 7(P)

consist exclusively of divisors of zero if and only if 7 is proper, and in turn,

if and only if P is non-null.

Example 2.11. Let 5 be the family of open subsets of a topological space

5. Define G R 77 to mean 77| (X\G). Then the maximal P-ideals are exactly

the completely regular ends of P. S. Alexandrov [l ]. Recall that a completely

regular end is a family © of open sets which is maximal with respect to having

the finite intersection property and being regular: for GG® there is 77G®

with G RH. The maximality implies that ® is closed under finite intersection

and hence is P-directed. Since a proper P-ideal is a regular family, the coin-

cidence of the two classes follows.

Example 2.12. Let S be the multiplicative semigroup of a biregular ring

with identity. Let 7 be a (two-sided) ideal of 5. For each/i and/2G7 there

are (idempotent) elements ei and e2EC(S)C\I such that /,«i =/,-, for i = l, 2.

Since ei and e2 commute with each other, ei+e2 — eie2 is a relative unit for

both /i and f2. Thus every two-sided ideal of 5 is an O-ideal.
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Example 2.13. Let L he an JR-lattice with respect to a relation R. An

open ideal was defined in [15] to be a subset I of L satisfying: (1) 0$/,

(2) / and gCI imply f/\gCI, and (3) for each fCI there is gCI such that

f Rg. The set / is a maximal open ideal if it is maximal with respect to

(l)-(3). We shall sketch an argument to show that the maximal open ideals

of L are precisely the maximal i?-ideals of L. The missing details involve the

definition of T?-lattice, which appears as our Definition 4.1, or those conse-

quences of it which are discussed immediately after 4.1. Briefly, the procedure

is to show: (a) every maximal open ideal is a proper T?-ideal, (b) every proper

i?-ideal is an open ideal, and (c) every open ideal is contained in a maximal

open ideal. To show (a), first note that every set satisfying (2) and (3) is

i?-directed. Next, if I is an open ideal, then L(I) = \fCL:f R e for some eCl}

is an open ideal, which, by (3), contains /. Therefore, if I is a maximal open

ideal, then L(I) =1, so I is an ideal with respect to R. Hence every maximal

open ideal is a (proper) i?-ideal. To show (b), first show that if/?^0, then

f R 0, so that no proper i?-ideal contains 0. Now an i?-ideal I obviously satis-

fies (3); that it satisfies (2) comes from the fact that / is i?-directed, property

(ii) of 4.1, and the fact that I is an ideal with respect to R. Finally, (c) is a

consequence of Zorn's lemma.

Example 2.14. Let S be the multiplicative semigroup on R(X) with X a

completely regular Hausdorff space. The sets TVP of Gillman and Henriksen

[6] are exactly the maximal O-ideals in S. This follows easily from Theorem

5.10 and the comments preceding it.

3. Topological preliminaries. Let 5 be a set and © some family of proper

subsets of 5. It is appropriate to refer to the operations, defined for subsets

21 of © by
(6) Ci(%) = \MoC&: M0CV{M: MC%}} and,
(7) c2(%) = {M„C®:MoDr\{M:MCK}}

as the dual Stone and Stone closure operations respectively (see [17; 9], and

[4] for example). When the context makes confusion unlikely, we shall write

2I~ for Ci(SI) as well as c2(3l). These operations need not be closure operations

in a topology, but they can fail only because Ci(2IW58)Gc»(2l)W£;(93) may

fail for i = l or 2 (see [4]). Nevertheless, if those sets 21 such that 2I = Ci(2t)

are taken to be closed (ci) and their complements are called open (ci), the

family of all open (ci) sets satisfies the condition for being a paratopology [l 1 ].

We speak of the family of all open (ci) sets as the dual Stone paratopology

on © and the family of all open (cf) sets as the Stone paratopology on ©.

We also say that a given operation determines its associated paratopology.

An elementary fact used often without mention is that if @i and ©2 are two

families of sets and ©iC©2, then the dual Stone paratopology on ©1 is the

same as the paratopology induced on ©1 by the dual Stone paratopology on

©2; a corresponding statement holds for the Stone paratopology.

Under the name topology, Noebling [14] has shown that the usual defini-

tions of continuity and compactness continue to have meaning for para-
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topological spaces, and many of the usual theorems remain valid. Of interest

here are (i) the equivalence of the open sets and closed sets criteria for com-

pactness and (ii) the theorem that the continuous image of a compact para-

topology is compact.

Let T he a paratopology and let T' be the collection of complements of

members of %. A family £> of sets is a closed [open] base for £ if § C 2' [ § C £ ]

and if every member of 2/[I] is the intersection [union] of members of §.

The members of a closed [open] base are referred to as basic closed [open]

sets.

For fES we define the families

(8) U(/) = {MG©:/GAf},and

(9) g(/) = {MG©:/GMJ.
Then the sets U(/)[?5(/)] form an open [closed] base for the dual Stone

paratopology and they form a closed [open ] base for the Stone paratopology.

In the first part of this section we prove several elementary, purely set-

theoretic, lemmas concerning compactness. These are more or less implicit in

much work of this sort, but it seems that they have never been stated ex-

plicitly.
Evidently © is compact if and only if every family of basic closed sets

with the finite intersection property has a non-null intersection. Now a

family {g(/):/G4CS} [{U(f):fEAES} ] of basic closed (ci)[(c2)] sets has

non-null intersection if and only if there is an il7„G© such that

MoES\A[MoD A],

so the following is immediate:

Theorem 3.1. The dual Stone [Stone] paratopology on © is compact if and

only if for every set AES having the property

(10) [(11)] For any finite subset F of A there is M E © such that

MES\F[MDF], there is M„E& such that M„ES\A [M„DA ].

Definition 3.2. A set 4 which satisfies condition (10) [(11) ] of the theo-

rem will be called an f-set (c/) [(c2)] with respect to © (or when no confusion

can result, simply an f-set).

Since satisfying condition (10) [(H)] is a property of finite character,

every/-set is contained in a maximal/-set. Proving compactness (c/) [(c2)] is

equivalent to proving that if 4 is a maximal/-set then 5\4 [4 ] is in ©. The

following criterion of maximality of an /-set is useful. Its verification is quite

standard, and is omitted.

Lemma 3.3. 4re f-set (c/) [(c2) ] 4 is maximal if and only if it satisfies the

condition

(12) [(13)] hEA implies there is a finite set F in A so that ME& implies
Mr\(FKJ{h})^0[M^)(F\j{h})].
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Definition 3.4. A subset F of S is covering (ci) [(cf) ] with respect to © if

AfG© implies MC\Ft^0 [M~f)F]. When no confusion can result we say

simply that F is covering.

