ON THE IDEAL STRUCTURE OF CERTAIN SEMIRINGS AND
COMPACTIFICATION OF TOPOLOGICAL SPACES

BY
J. G. HORNE, JR.(*)

Introduction. Let X be a topological space, R(X) its family of real-valued
continuous functions, and ®(X) its family of open subsets. When it comes to
reflecting the topological properties of X, there are many similarities between
the ring and the lattice on R(X), and a certain “strongly ordered” structure
on ®(X). In this connection the works of Stone [17], Alexandrov [1], Kap-
lansky [10], Hewitt [8], Milgram [12], Shirota [15], and Henriksen [7]
should be mentioned.

One similarity is that each has various families of “ideals” which admit
intrinsically defined, compact topologies. A natural domain in which to study
this situation is the semiring. It was recently called to our attention that one
such study has already been made. Slowiskowski and Zawadowski studied
the space of maximal ideals in “positive” semirings [16]. Our principal re-
sults concern the family of R-ideals in a class of semirings suggested by the
R-lattices of Shirota [15]. These semirings include various rings of continuous
functions and the biregular rings (with identity) of Arens and Kaplansky [2],
in addition to R-lattices. The notion of R-ideal is a generalization of the no-
tions of lattice ideal and O-ideal of Milgram [12]. The present paper and
[16] seem to overlap very little, except in some of the applications.

The author wishes to express his deep appreciation to the referee for his
many helpful suggestions.

In §0, terms and conventions to be used throughout the work are given.
The definitions of two particularly important relations, which are definable
for any semigroup, appear in this section. These are the canonical order O,
and (in the language of relations) its square, the strong canonical order.

§1 contains the definition of R-ideal and Silov subset for any set S with
transitive order R. Included among examples of Silov subsets are the Silov
semigroups of Civin and Yood [5]. Some elementary properties of O-ideals
are proved in §2. For an arbitrary relation R on S, the notion of prime-like
(R) ideal is defined. This includes the familiar notion of prime ideal. The
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most useful properties of maximal R-ideals, obtained in §4, seem to derive
from their being prime-like (R).

The third section contains a general study of the Stone and dual Stone
closure operations on an arbitrary family of subsets of an abstract set S.
Criteria for compactness are obtained which seem particularly natural for
application to families of subsets. An example shows that neither the maxi-
mal nor prime-like O-ideal space of a commutative ring with identity need
be compact in the dual Stone topology.

We come to semirings in §4. For the sake of completeness, we have in-
cluded the definition of R-lattice. A definition of R-semiring at an element is
given. It is for such semirings that we obtain some ideal structure theorems.
The final section consists of applications to the study of R-ideals in the
family of open subsets of a topological space X, the O-ideal structure of
R(X), and the ideal structure of biregular rings with identity.

0. Preliminaries. The symbol C denotes inclusion, while < is used for
proper inclusion. For sets S and 4 we write S\A = {s€S:s&4}. If 4 is not
empty and 4 <.S, then 4 is a proper subset of S .The empty set is denoted .

A relation on S is a subset of SXS. If R, and R, are two relations on .S
then R, is as strong as Ry if RiyCR,; that is, ¢ R, b implies @ R, b. Those rela-
tions which are dense are of special interest here. R is dense on .S if for
a, bES such that a R b, there is ¢E.S satisfying @ R ¢ and ¢ R b. A relation R
directs a subset A (or 4 is R-directed) if for every pair a and ¢’ €4, there
exists e€©A such that ¢ Re and a’ Re. A frequently used relation on the
family of subsets of a topological space X is defined in terms of complete
separation. Two subsets 4 and B of X are said to be completely separated
(written A|B) if there is a continuous real-valued function f such that
f]A=0and f| B=1. For subsets G and H, G R H sometimes means H| (X\G).

If S is endowed with a binary associative multiplication (indicated by
juxtaposition or “-”) then S is a semigroup. For any subsets 4 and B, the set
{ab: a€ A and bE B} is, as usual, denoted by AB. A nonempty subset J is a
left semigroup ideal (abbreviated l.s.g. ideal) if STCJ. It is a semigroup ideal
(abbreviated s.g. ideal) if JSCJ also. The center C(S) of .S is the collection
of elements x €S such that xf=fx for all fE€S. An element e& S is a relative
unit for fES if e€C(S) and fe=f. An identity 1 and zero 0 satisfy 1f=f1=f
and 0f =f0 =0, for all f&.S. Two relations on .S are especially important:

DEerINITION 0.1. The canonical order on S is the relation O = {(f, e):eis
a relative unit for f}. g

DEeFINITION 0.2. The strong canonical order on S is the relation O?
={(f, ): for some ¢’E€C(S), fO e and ¢’ Oe}.

If there is also a binary addition (written “4”) which is associative and
commutative, and satisfies both a(b+c) =ab+ac and (b+c)a=ba+ca, then
S is a semiring. S is a semiring with identity or zero according as the semi-
group (S, -) has an identity or zero. A left ideal (abbreviated l.ideal) J in a
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semiring is a l.s.g. ideal of (S, -) which also satisfies J4+JCJ. It is a (two-
sided) 7deal if it is also a s.g. ideal of (S, -).

For a topological space X, we use K(X) and R(X) respectively to denote
the rings of all continuous complex- and continuous real-valued functions on
X. K*(X) and R*(X) denote the bounded members of K(X) and R(X). If
FEK(X) then Z(f) = {xEX: f(x) =0} and N(f)=X\Z(f). If ACX we use
A~ and A° respectively for the closure and interior of 4. If X is locally com-
pact and Hausdorff, K. (X) is the sub-ring of K*(X) of functions which van-
ish at infinity, and K,(X) is the sub-ring of K(X) of functions with compact
support: that is, those fE K (X) with N(f)~ compact.

1. R-ideals and Silov subsets. In this section, .S is a set with transitive
relation R, no algebraic structure being assumed.

DEFINITION 1.1. A subset I of S is an ideal with respect to R if f&EI, h&S
and & R fimply h&1.

The following definition is derived from Milgram’s notion of O-ideal [12]
and that of lattice ideal [3].

DEFINITION 1.2. A nonempty subset I of S is an R-ideal if (i) I is an ideal
with respect to R, and (ii) [ is R-directed; that is, for f, g&I there is e[l
such that f Re and g Re.

An R-ideal M is maximal if M is a proper subset of S and M <M’'<S is
false for every R-ideal M’.

From some points of view certain subsets of S can be much simpler than S
itself, and yet have essentially the same R-ideal structure (using the induced
relation). Particularly easy to handle, yet of frequent occurrence, are the
Silov subsets:

DEFINITION 1.3. A subset S, of S is a Silov (R) subset (or simply a Silov
subset) provided the statements f R e and ¢ R g for a triple ¢, f, g&S imply
there is ¢/ €S, such that f R e’ and ¢’ R g. If S is a semigroup and S, is a sub-
semigroup then S, is a Silov (R) semigroup.

ExaMPLE 1.4. Let X be a locally compact Hausdorff space and let S be
the multiplicative semigroup on K,(X). Suppose R=0, the canonical order
on S. It is straightforward to prove that a subset S, of S is a Silov subset if
and only if whenever F and F’ are disjoint closed subsets of X with F compact,
then there is '€ S, such that f'| F=1 and f’[ F'=0. A sub-semigroup having
this property was called a Silov semigroup by Civin and Yood [5], and was
characterized algebraically in a way different from above.

ExaMPLE 1.5. Let X be an arbitrary topological space and let S be the
multiplicative semigroup on K(X). If S, is the collection of those functions
taking their values in the closed unit interval, then S, is a Silov (0) semigroup
of S. For suppose fe =f and eg =e. Let & denote the complex conjugate of ¢, and
set ¢/ =(¢cé) A\1. Then fe’=f and ¢’g=e’. Since any semigroup in .S which is
larger than a Silov semigroup is also a Silov semigroup, other examples are
easy to obtain. In particular, K*(X) and R*(X) are Silov semigroups of K(X)
and R(X), respectively.
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ExampLE 1.6. Let X be a topological space. If G R H means either
(i) GDH- or (i) H| (X\G) then the regular open sets form a Silov (R) subset
of the family of all open sets. For in either case, if F R E and E R G then
F R (E™)° and (E-)° R G. Thus it is apparent that Silov subsets of a semi-
group need not be sub-semigroups.

In the following theorem we do not distinguish between a relation on S
and its restriction to a subset of S.

THEOREM 1.7. Let S, be a Silov (R) subset of S. Then these hold:

(1) If I is an R-ideal in S then INS, is an R-ideal in S,.

(2) If I, is an R-ideal in S, then I=L(1,) = {fES:fR e for some eEL,}
is an R-ideal in S such that I,=1NS,.