Theorem 3.5. Suppose S is a set and © is some family of proper subsets of

S. Let A be a maximal f-set (ci) [(c2)] with respect to @. Then

(14) if for some relation R on S, members of © are ideals with respect to R

then S\A [A ] is an ideal with respect to R;

(15) if Eis some n-fold cartesian product of S,ifa: E-+S is a function such

that for every MC<&, and ax, a2„ ■ ■ ■ , anCM, a(au a2, ■ ■ ■ , af)CM then

ffli, a2, • ■ ■ , anCS\A[A] implies a(au a2, - - ■ , an)CS\A [A];

(16) if S is a semigroup, R is a relation on S and all members of S are prime-

like (R) sets then S\A [A ] is a prime-like (R) set.

Proof. Let 4 be a maximal /-set (ci) and assume that members of © are

ideals with respect to R. Take fCS\A, and suppose hCS satisfies hRf.

By Lemma 3.3 there is a finite set F in 4 such that PU{/} is covering (ci).

It follows that the set FU{/q is covering. For take TkfG© and suppose

MC\F = 0. Then fCM and therefore we have hCM. Thus, since FKj{h} is

a finite set such that MC® implies MC\(FKJ {h}) 9^0, and A is an /-set,

we have hCS\A.
To see (15), take Ci, a2, ■ ■ ■ , anCS\A. Corresponding to each ait

i = l, 2, ■ ■ ■ , n, there is a finite set F, in 4 such that F*U{ai} is a covering

set. Now if P = U"_! Fi then the set [a(ax, a2, ■ ■ ■ , af)} WP is a covering set.

For if MG© and MC\F=0 then we have atCM for each i = l, 2, ■ ■ ■ , n.

Therefore a(ax, a2, ■ ■ ■ , af)CM. Therefore a(ax, a2, ■ ■ ■ , af) is in S\A,

since, as above, it is an element which forms a covering set when adjoined

to a finite subset F of A.

Suppose now that A is a maximal /-set (c2) and that members of S are

prime-like (R) sets. Take/GA, eCS such that/i?e and assume ke is in A.

There is a finite subset F„ of A such that F0\J {/} is a covering set (c2). We

show kCA by showing that for arbitrary finite F in A there is TkfG© such

that FKj[k}CM. For any such set F, there is MC& which contains

FVJF0\j{ke}. Therefore/GM. Since M is prime-like (R), we have kCM,

and hence F\J {k} CM. It follows that k is in A and that A is a prime-like

(R) set.

The remaining arguments are similar to those given and are omitted.

The following is a partial list of consequences of the theorem. It includes

a well known result of Wallman for lattices [18] and of Stone for commuta-

tive rings with identity [17].

Corollary 3.6. Let S be a semiring with zero [identity], and let R be a

relation on S. Then these families are compact in the dual Stone [Stone] para-

topology :
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'proper [proper] j , >.

(17) the collection of all\\ .   .      ...    ._.    H right        >
v    ' J        proper prime-like (R) &    .,  ,

[proper prime-like (R) ]J *■ '

ideals in S.

Proof. We may as well suppose the given family of ideals is not empty.

In every case, if 4 is a maximal/-set (c{) [(c2) ] then 5\4 [4 ] is a proper sub-

set 5. For S\Ay*0 [A^S] if 5 has a zero [identity], and S\A^S [A^0]

since the family of ideals concerned is not empty. In all cases except those

concerning maximality, the set 5\4 [4 ] is in © by the theorem. In case ©

consists of maximal elements, then 4 is also maximal. For if A<B, with

PG©, then B is a larger/-set (c2) than 4, contrary to the maximality of 4.

Thus 4 is in © in these cases also. The compactness now follows from the

remarks prior to Lemma 3.3.

Remark 3.7. By Remark 2.5, this corollary implies that the collection of

all prime left ideals, etc., in a semiring with zero [identity] is compact in the

dual Stone [Stone] paratopology.

Example 3.8. The collection 'iSl(S) of maximal O-ideals in a commutative

ring S with identity need not be compact in the dual Stone paratopology.

Let X he the set of positive reals with the usual topology. Let G RH mean

that 77 is completely separated from X\G. Let &> denote the collection of

positive integers, and for each wG« choose a sequence {dn}i of open inter-

vals such that GinRGi+in, H, {G,„} = {re} and if n^m then the closures of

Gi„ and Glm are disjoint. For each i and reG« let ein be the continuous func-

tion such that etn] (X\Gin) =1, e,„| G,+i» = 0, and e,-„ is linear in the two inter-

vals whose union is GinC\(X\Gi+in)- Let 5 be the ring generated by the ein,

the function e0o that is identically 1, and its negative e0i- The members of 5

can be written in the form ei+e2+ ■ ■ ■ +en where each d is a finite product

of the e,„. It follows that ¥ is a maximal O-ideal if and only if for some

reGw, M=Mn= {fES:nEZ(f)°}. Thus for each reG«, the open set U(ein)

= { Mn} ; so 9U(5) is an infinite discrete space, and hence a noncompact space,

in the dual Stone paratopology.

In this example, the paratopology is actually a topology (see Theorem

3.10). Further, the classes of maximal and prime-like O-ideals coincide. For

the Mn are obviously prime-like. And in any ring S with 1, if Af is a prime-

like O-ideal, then Af is maximal. For suppose M<M', where M' is an O-ideal.

There exist eu e2 and /G M'\M such that/Oei 0 e2. Then (l-e2)ei=QEM.

Therefore l—e2EMEM', so that 1GM'. Hence M' = S, and M is maximal.

We have, however, these criteria for compactness (ci).

Theorem 3.9. Let S be a semigroup with zero and let & be a non-null family

of proper R-ideals in S. Assume that f R g and f Rh imply f R gh, and R-ideals

are s.g. ideals. Then each of the following conditions implies the one below it.

(18) © is compact in the dual Stone paratopology.
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(19) The intersection of the members of a non-null closed family 21C© is

an R-ideal.

(20) If F is a finite subset of S which is not covering, and f, gCS are ele-

ments such that the sets {/} WP and {g} VJF are covering, then there is eCS such

that f Re, g Re and the set j«jUf is covering.

(21) If A is a maximal f-set (cx) then S\A is an R-ideal.

Hence if © consists either of the collection of all proper R-ideals, prime R-

ideals, or prime-like R-ideals, then the conditions are equivalent.