(3) If Iy and I, are distinct R-ideals in S then [yN\S, and I,N\S, are distinct
R-ideals in S,.

Proof. Suppose I is an R-ideal in S and take fi, LEINS,. Let ey, ez, e =T
be elements such that f; R e; for =1, 2 and e; R e2 R e;. Then there is g€ S,
such that e; R g2 R e;. Since e3E 1, we have g.&IMS,, and since R is transi-
tive f; R gs for 1=1, 2. Therefore IMN\.Sy is R-directed. Since there exists A& 1,
this argument also shows that NS, &. Now if f&INS, and % R f for some
RES,, then k& ; hence INS, is also an ideal with respect to R. It is therefore
an R-ideal in S,.

If I, is an R-ideal in S, then I,C L(1,) so that L(I,) is R-directed. Since R
is transitive L(I,) is an ideal with respect to R. To see that L(I,)N\S,=1,,
take f&L(I,)N\S,. There is ¢,& I, such that f R e,. Since I, is an R-ideal in S,,
we have fE€I,.

Finally, suppose I; and I are R-ideals in S with gi&EI\I,. Take e, e2E 13
so that g1 R e; R e;. Then neither e; nor e, is in I,. Since S, is a Silov subset
there is ¢’ €S, such that g; R ¢’’ R e,. The right hand relation implies ¢’ &1,
and hence ¢’ €I,N\S,. The first relation places ¢’ in S\I».

For a topological space X, we have the following corollary, in virtue of
Example 1.5.

CoROLLARY 1.8. The correspondence I-INK*(X) is one-to-one from the
O-ideals in K(X) onto the O-ideals in K*(X). If M is a maximal O-ideal in
K(X) then MNK*(X) is a maximal O-ideal in K*(X).

The following result implies that the correspondence I—INS, induces a
homeomorphism between R-ideals of S and those of S,, if these families of
R-ideals are assigned the dual Stone paratopology, and S, is a Silov subset of
S. (For a discussion of the dual Stone paratopology see §3.)

THEOREM 1.9. Let M be an R-ideal of S and U a family of R-ideals of S.
Then MCU{I: IEU} if and only if MNS,CU{INS,: T€A}.

Proof. Obviously, if MCU{I: IEYA} then MNS,CU{INS,: I€A}. On
the other hand, if M(\SOCU{I('\SO:IEQI}, and fEM is arbitrary, then
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elements e, g& M exist such that f Re and e R g. Since S, is a Silov subset
there is ¢/ ES, such that fRe’ and ¢ Rg. The second relation implies
e'EMMNS,, so that for some I EY, we have ¢’ EINS,. From the first relation,
fEI follows.

2. O-ideals and prime-like (R) ideals. Now assume that .S is a semigroup.
Recall that f O e means: fe=f and e is in the center C(S) of S. Hence an
O-ideal is actually a (two-sided) s.g. ideal. In fact, we have the characteriza-
tion:

(4) A subset I of Sisan O-idealif and onlyif I isanl. (orr.) s.g. ideal such
that for every pair fi, fo &1 there is eI such that f; O efori=1, 2.

LemMA 2.1, If I, and I, are O-ideals then I;(\I, and 1,1, are O-ideals, and
Ilmlz = 11[2.

Proof. We have L1I,C )N\, for any pair of s.g. ideals. Take f&I,N\1,;
then f& 1], holds since there is e €1, such that f=fe.

To see that I,I, is an O-ideal, suppose k;=f;g; with f;& I, and g,& I, for
1=1, 2. There are elements e; &1, and es& I, such that f; O e; and g; O e, for
1=1, 2. Hence I,I, contains the relative unit e,e, for % and k. Since 1,1, is
also a s.g. ideal, it is an O-ideal by (4).

The following lemma implies that the family of O-ideals admits the dual
Stone topology (see Theorem 3.10).

LEMMA 2.2. If I is an O-ideal and J, and J, are s.g. ideals and ICJ,\JJ;
then ICJyor IC .

Proof. Take fE I arbitrarily and suppose I {_J,. There are elements f’ and
eI such that f'& J,, f'e=f" (therefore ed J,) and fe=f. Since ICJ,\JJ, we
have e& J,. Therefore f& J;. Since f& is arbitrary, we have I CJ,.