Proof. Suppose © is compact and let 21 be a closed and non-null subset.

Let 1(11) = Cl{T17: MG2l|. 7(21) is not empty (since every s.g. ideal contains

zero), and it is obviously an ideal with respect to R. Now take/, gC7X21).

For each T17G21, there is eGTkf such thatfR e and g R e. That is, the collec-

tion \W(e): eCM for some T17G2I and f Re, gRe} is an open cover of the

compact set 21. Therefore there is a finite set ex, e2, ■ ■ ■ , enCS such that

every T17G2I contains some et, and such that /Rd and gRe{ lor each

i = 1, 2, ■ ■ ■ , n. Take e„ = LT"=i e,-. By hypothesis we have f Re0 and g R e0.

Further, since i?-ideals are assumed to be s.g. ideals, eQ is in 7(21). Hence 7(21)

is an i?-ideal.

Assume that (19) holds, that FCS and f,gCS are as in (20). For any

hCS, the set %(h) = { T17G©: hCM} is closed in the dual Stone paratopology.

Hence the set 21 = D|g(/): fCF} is closed. Therefore 7(21) =V\{M: T17G2I}
is an i?-ideal. Now/and g are elements of 7(21) since T17G2I implies MC\F= 0,

while both [f}\JF and JgjVJP are covering sets. Hence there is eG7(2l)

such that/i?e and gRe. The set jeJU/7 is covering; for if TWG© and

MC\ F = 0 then 7(21) C M so that e C M.
Next we show that if (20) holds and A is a maximal /-set then S\A is

an i?-ideal. In virtue of Theorem 3.5, the only property which requires proof

is that S\A is i?-directed. For/, gG5\A there is a finite subset F of A such

that the sets {/j VJF and } g} UP are covering. F is not covering since FCA.

By hypothesis there is eCS such that/7\e and gRe and the set jejUF is

covering, whence eCS\A. Therefore S\A is i?-directed.

Now suppose 5 consists of all proper .Tc-ideals, prime i?-ideals, or prime-

like i?-ideals. According to the proof of Corollary 3.6, S\A is a proper subset

of 5 if 4 is a maximal/-set (cx). Hence if ,S\A is also an T?-ideal, then S\A

belongs to © by Theorem 3.5. (To see that 3.5 applies to the collection of

prime i?-ideals, recall 2.5). According to the remarks preceding Lemma 3.3,

it follows that © is compact. The proof of the theorem is complete.

Following Blair [4], we say that © admits the dual Stone topology if the

dual Stone paratopology is actually a topology. Lemma 2.2 together with

[4, Theorem 1.1 ] yield the following theorem, though we include a short

direct proof.

Theorem 3.10. The collection of proper O-ideals of a semigroup admits the

dual Stone topology.
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Proof. As we observed at the beginning of this section it is sufficient to

consider two families of O-ideals 2Ii and 2I2 and show that Ci(2IiW2I2)Gci(2Ii)

Uc,(»*). If Ji = \J{M:ME%i] for i = l, 2, and if 7 is in Cl(2IiU2l2) then
7C7iVJ72. By Lemma 2.2, IEJi or 7C72. Therefore we have 7Gci(2li)
Wci(?{2).

Definition 3.11. Let P be a relation on S such that every P-ideal in 5

is an O-ideal in 5. Then the R-ideal space of S is the topological space of all

proper P-ideals of S with the dual Stone topology. The maximal R-ideal space

of S, written 2Jc(P, S), is the subspace of maximal P-ideals. When R = 0,

this latter space is written W(S).

4. P-semirings at h„. Our aim in this section is to define a class of semi-

rings which is sufficiently broad to include the P^-lattices of Shirota [15 ] as

well as various rings of continuous functions, and to prove some ideal-struc-

ture theorems for these semirings.

For the sake of completeness, we include the definition of Pi-lattice. We

replace the symbol "^>" of [15] by "P" throughout; and the statement of (v)

has been slightly modified.

Definition 4.1 (Shirota [15]). A distributive lattice L is an R-lattice if:

(1) L contains a zero 0 and satisfies Wallman's disjunction property, and

(2) there is a relation P on 5 such that (i) h^f and / P g imply h R g; (ii)

fiRgi and /2 P g2 imply /1A/2 PgiAg2; (iii) fRg implies there exists hEL
such that f RhRg; (iv) for all f^O there exist elements gi and g2?^0 such

that gi Rf Rg2; (v) if T is the set of triples (h, f, g) such that h Rf Rg then

there is a function </>: T—>S having the following properties: (a) <j>(h, f, g)\/f

= h, (b) (b(h, /, g)Ag = 0, and (c) it h' Rh and g R g', then

(j>(h',g,g')R(t>(h,f,g).

It is asserted in [15] that these hold: (vi) if / P g then f^g, and (vii) if

fRg and g^h then f R h. As a consequence, the relation R is transitive.

Statement (vi) follows easily from (iv) and (v). Statement (vii) follows from

(ii) and (i) if kEL can be found such that k Rh. If h^O, such k exists by

(iv). If h = 0, then (iv), (iii), (v) and (ii) all seem to be needed to prove the

existence of such k.

Now let (S, +, •) be a semiring with identity 1 and transitive relation P,

and consider the following restrictions which may be imposed on 5 and P. To

see that they all hold in an i?-lattice, interpret a+b as the greatest lower

bound and ab as the least upper bound of a and b respectively. Notice that

with this interpretation, an element is a lattice-theoretic zero if and only if

it is a "multiplicative" identity, and the lattice relation ^ is identical with

the (multiplicative) canonical order 0.

(22) fRg implies f 0 g;
(23) /1 P gi and /2 P g2 imply there is a "homogeneous" polynomial tt in

two variables (with coefficients in S) such that/iP7r(gi, g2) for i=l, 2;

(24) fRg implies there exists hES such that f R h R g;
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(25) fRg and hES imply hf R g and fh R g;
(26) fRg and hRg imply (f+h) R g;
(27) for every P-ideal M, 1G1+A7;

(28) f R g and/+?w = 1 imply there is g'ES such that g+g'm = l.

Definition 4.2. If S satisfies the following variation of (v) above for an

element h0ES, then S is relatively complemented at h0:

(29) There exists hiES such that hi R h0, and a function c/> satisfying the

following conditions: Let T denote the set of triples (h, f, g) such that

hiRhRh0 and hRf Rg. Then <f> is a mapping from T into S such that

(a) (b(h, f, g)f= h, (b) cp(h,f, g) +g = 1, and (c) iihiRh' Rh and g R g' then
4>(h',g,g')R(p(h,f,g).

Definition 4.3. A semiring S, with identity 1 and transitive relation P,

which is relatively complemented at h0ES, and which satisfies conditions

(22)-(28) is an R-semiring at h„.

Evidently an i?-lattice is an P-semiring at every one of its elements. To

obtain another class of examples, consider a ring 5 with identity. Let P be

either the canonical or strong canonical order on (S, ■). Then f R g implies

f 0 g, and h R 0 implies h = 0. Define (p(h, f, g) =1 —g. It is easy to see that

(j> satisfies (a), (b) and (c) of condition (29), with hi = ho = 0. Further, the

conditions (22)-(28) are all satisfied except possibly the denseness condition

(24). Consider (26), for example, with R = 02. If/02gand h O2 g, then there

exist elements ei and e2 such that fOeiOg and hOe20 g. It follows that

(f+h) 0 (ei+e2— eie2) 0 g, and hence that (f+h)02g. The required poly-

nomial in (23) is the "circle" polynomial w(x, y)=x+y — xy. Condition (28)

follows since f R g and/+»w = l now imply g + (i —g)m = l.

In a biregular ring with identity, for example, the canonical order is

dense, since for any /, there exists an idempotent ei in the center, and ele-

ments x, y and z such that/=a:ci and yfz = ei. Hence /0 a, and if/Oe for

some e, then ei 0 e. The canonical order need not be dense on rings K(X);

however, the strong canonical order is dense on these rings (see Remark 5.4

and the results just preceding it).

Definition 4.4. A ring with identity on which the strong canonical order

is dense is an R-ring.

Remark 4.5. It is useful to make these elementary observations: (i) an

P-ring is an 02-semiring at 0 with (f>(h, f, g) = 1 —g; (ii) a set 7 is an O-ideal

if and only if it is an 02-ideal; (iii) in the presence of (22) and (25) every

P-ideal is an O-ideal and therefore is a s.g. ideal; (iv) if 5 is an P-semiring at

h0, h is as in Definition 4.2 and hi Rh R h0, then S is also an P-semiring at h;

(v) if the canonical order on a semigroup is dense, then it coincides with the

strong canonical order. In particular, a biregular ring with identity is an

P-ring, in virtue of the comments prior to Definition 4.4.

Remark 4.6. If the strong canonical order is dense on a semigroup 5 then

its restriction to any Silov (0) semigroup S0 is dense on S„. For take/, eES0
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such that / O2 e. Then there are elements h, and h'CS such that / O2 h O2 h'

O2 e. Since S0 is Silov (0) there are elements ex, ei, and ezCS0 and in the

center of S such that/ 0 ei 0 h, h 0 e2 0 h' and h' 0 e3 0 e. But then / O2 e2 O2 e,

so O2 is dense on 50. Similar arguments show that a subset S0 is Silov (0) if

and only if it is Silov (O2), still under the assumption that O2 is dense on S.

Now take R to be a fixed transitive relation on S. We assume that S is

an 7?-semiring at h„, and study the i?-ideal structure of S.

Lemma 4.7. A subset ICS is an R-ideal if and only if I is an ideal such that

(*) for each fCI there is eCI such that f Re.

Proof. Suppose 7 is an i?-ideal. 7 obviously satisfies (*); and by Remark

4.5 (iii), it is a s.g. ideal in (S, ■). It remains to show 7+7C7. Take/i,/2G7.

There is eG7 such that/,«=/,- for i = l, 2. Therefore fx+f2 = (fx+f2)e. Hence

fi+fiCI, since 7 is a s.g. ideal.

Conversely, suppose 7 is an ideal satisfying (*). Then 7 is an ideal with

respect to R, since R is as strong as the canonical order. And 7 is i?-directed;

for take /i, f2, ei and e2G7 such that /,• R d for i = l, 2. By (23), there is a

polynomial tt such that /,R w(ex, e2) for i=l, 2. Since 7 is an ideal, we have

ir(ei, e2)CI- Therefore 7 is an i?-ideal.

Theorem 4.8. Suppose 7i and I2 are R-ideals and let J = IX\JI2. Then the

set IiVh of finite sums of members of J is an R-ideal.

Proof. It is immediate that 7iV72 is an ideal of S. By the previous

lemma, it remains only to show that 7iV72 satisfies (*). It is sufficient to

show that if h = hi+hi, with hiCh, then there is eG7iV72 such that h R e.

There exist elements c,G7 such that hi Ret, for i = l, 2. By (23), there is a

polynomial tt such that hi R ir(ei, e2), lori = l, 2. By (26), we have h Rir(ei, e2).

Since 7i and I2 are ideals, we have ir(ei, e2)G7iV72, and the proof is complete.

Recall that every T?-ideal is an O-ideal (by Remark 4.5 (hi)). Therefore

the collection of i?-ideals admits the dual Stone topology by 3.10. The maxi-

mal i?-ideal space is the subspace of maximal i?-ideals defined in 3.11.

Corollary 4.9. If Mi and Mi are distinct maximal R-ideals, then MX\J'M2

= S. Hence the maximal R-ideal space <M(R, S) of S is Hausdorff.

Proof. The first result is immediate. The second follows since the sets

U(/) form a base for the topology of 'SR(R, S). If MxVT172 = S, then there are

elements e»GTl7,-, *=1, 2, such that ex+e2=l. Therefore U(ei)PiU(e2) = 0.

Corollary 4.10. TVo proper ideal can contain distinct maximal R-ideals.

Proof. Obvious.

Lemma 4.11. For eCS, let L(e)= \fCS:fRe\. If L(e) is non-null, then

it is an R-ideal. If NCS is an ideal, and if L(N) = {fCS: f Re for some eGTV}
is non-null, then L(TV) is an R-ideal.
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Proof. Being non-null, both L(e) and L(N) are s.g. ideals, by (25). By

(26), L(e)+L(e)EL(e); L(N)+L(N)EL(N) in virtue of (23). The denseness

condition (24) implies that for each fEL(e)[L(N)} there is e'EL(e)[L(N)]

such that/P e'. By Lemma 4.7, L(e) and L(N) are P-ideals.

Theorem 4.12. If M is a maximal R-ideal, iff EM and f Re, then there is
mEM such that e+m = l.

Proof. By definition, fEL(e), so L(e) is an P-ideal by the previous lemma.