The notion of prime ideal has proved useful in many circumstances.
However the notion of prime O-ideal is in general not fruitful. In many semi-
groups having an abundance of maximal O-ideals there are no proper prime
O-ideals (see Remark 5.8). In many of these semigroups the maximal O-ideals
may nonetheless be characterized as those O-ideals having a certain prime-
like property which we now define. R is an arbitrary relation on S.

DEFINITION 2.3. A subset P of S is prime-like (R) provided
(S\P)(U(S\P)) CS\P, where U(S\P)={e¢ES:fRe for some fES\P}. We
refer to an R-ideal which is also a prime-like (R) set as a prime-like R-ideal.
A prime-like (O) set is called simply a prime-like set.

"~ An alternate form for the definition of “prime-like (R) set,” and the form
most frequently used, is

(5) P is a prime-like (R) set if and only if whenever f, ¢, k are elements in
S satisfying f& P, f Re and k¢ & P, then kEP.

The following definition reduces, when .S is commutative and P is an
ideal, to the ordinary notion of prime-ness.
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DEFINITION 2.4. A subset P of S is a prime set provided its complement
S\P is a sub-semigroup; that is, (S\P)(S\P)CS\P. A prime s.g. ideal or
prime O-1deal is a prime set which is also a s.g. ideal or O-ideal, etc.

Some connections between these two notions are given in the following
comments.

REMARK 2.5. Prime sets are exactly the prime-like (E) sets, where E is the
identity relation.

REMARK 2.6. A prime L.(r.) s.g. ideal is a prime-like (O) set, since in this
case U(S\P)C(S\P).

REMARK 2.7. Suppose a commutative semigroup .S has the property of
von Neumann’s regular rings [13]: a €S implies there is x&.S such that
axa=a. Then every prime-like (O) ideal P is a prime ideal and the two
notions coincide. For let f and g&S\P, and suppose g=gxg. If fg&€P, then
fxgEP. However, g O (xg) and g& P, so f&P by (5). This is a contradiction,
so fg&E P and P is prime.

REMARK 2.8. A prime-like (0O) ideal may be neither a prime ideal, nor an
O-ideal. Let S be the multiplicative semigroup of continuous complex-valued
functions on the closed unit interval. Choose 0 <x<1; then the set

{fE€S:Z(f) D (%, x + ¢) for some ¢ > 0}

has the desired properties.

We conclude this section with a list of examples.

ExAMPLE 2.9. Let .S be the semigroup (L, A) of a lattice (L, \/, A). Then
I'is an O-ideal in S if and only if I is a (lattice) ideal [3], and is prime-like
if and only if it is prime (see Remark 2.7 above).

ExampLE 2.10 (Milgram, [12]). Let X be a compact Hausdorff space.
For each closed set FCX, the set I(F) = {fEK(X): Z(f)°DF} is an O-ideal
in the multiplicative semigroup on K(X); and for every O-ideal J of K(X)
there is a closed set FCX such that J=1I(F). Note that the members of I{F)
consist exclusively of divisors of zero if and only if I is proper, and in turn,
if and only if F is non-null.

ExaMPLE 2.11. Let S be the family of open subsets of a topological space
S. Define G R H to mean HI (X\G). Then the maximal R-ideals are exactly
the completely regular ends of P. S. Alexandrov [1]. Recall that a completely
regular end is a family & of open sets which is maximal with respect to having
the finite intersection property and being regular: for GE® there is HE®
with G R H. The maximality implies that @ is closed under finite intersection
and hence is R-directed. Since a proper R-ideal is a regular family, the coin-
cidence of the two classes follows.