By Theorem 4.8, M\/L(e) is an P-ideal. It properly contains M, since /GM,

and therefore contains 1. If lEL(e), then by (22), l=e. Now by (27), there

is mEM such that e+m = l+m = l. Otherwise we have lEL(e)+M, so for

some hRe and nEM, h+n = l. By (28), there is e'ES so that e+e'n = l.

Since il7 is an ideal, we have lEe + M, and the lemma is proved.

Corollary 4.13. Every maximal R-ideal is prime-like (R).

Proof. Let M he a maximal P-ideal and suppose/, eES such that/GM

and f Re. By the theorem there is mEM so that e+m = l. Thus for any

hES we have he+hm = h. Therefore heEM implies h is in M, and the proof

is complete.

Corollary 4.14. If f Re, then, in the maximal R-ideal space 9Ji(P, S) of

S, we have U(/)2>Ci(11(e)).

Proof. Suppose  M0Eci(Vl(e)). That is, suppose

M0E U{MG9K(P, S):eE M}.

If fEM0, then there is mEM„ such that e+m = l. But then m is in M for

some AfGU(e). Since this is impossible we have/G-Mo.

So far, condition (29) has not been used. It is needed in the following

partial converse of Corollary 4.13.

Theorem 4.15. Every prime-like R-ideal M which contains ha is maximal.

Proof. Suppose hi is as in Definition 4.2, and that M<M', where M' is an

P-ideal. Take hES such that h R h R h„ and choose kEM'\M. Since M' is

an P-ideal, there are elements / and g in M' such that k Rf, h Rf and fRg.

Hence there is an element <p(h, f, g) such that (p(h, f, g)f = h and 4>(h, f, g)+g

= 1. Since M is prime-like (P), we have (p(h,f, g)EM, so by the second equa-

tion, 1EM'. Hence M' = S, and M is maximal.

The following lemma concerns the continuity of certain maps.

Lemma 4.16. Suppose that {M: MEWl} is a collection of prime-like R-

ideals in VL(h0). Suppose 9i is a collection of ideals such that (1} Af: AfG9Ji}

GH {N: NEW}. Let M0 be a prime-like R-ideal in U(h0) and let N„ be a proper

ideal such that M0EN0. Then M„<XM {M: M EW} implies D {N: NEW.} <tN„.

Proof. Suppose hi is as in Definition 4.2, and take h such that hi Rh R h0.

There are elements k, /, gGAf„\U{Af: MEM}  such that k Rf, hRf and
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f R g. Therefore there is an element d>(h, f, g) such that <p(h, f, g)f=h and

qb(h, f, g)+g=Y Since each M is prime-like (PO, the first equation implies

dj(h, f,  g)   is  in   flJTkf: MG5!U}cn{TV:TVG9l},   and   the  second   implies
<t>(h,f,g)CN0.

Theorem 4.17. The identity map on the collection W(ho) of maximal R-ideals

containing h0 is continuous from the Stone paratopology to the dual Stone topol-

ogy.

Proof. First recall that the members of W(ho) are prime-like (R) by 4.13.

Then apply the lemma, with 9K = 9^ and M0 = TV0.

Lemma 4.18. Let hx, h0 be as in Definition 4.2 and take h, h'CS such that

hi R hi R h R h0. If TV is a proper prime-like (R) ideal containing h, then

L(N) = {/:/Re for some eGTV} is a maximal R-ideal containing h'.

Proof. The set 7(TV) is proper, for 1 CN, and as we have seen, 1 R e im-

plies 1 = e. Now L(TV) contains h' by definition, and is an i?-ideal by Lemma

4.11. If M is a proper P.-ideal containing T,(TV) then, as we shall show,

T17CTV. Therefore M = L(N). For if MCN then L(M)CL(N); but L(N)CM
CL(M), since T17 is an i?-ideal. Hence 7(TV) is maximal.

We prove MCN by contradiction. Suppose kCM\N. Take elements q

and q'CS such that hiRq' RqRh'. Then qCM, so there are elements

f, g, g'CM such that k Rf and qRf, while /R g R g'. By condition (29),
there are elements 4>(q', g, g') and d>(q,f, g) such that <f>(q', g, g') Rd>(q,f, g),

<M<Z>/> g)f = qCN, and <j>(q', g, g')+g' = Y Since TV is prime-like (R), we have

4>(q,f, g) CN. Therefore <p(q', g, g') CL(N) CM. But g'CM and <p(q', g, g') +g'
= 1 yield a contradiction, since T17 is a proper ideal. It follows that MCN,

and the proof is complete.

Let ty(S) denote the space of all proper prime-like (R) ideals in 5 with

the Stone paratopology. 'ty(S) is compact by Corollary 3.6. For hCS, let

'Sl(h) be the collection of members of ty(S) which contain h. yt(h) is compact

since it is a closed subset of ty(S). Suppose h and h! are as in the previous

lemma. Then L maps 'Hl(h) into the collection U(h') of maximal i?-ideals con-

taining h'. Regard U(h') as a subspace of $3l(R, S). Since the members of

U(h') are prime-like (R) by 4.13, another consequence of Lemma 4.16 is that

L is continuous: Replace h0 of that lemma by h'. S is an i?-semiring at h' by

Remark 4.5 (iv). Take ^C^W and N0CW(h). With M = L['Sl] and T17„
= L(N0), the continuity of L is immediate.

Now 11(h) CL^h)]. For on the one hand> if MCU(h) then MCK(h) by
4.13. On the other hand, T17 = L(T17) since L(T17)CT17 for any ideal, and
L(M)DM, if M is an i?-ideal. Therefore MCL^h)].

Finally, since hRh„we have Ci(U(h0)) CVl(h) by 4.14, where Ci(]\(h„)) is

the dual Stone closure of lX(h0) in W(R, S). Therefore cx(U(ho)) is compact,

being a closed subset of the compact space 7.[9t(/?)]. Since the sets \X(h)
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form a base for the maximal P-ideal space W(R, S), we have the following

generalization of a part of Shirota's Theorem 1 [15].

Theorem 4.19. If S is an R-semiring at h„, then Ci(U(h0)) is compact in the

dual Stone topology. If h„ is in every maximal R-ideal then 9Jc(P, S) is compact.

If S is an R-semiring at every hES then Wl(R, S) is locally compact.

Remark 4.20. Our proof of this theorem yields a different proof of the

local compactness of the space of maximal open ideals in an Pv-lattice from

that in [15], This difference was not made necessary by the greater generality

of semirings. Shirota's proof applies here with little change. On the other

hand, a proof which might generalize to semigroups still seems to be missing.