ExAMPLE 2.12. Let S be the multiplicative semigroup of a biregular ring
with identity. Let I be a (two-sided) ideal of S. For each f; and f: &I there
are (idempotent) elements ¢, and ¢.& C(S)NI such that fie;=f;, for i=1, 2.
Since ¢; and e, commute with each other, e, +e;—ees is a relative unit for
both fi and f;. Thus every two-sided ideal of S is an O-ideal.
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ExaMPLE 2.13. Let L be an R-lattice with respect to a relation R. An
open ideal was defined in [15] to be a subset I of L satisfying: (1) 01,
(2) fand g&€1I imply fAgEI, and (3) for each f&1I there is g& I such that
fRg. The set I is a maximal open ideal if it is maximal with respect to
(1)-(3). We shall sketch an argument to show that the maximal open ideals
of L are precisely the maximal R-ideals of L. The missing details involve the
definition of R-lattice, which appears as our Definition 4.1, or those conse-
quences of it which are discussed immediately after 4.1. Briefly, the procedure
is to show: (a) every maximal open ideal is a proper R-ideal, (b) every proper
R-ideal is an open ideal, and (c) every open ideal is contained in a maximal
open ideal. To show (a), first note that every set satisfying (2) and (3) is
R-directed. Next, if I is an open ideal, then L(I) = {fEL: f R ¢ for some eI}
is an open ideal, which, by (3), contains I. Therefore, if I is a maximal open
ideal, then L(I) =1, so I is an ideal with respect to R. Hence every maximal
open ideal is a (proper) R-ideal. To show (b), first show that if f#0, then
f R0, so that no proper R-ideal contains 0. Now an R-ideal I obviously satis-
fies (3); that it satisfies (2) comes from the fact that I is R-directed, property
(ii) of 4.1, and the fact that I is an ideal with respect to R. Finally, (c) is a
consequence of Zorn’s lemma.

ExAMPLE 2.14. Let .S be the multiplicative semigroup on R(X) with X a
completely regular Hausdorff space. The sets N? of Gillman and Henriksen
[6] are exactly the maximal O-ideals in S. This follows easily from Theorem
5.10 and the comments preceding it.

3. Topological preliminaries. Let .S be a set and & some family of proper
subsets of .S. It is appropriate to refer to the operations, defined for subsets
A of & by

6) a@)={M,€&: M,CU{M: MEA}| and,

(7) o(A)={M,ES: M,DN{M: McU} |
as the dual Stone and Stone closure operations respectively (see [17; 9], and
[4] for example). When the context makes confusion unlikely, we shall write
A~ for a1 (A) as well as c2(A). These operations need not be closure operations
in a topology, but they can fail only because ¢,(A\JB) Cc(A)Jc,(B) may
fail for i=1 or 2 (see [4]). Nevertheless, if those sets ¥ such that % =c¢;()
are taken to be closed (c;) and their complements are called open (c;), the
family of all open (c;) sets satisfies the condition for being a paratopology [11].
We speak of the family of all open (c1) sets as the dual Stone paratopology
on © and the family of all open (c) sets as the Stone paratopology on &.
We also say that a given operation determines its associated paratopology.
An elementary fact used often without mention is that if &, and &; are two
families of sets and &;C&,, then the dual Stone paratopology on &, is the
same as the paratopology induced on &, by the dual Stone paratopology on
©,; a corresponding statement holds for the Stone paratopology.

Under the name topology, Noebling [14] has shown that the usual defini-
tions of continuity and compactness continue to have meaning for para-
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topological spaces, and many of the usual theorems remain valid. Of interest
here are (i) the equivalence of the open sets and closed sets criteria for com-
pactness and (ii) the theorem that the continuous image of a compact para-
topology is compact.

Let T be a paratopology and let T’ be the collection of complements of
members of . A family § of sets is a closed [open ] base for T if HCT' [HCT]
and if every member of T'[Z] is the intersection [union] of members of $.
The members of a closed [open] base are referred to as basic closed [open]
sets.

For fES we define the families

8) W) ={MES: fEM}, and

9 §H={Mee:feM}.

Then the sets U(f)[§(f)] form an open [closed] base for the dual Stone
paratopology and they form a closed [open] base for the Stone paratopology.

In the first part of this section we prove several elementary, purely set-
theoretic, lemmas concerning compactness. These are more or less implicit in
much work of this sort, but it seems that they have never been stated ex-
plicitly.

Evidently & is compact if and only if every family of basic closed sets
with the finite intersection property has a non-null intersection. Now a
family {§(f):fEACS}[{U(f): FEACTS}] of basic closed (1)[(cs)] sets has

non-null intersection if and only if there is an M,E& such that
Mo C S\4[M, D 4],

so the following is immediate:

THEOREM 3.1. The dual Stone [Stone] paratopology on & is compact if and
only if for every set A CS having the property

(10) [(11)] For any finite subset F of A there is M & & such that
MCS\F[MDF), there is M,ES such that M,CS\A [M,DA4].

DEFINITION 3.2. A set 4 which satisfies condition (10) [(11)] of the theo-
rem will be called an f-set (c;) [(cz)] with respect to © (or when no confusion
can result, simply an f-set).