Recall that one hypothesis of Theorem 3.9 was that P satisfy the condi-

tion

(30) fRg andfRh imply/Pgh.
For the remaining results, we assume

(a) S has a zero 0, and further, 5 is an P-semiring at 0 in which condition (30) holds.

Remark 4.21. We shall need these consequences of (a):

(i) 0P0.
For by (29), there exists hi such that hi R 0. By (22), 0h = hi, so h =0.

(ii)   {o} is a proper P-ideal, so 2U(P, S) is not empty.

The first statement follows from (i), and the second from Zorn's lemma.

(iii)   1P1.
Since 0 P 0, (29) implies that there is an element d=(j>(0, 0, 0) such that

9+0 = 1 and 9 R d, since 0 P 0. By (23), there is a polynomial it such that

0Ptt(O, 9) and 0Ptt(0, 9). By (26), (9+0) Rtt(0, 9). Thus 1Ptt(0, 9).
This implies 7r(0, 9) = 1, so 1 R 1.

(iv) h = h+0 for every hES.
Since 1 P 1, we have 0 P 1, by (25). Thus there is an element g=(b(0, 1, 1)

such that gl =0 and g + 1 = 1. Therefore 1 = 1 +0. Hence for every hES, we

have h = h+ 0.
Remark 4.22. (i) It is asserted in [15] that, in an ^-lattice L, if /i P gi

and /2 P g2 then fx\Jf2 R giVg2(2)- Thus (30) holds in an fl-lattice. Hence if

(2) Shirota has sent us a proof of this result, which we now sketch. It is sufficient to consider

the case where/i and/2 are equal to some/. Letj, k, h, hi and qi, t'=l, 2, be elements such that

j R k R h R hi R hi R f, and / R qi R gi. There are elements 4>{hi, f, q,) and <t>(hi, qi, gi) for

i-1,2, such that <j>(hh q{, gi) R<t>{ht,f, qi). Leta=<t>(h2,f,qi)A<t>(h2,f, q-A and let b=<t>(hi, qu gi)
/\4>(h\, q-i, gi). Take ai such that b R a, R a. There are elements <j>{h, b, ai) and <f>{k, ait a) such

that 4>(k, oi, a) R <t>(h, b, at). We have only to prove that <j>{h, b, ai) A/i?gi Vg2 and f^(f>(k, au a)

Ahi, for then/£<&(£, au a)Ahi R <t>(h, b, ai)A/SgiVg2. We have 6Agi = 0 and &Ag2 = 0, so
£'A(giV£2)=0. Furthermore <$>{h, b, ax)\lb = h'^1gi\Jgi, so <j>(h, b, Oi)^giVg2, and f^gi\fgt,
which proves the first statement. To prove the second, note that hi = (j>{hi, f, 2i)V/ and

Ii2 = <t>(h2,f, ?2)V/imply/Va=/V(*(fe./. 2i)A<K>*2,/, g2))=^V^2 = A2. Since<f>(j, b, a,)Aai=0,
we have <j>(j, b, oi)A/A^ = </'0'. b, ai)A/=*(j, b, ai)A(f\/ai)^<t>U, b, ai)A{f\/a)=<t>(k, b, d)
Afe. Therefore/g0(j, 6, a{)Ahi, whence f^<t>(k, Oi, a)Ahi.
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L has an identity, (i.e. a zero for (L, V)), then (a) holds, (ii) The hypothesis

(a) obviously holds in an i?-ring, with R in (30) and (a) replaced by O2.

Lemma 4.23. Assume (a) holds. If f 9*0 and f R e, then there is a maximal

R-ideal M such that eCM.

Proof. The set A(f) = {hCC(S): hf = 0} is an ideal. Let 7 = L(A(/)). Since
0 R 0,1 is not empty. Therefore 7 is an 7^-ideal by Lemma 4.11. Since 1 G4(/)

we have 1G7, so there is a maximal 7\-ideal T17 containing 7. Now there are

elements e' and e"CC(S) such that f Re" Re' Re. By (25), 0/ Re", so

0 R e". Since 5 is an 7\-semiring at 0, and h R 0 implies h = 0, there are ele-

ments^, e", e') and 0(0, e!, e) such that 0(0, e', e) R 0(0, e", e'), 0(0, e", e')e"

= 0 and 0(0, e', e)+e = l. Since fe" =f, we have 0(0, e", e')CA(f). Hence

0(0, e', e)CICM. Clearly e is not in M.

Theorem 4.24. Assume (a) holds. Then the intersection of the collection of

all maximal R-ideals of S is zero.

Proof. According to Theorem 4.19, the maximal i?-ideal space ffl(R, S)

of S is compact. Now 5!JJ(7\, S) is not empty, by 4.21 (ii). Therefore by Theo-

rem 3.9, 7 = n{A7: MCffl(R, S)} is an i?-ideal in S. If 7 contains/^0 then
it also contains e such that/7v e. But this is impossible by the lemma.

Theorem 4.25. Assume (a) holds. If J is an ideal, then

J = n{M + 7: M G W(R, S)}.

Proof. It is immediate from 4.21 (iv) that JCC\{M+J: MCTl(R, S)}.
Suppose fCO[M+J: MC®t(R, S)}. If MCM(R, S), then there is

mCM and kCJ such that f=m+k. Take e, e' CM such that m Re' Re. By

(25), 0 7^ e', so there is an element 0(0, e', e) such that 0(0, e', e) +e = 1. Since

f = m + k and m Re, we have fe = m + ke. Therefore fe + k<j>(0, e', e)

= m+k<p(0, e', e)+ke = m+k=f. Since J is an ideal, we have/G/e+7. Thus

the collection [VL(e): fCfe + l}, as e ranges over S, is an (open) cover of

Wl(R, S).
Since Tl(R, S) is compact, there is a finite set ex, e2, • • • , enCS such that

every T17G9JJ(T?, S) contains some e,-. There are corresponding elements

ki, ki, ■ ■ ■ , knCJ satisfying the n equations

(31) f=fd+ki.
An induction shows/G7. In case n = l, then ei, being in every MC<3H(R, S),

is zero, so/is in I. In order to reduce n to n — 1 such equations, multiply both

sides of f=fen+kn by en-i. Substitute the expression obtained for fen-i in

the (n-l)st equation. The new equation, combined with the remaining

n — 2 equations, yields re —1 equations of the form (31).

Corollary 4.26. Assume (a) holds. If I is an R-ideal, then

J = f){M:MCm(R,S) and MDJ}.