Since satisfying condition (10) [(11)] is a property of finite character,
every f-set is contained in a maximal f-set. Proving compactness () [(c)] is
equivalent to proving that if 4 is a maximal f-set then S\A4 [4]is in &. The
following criterion of maximality of an f-set is useful. Its verification is quite
standard, and is omitted.

LEMMA 3.3. An f-set (1) [(c2)] A is maximal if and only if it satisfies the
condition

(12) [(13)] h& A implies there is a finite set F in A so that MES implies
MN(FU{R}) = Z[MD(FU{R})].
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DEFINITION 3.4. A subset F of S is covering (c1) [(c2) | with respect to & if
MES implies MNF> & [MDF]. When no confusion can result we say
simply that F is covering.

THEOREM 3.5. Suppose S is a set and S is some family of proper subsets of
S. Let A be a maximal f-set (1) [(c2) ]| with respect to S. Then

(14) if for some relation R on S, members of © are ideals with respect to R
then S\A [4 ] is an ideal with respect to R;

(15) if E is some n-fold cartesian product of S, if a: E—S is a function such
that for every MES, and ai, as,, - - -, anEM, alay, as, - - -, a)) EM then
a, as, - -+, a.ES\A [A ] implies a(ay, as, - - -, a,) ES\A[4];

(16) if S is a semigroup, R is a relation on S and all members of S are prime-
like (R) sets then S\A[A] is a prime-like (R) set.

Proof. Let A be a maximal f-set (¢;) and assume that members of & are
ideals with respect to R. Take fES\4, and suppose h&S satisfies & R f.
By Lemma 3.3 there is a finite set F in 4 such that FU {f} is covering ().
It follows that the set F\U{h} is covering. For take MES and suppose
MNF=g. Then fEM and therefore we have h& M. Thus, since FU {h} is
a finite set such that MES implies MN(FU{h})#= &, and 4 is an f-set,
we have hES\A.

To see (15), take ai, as - - -, a.€S\A. Corresponding to each a;,
i=1, 2, - - -, n, there is a finite set F; in A such that F,-U{a,-} is a covering
set. Now if F=U}., F; then the set {a(al, @z, * ¢y Q) } UF is a covering set.
For if ME€& and MNF= then we have a;&E M for each :=1, 2, - - - | n.
Therefore a(a:, as, - - -, a.)E M. Therefore alai, as, - - -, a.) is in S\4,
since, as above, it is an element which forms a covering set when adjoined
to a finite subset F of A.

Suppose now that 4 is a maximal f-set (¢;) and that members of S are
prime-like (R) sets. Take f& A, e&€S such that f R e and assume ke is in 4.
There is a finite subset F, of 4 such that F,\JU {f} is a covering set (c2). We
show k€A by showing that for arbitrary finite F in A4 there is MES such
that F\U{k} C M. For any such set F, there is MES which contains
FUF,\J{ke}. Therefore f&& M. Since M is prime-like (R), we have k€M,
and hence FU{k} C M. It follows that k is in A4 and that 4 is a prime-like
(R) set.

The remaining arguments are similar to those given and are omitted.

The following is a partial list of consequences of the theorem. It includes
a well known result of Wallman for lattices [18] and of Stone for commuta-
tive rings with identity [17].

COROLLARY 3.6. Let S be a semiring with zero [identity], and let R be a
relation on S. Then these families are compact in the dual Stone [Stone] para-

topology:
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proper [proper]

[maximal] left
proper prime-like (R)
[proper prime-like (R)]

an the collection of all right

two-sided
1deals 1n S.

Proof. We may as well suppose the given family of ideals is not empty.
In every case, if A is a maximal f-set (c1) [(c2)] then S\4 [4 ] is a proper sub-
set S. For S\d = & [AS] if S has a zero [identity], and S\A =S [4 = J ]
since the family of ideals concerned is not empty. In all cases except those
concerning maximality, the set S\A[4] is in & by the theorem. In case &
consists of maximal elements, then A is also maximal. For if 4 <B, with
BE®S, then B is a larger f-set (¢c3) than 4, contrary to the maximality of A.
Thus A4 is in & in these cases also. The compactness now follows from the
remarks prior to Lemma 3.3.

REMARK 3.7. By Remark 2.5, this corollary implies that the collection of
all prime left ideals, etc., in a semiring with zero [identity] is compact in the
dual Stone [Stone] paratopology.

ExaMPLE 3.8. The collection N(S) of maximal O-ideals in a commutative
ring S with identity need not be compact in the dual Stone paratopology.
Let X be the set of positive reals with the usual topology. Let G R H mean
that H is completely separated from X\G. Let w denote the collection of
positive integers, and for each n€w choose a sequence {Gi.}, of open inter-
vals such that Gix R Gisia, Ni {Gin} = {n} and if n¢m then the closures of
Gi» and Gy, are disjoint. For each 7 and n€w let ¢;, be the continuous func-
tion such that e,-,,| (X\Gin) =1, ein‘ Git1,.=0, and e;, is linear in the two inter-
vals whose union is Giu/ (X \Gis14). Let S be the ring generated by the e;,,
the function eqo that is identically 1, and its negative en. The members of S
can be written in the form e;+e;+ - - - 4+, where each e; is a finite product
of the e;n. It follows that M is a maximal O-ideal if and only if for some
n€w, M=M,={fES: nEZ(f)"}. Thus for each nE€w, the open set U(e1n)
={ M.} ;s0 M(S) is an infinite discrete space, and hence a noncompact space,
in the dual Stone paratopology.

In this example, the paratopology is actually a topology (see Theorem
3.10). Further, the classes of maximal and prime-like O-ideals coincide. For
the M, are obviously prime-like. And in any ring S with 1, if M is a prime-
like O-ideal, then M is maximal. For suppose M < M’, where M’ is an O-ideal.
There exist e, e2 and f& M\ M such that fO e, O e;. Then (1 —e)e;=0E M.
Therefore 1 —e,& M C M’, so that 1& M’. Hence M’ =.S, and M is maximal.

We have, however, these criteria for compactness (c1).

THEOREM 3.9. Let S be a semigroup with zero and let © be a non-null family
of proper R-ideals in S. Assume that f R g and f R h imply f R gh, and R-ideals
are s.g. ideals. Then each of the following conditions implies the one below it.

(18) & is compact in the dual Stone paratopology.
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(19) The intersection of the members of a non-null closed family ACS is
an R-ideal.

(20) If F is a finite subset of S which is not covering, and f, g&S are ele-
ments such that the sets {f}\UF and {g}\UF are covering, then there is e S such
that f Re, g R e and the set {e}\JF is covering.

(21) If A is a maximal f-set (¢1) then S\A 1s an R-ideal.

Hence if © consists either of the collection of all proper R-ideals, prime R-
ideals, or prime-like R-ideals, then the conditions are equivalent.

Proof. Suppose & is compact and let % be a closed and non-null subset.
Let 7)) =N { M: MEQI}. I() is not empty (since every s.g. ideal contains
zero), and it is obviously an ideal with respect to R. Now take f, g&I(¥).
For each M &, there is e&€ M such that f Re and g R e. That is, the collec-
tion {U(e): e€ M for some MEY and fRe, g Re} is an open cover of the
compact set . Therefore there is a finite set e, e, - - -, e,&S such that
every MG contains some e;, and such that f Re; and g Re; for each
i1=1, 2, - - -, n. Take e,= IIj., ;. By hypothesis we have f Re, and g R e,.
Further, since R-ideals are assumed to be s.g. ideals, e, is in I(%). Hence I(%)
is an R-ideal.

Assume that (19) holds, that FCS and f, g&S are as in (20). For any
hES, the set F(h) = { Mee: hEEM} is closed in the dual Stone paratopology.
Hence the set A=N{F(f): FEF} is closed. Therefore I(A)=N{M: MSA}
is an R-ideal. Now fand g are elements of I() since M EN implies MNF = ¢,
while both {f}UF and {g}UF are covering sets. Hence there is e&I(Y)
such that fRe and g Re. The set {e}\UF is covering; for if MES and
MNF=¢ then I(A) CM so that e€ M.

Next we show that if (20) holds and A4 is a maximal f-set then S\4 is
an R-ideal. In virtue of Theorem 3.5, the only property which requires proof
is that S\A4 is R-directed. For f, g&S\A4 there is a finite subset F of 4 such
that the sets {f}\UF and {g}\UF are covering. F is not covering since FCA.
By hypothesis there is e .S such that f Re and g R e and the set {e} UF is
covering, whence e©.S\A4. Therefore S\4 is R-directed.