426 J. G. HORNE, JR. [March

Proof. Let 7 be an P-ideal. In virtue of the theorem, we can write 7

= IT\I", where 7' = D{ Af+7: MEM(R, S) and MDJ} and

I" = \J{M+J:ME'3JI(R, S) and M~$)j}.

If Af is an P-ideal then Af+7 is an P-ideal by 4.21 (iv) and 4.8. If M~X> J
then Af+7 properly contains Af, so, when Af is maximal, Af+7 = 5. There-

fore I" = S. On the other hand, if AOf, then M+J=M, and the proof is

complete.

5. Applications. In this section, X will denote an arbitrary topological

space unless mention is made to the contrary. We show first that K(X) satis-

fies a condition which is stronger than that it be an P-ring.

Lemma 5.1. Let S(X) denote any one of the multiplicative semigroups K(X),

K*(X), R(X) or R*(X). If e, fES(X) and fe=f, then there are elements

ei, hES(X) such that (i) fei =f and (ii) ei(he) =ei.

Proof. Suppose first that e is real-valued (but / is arbitrary). We show

that ei and h can actually be found in R*(X). Take a real number X, 0<X<1,

and a bounded continuous real-valued function % defined for all real /, such

that x(l) = F and if t^\ then x(0 =0. If we set ei =xie) and h = l/e\AK, then

both d and h belong to P*(A), and fei =f while eiifie) =d. Now for arbitrary

e, apply the previous argument to ee, where e is the complex conjugate of e.

Then there are bounded functions ei and /}' such that/«i=/ and efft'ee) =ei.

Hence (ii) holds with h = h'e, so the proof is complete.

Lemma 5.2. Let S be a semigroup which satisfies the condition (**) fOe

implies there are elements ei and hECiS) such that (i) fei =f and (ii) eiifie) =ei.

Then the strong canonical order O2 on S is dense.

Proof. Assume that/O2 e; that is, for some e'ECiS), we have fe'=f and

e'e = e'. Then there are elements hi, I12, ei and e2GC(.S) satisfying (i)fei=f,

(ii) ei(hie')=ei, (i)' fe2=f and (ii)' e2(h2ei)=e2. It follows from (i)' and (ii)'

that/O2 (h2ei). On the other hand, (h2ei)(hie') =h2ei by (ii), and since e'e = e',

we have (hie')e = hie'. Therefore (h2ei) O2 e and the proof is complete.

Hence from 5.1, we have the

Theorem 5.3. The rings K(X), K*(X), R(X) and R*(X) satisfy condition

(**) and hence are R-rings.

Remark 5.4. The canonical order on K(X) is not dense in general. For

eEK(X), let E(e)={xEX:e(x) = l}. Then fe' =f and e'e = e' imply

N(f)-EE(e')EN(e')EE(e). However it can happen that/e=/, N(f)~ = E(e)

and E(e) is not open. Hence no e' such that/O e' 0 e can be found.

Remark 5.5. The condition (**) is genuinely stronger than denseness of

the strong canonical order. For let X he the closed unit interval and let 5

be the ring consisting of those members of K(X) each of which agrees with
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some polynomial on an open interval of the form (1/2, 1/2+e). It is not

difficult to show that 5 is a Silov (0) semi-group of K(X) which does not

satisfy (**). By Remark 4.6, the strong canonical order on S is dense.

In any ring S, the O-ideals coincide with the OMdeals, by 4.5 (ii). If 5

is an i?-ring, then by 4.13 and 4.15, the prime-like 02-ideals and maximal

OMdeals coincide. The comments in the paragraph just preceding Theorem

3.9 show that every prime-like O-ideal is maximal. However there seems to

be no reason in general to think that prime-like 02-ideals are prime-like 0-

ideals. In this connection we have the

Theorem 5.6. 7re a semigroup satisfying condition (**) every prime-like

(O2) ideal is a prime-like (0) ideal.

Proof. Let P be a prime-like (O2) ideal and suppose /, e and kCS are

elements such that/GP>/Oe and keCP- By (**), there are elements h and

eiCC(S) such that (i) fex=f and (ii) ei(he)=ei. Then /O2 (he), and since

keCP, we have k(he)CP- Since P is prime-like (O2), kCP- Hence P is

prime-like (0).

Corollary 5.7. 4 subset of K(X), K*(X), R(X) or R*(X) is a maximal

O-ideal if and only if it is a prime-like O-ideal.

Remark 5.8. From the fact that a prime-like O-ideal is maximal and a

prime O-ideal is a prime-like O-ideal, it is apparent, from 2.10, that the ring

of continuous functions over the closed unit interval, for example, contains

no proper prime O-ideals.

We shall identify the (compact) maximal O-ideal space of K(X) alter

the following example. Let ®(X) denote the family of open subsets of X

regarded as a semiring with "." = "U" and " + " = 'T\". Thus {X} is a zero

for &(X) and {0} is an identity. For G, HC®(X), let G R 77 mean that

H is completely separated from X\G. It will be helpful to have the following

statement of Theorem 4.12 in terms of notions in ®(X):

(32) Yet 9 be a maximal i?-ideal in &(X), and let 771? H2C®(X) satisfy

77, R H2. If for each GG9, we have GC\H29*0, then 77^8-
(We are indebted to the referee for pointing out the usefulness of (32) in

the sequel, and for observing that it clarifies the relationship of maximal R-

ideals to ultrafilters.)

Example 5.9. ®(X) satisfies (22)-(30) with respect to R, and hence is an

7v-semiring at {A-} which satisfies the hypothesis (a) of §4. Among the prop-

erties which must be checked, only (24) and (29) might require comment. If

FRG then there is eCR(X) with 0 ̂ e^ 1 such that e\ G = 0 and e\ (X\F) = 1.

Let x and X be as in the proof of Lemma 5.1. Recall that ex=x(e) and h

= 1/eVX, so ei\(X\F) = 1 and ex\Z(ei)° = 0. Hence FRZ(ex)°. Since

he\ (X\Z(ei)°) = 1 and he\ G = 0, we have Z(ei)° R G. Therefore R is dense on
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®(X) and (24) is verified. For (29), take h„ and ^ to be {X} and let

4>iX, F, G) =X\G-. Then if P P G we have 4>(X, F, G)UP = A, and 4>(X, F, G)
C\G = 0. Furthermore, if FRGRG', then <p(X, G, G') Rcb(X, P, G). Thus
(29) holds.

Now corresponding to each xEX there is an P-ideal 3C having the prop-

erty Pix): xE<^ {H: 77G3C} (namely, {A}). Hence it can be embedded in

a maximal P-ideal Q(x) with this property. By (32), if 77i and 772 are open

sets such that Hi R H2 and xG772, then 77iG9(x). For if GEQ(x) then

GC\H29^0, since xEGC\H2. As a consequence, ®(x) contains every P-ideal

having Pix), and hence is the only maximal P-ideal with this property.

Let 7(A) be the maximal P-ideal space of ®(A). Let g: X—*y(X) denote

the correspondence which sends x into S(x). If 4GA is a subset and xG4_,

then g(x)CU{9(a): aG4 }, so g is continuous. For if GG9(x), then there

exists 77G9(X) such that G RH. Since there is aEHC\A, we have GE'3(a)

as above. It is as easy to see that the image of X is dense in y(X).

The following argument shows that every member/ of P*(A) can be ex-

tended to 7(A) as a continuous function. If g is any proper P-ideal, then the

family of (bounded) closed sets {f(G)~: GE$} has the finite intersection

property. Hence there is X0 in the intersection of this family. If 9 is maximal,

then for every open set U of real numbers containing X,,,/_1(l7)G9- For there

is an open set V such that X„GFCF-Cc7. Therefore f-x(U) Rf~\V), and

for every GG9, f~1(V)r\G^0. By (32), f-y(U)E^. It follows that X„ is the
only element in C\{f(G)—. GE<3}- Define /*(g) to be this X„. Then /* is an

extension of/. Further, the set of 9' such that /_1(F)G9' is a neighborhood

of 9 in 7(A). For any such 9', we have/*(9')G V~E U. Hence/* is continu-

ous.

Thus 7(A) is a compact Hausdorff space which contains a continuous

dense image of A. In addition, every bounded continuous function on g(X)

can be extended to a continuous function on 7(A), so that P*(X) is isomor-

phic to P(7(A)). Thus we have another proof of Stone's result that rings of

bounded continuous functions cannot be distinguished from rings of continu-

ous functions over compact spaces [17]. Finally, it is clear that a necessary

and sufficient condition for the above correspondence g to be a homeomor-

phism is that A be completely regular and Hausdorff. The necessity is im-

mediate. For the sufficiency, note that if G is an arbitrary open set and

xEG then there is an open set H such that G P 77 and xEH. The properties

of 7(A) in this case distinguish it as the Stone-Cech compactification /3(A)

of X. In virtue of example 2.11 we have a different proof from that in [l] •

that j8(A) can be constructed from the completely regular ends in X.

With the aid of the following characterization of O-ideals in K(X) in

terms of P-ideals in ®(A), we shall be in a position to identify the maximal

O-ideal space of K(X). The proof of this theorem is straightforward and

we omit it.
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Theorem 5.10. Let a be a function on the set of R-ideals of &(X) defined by

ff(8) = {/G-^C^O: Z(J) f)G for some GC%}, and let r be a function on the set

of O-ideals of K(X) defined by t(I) = {GC®(X): GDZtf) for some fCl}.
Then a is a mapping onto the set of O-ideals of K(X), and t is its inverse.

The restriction of r to the maximal O-ideal space is a one-to-one mapping

from the maximal O-ideal space of K(X) onto the maximal i?-ideal space

y(X) of ®(X). Since every basic open set of maximal O-ideals is mapped onto

a union of basic open sets in y(X), this mapping is a homeomorphism. In

particular, when X is completely regular and Hausdorff, the maximal O-ideal

space of K(X) must be homeomorphic with fi(X). In virtue of Theorems 1.7

and 1.9 we have the following generalization of Milgram's Characterization

Theorem [12].

Theorem 5.11. The Stone-Cech compactification I3(X) of a completely regu-

lar Hausdorff space X is characterized by any Silov (0) subset of the multiplica-

tive semigroup on K(X), where 0 is the canonical order on K(X).

Remark 5.12. In a conversation with the author, Milgram raised some

questions concerning semigroups of matrix-valued functions. In this connec-

tion note that the previous theorem remains true if K(X) is replaced by the

ring Sn of reX« matrices over K(X). To prove this, it is sufficient by 1.7

and 1.9 to show that some Silov (0) semigroup of Sn characterizes |3(X).

But this is easy, for the center C(S") is a Silov (0) semigroup of Sn. On the

other hand, C(S") consists of the scalar matrices, and is therefore isomorphic

to K(X).

The positive semirings of [16] include the semiring R^(X) of non-nega-

tive members of R(X). In this connection we have

Example 5.13. The semiring R+(X) is an i?-semiring which satisfies the

hypothesis (a) of §4, where R is defined as follows: let E(X) consist of all

gCR+(X) such that g(x) g 1 for all xCX. Define/ R g to mean that gCE(X),
and for some eCE(X),f O e 0 g. Note that this is the same as requiring that

gCE(X) and f O2 g; for if eCR+(X) and f 0 e 0 g, then / 0 (e/\l) 0 g, and
e/\lCE(X). Conditions (22), (25), (27) and (30) obviously hold. Conditions

(23) and (26) both follow from the fact that if gx and g2 are in E(X) then

gi+gi — gigiCE(X). If fRg, then f02g. Now the function x which occurs
in the proof of 5.1 can be chosen to be non-negative. Thus R+(X) satisfies

condition (**) of 5.2. Therefore there is eCR+(X) such that f O2 e O2 g. As

we observed above, this yields/ 02 («A1) O2 g, and f R (ef\l) R g. Hence (24)

holds. If gCE(X), then l-gCR+(X). Therefore, in (28), we can take

g' = l-g- For (29), take hx=0 = ho and define 0(0, /, g) = l— g. Suppose

fRgRg'. Then gCE(X), so (1 -g') R (I -g), since 1 -g is actually in E(X).
Hence (29) holds.

For a final application, let 5 be a biregular ring with identity. As we ob-

served in 4.5 (v), S is an i?-ring in which 02 = 0. By Example 2.12, every
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ideal in S is an O-ideal. Therefore, as special cases of 4.9, 4.19, 4.13, 4.15 and

4.26, with R = 02 = 0, we have the following results (the final conclusion is

a part of Corollary 3 of [2]).

Theorem 5.14. If S is a biregular ring with identity, then (i) the collection

of maximal ideals in S forms a compact Hausdorff space in the dual Stone topol-

ogy, (ii) a proper ideal is maximal if and only if it is a prime-like (0) ideal, and

(iii) every ideal is the intersection of all the maximal ideals containing it.
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