Now suppose S consists of all proper R-ideals, prime R-ideals, or prime-
like R-ideals. According to the proof of Corollary 3.6, S\A4 is a proper subset
of S if 4 is a maximal f-set (¢1). Hence if S\4 is also an R-ideal, then S\4
belongs to © by Theorem 3.5. (To see that 3.5 applies to the collection of
prime R-ideals, recall 2.5). According to the remarks preceding Lemma 3.3,
it follows that & is compact. The proof of the theorem is complete.

Following Blair [4], we say that & admits the dual Stone topology if the
dual Stone paratopology is actually a topology. Lemma 2.2 together with
[4, Theorem 1.1] yield the following theorem, though we include a short
direct proof.

THEOREM 3.10. The collection of proper O-ideals of a semigroup admits the
dual Stone topology.
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Proof. As we observed at the beginning of this section it is sufficient to
consider two families of O-ideals 2; and ¥, and show that ¢;(¥,\JUs) Cear(Ar)
Ua (). If J,~=U{M: ME?L} for 1=1, 2, and if I is in ¢ (A;,\JY,;) then
ICJ\\JJ,. By Lemma 2.2, ICJy, or ICJ, Therefore we have I€a ()
UCl(%z).

DEeriNITION 3.11. Let R be a relation on S such that every R-ideal in .S
is an O-ideal in S. Then the R-ideal space of S is the topological space of all
proper R-ideals of .S with the dual Stone topology. The maximal R-ideal space
of S, written IN(R, S), is the subspace of maximal R-ideals. When R=0,
this latter space is written I(S).

4. R-semirings at %,. Our aim in this section is to define a class of semi-
rings which is sufficiently broad to include the R-lattices of Shirota [15] as
well as various rings of continuous functions, and to prove some ideal-struc-
ture theorems for these semirings.

For the sake of completeness, we include the definition of R-lattice. We
replace the symbol “>>” of [15] by “R” throughout; and the statement of (v)
has been slightly modified.

DEFINITION 4.1 (Shirota [15]). A distributive lattice L is an R-lattice if:
(1) L contains a zero 0 and satisfies Wallman’s disjunction property, and
(2) there is a relation R on S such that (i) A=f and f R g imply k R g; (ii)
fiRg and fo R g imply fiAfo R ¢1/\gs; (iii) f R g implies there exists h& L
such that f Rk R g; (iv) for all f£0 there exist elements g; and g.0 such
that g1 R f R go; (v) if T is the set of triples (&, f, g) such that # R f R g then
there is a function ¢: T—S having the following properties: (a) ¢(k, f, g) \Vf
=h, (b) ¢k, f, 2 Ag=0, and (c) if ¥ Rk and g Rg’, then

o(H', g, 8) Ro(h, f, 8.

It is asserted in [15] that these hold: (vi) if f R g then f=g, and (vii) if
fRg and g=h then fR k. As a consequence, the relation R is transitive.
Statement (vi) follows easily from (iv) and (v). Statement (vii) follows from
(ii) and (i) if #€L can be found such that & R k. If k>0, such % exists by
(iv). If =0, then (iv), (iii), (v) and (ii) all seem to be needed to prove the
existence of such k.

Now let (S, 4, ‘) be a semiring with identity 1 and transitive relation R,
and consider the following restrictions which may be imposed on S and R. To
see that they all hold in an R-lattice, interpret a+b as the greatest lower
bound and ab as the least upper bound of @ and b respectively. Notice that
with this interpretation, an element is a lattice-theoretic zero if and only if
it is a “multiplicative” identity, and the lattice relation = is identical with
the (multiplicative) canonical order O.

(22) f R g implies f O g;

(23) fiRg and f; R g» imply there is a “homogeneous” polynomial 7 in
two variables (with coefficients in S) such that f; R (g1, g2) for i=1, 2;

(24) f R g implies there exists k€S such that fRE R g;
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(25) fRgand &S imply if Rg and fh R g;

(26) fRgand h R gimply (f+h) Rg;

(27) for every R-ideal M, 1&€1+4+ M,

(28) fR g and f+m =1 imply there is g’ €S such that g+gm=1.

DEeFINITION 4.2. If S satisfies the following variation of (v) above for an
element 4, &S, then S is relatively complemented at h,:

(29) There exists k€S such that & R k,, and a function ¢ satisfying the
following conditions: Let T denote the set of triples (%, f, g) such that
hi Rh Rh, and R RfRg. Then ¢ is a mapping from T into .S such that
(@) ¢k, f, g)f=h, (b) ¢(h, f, g)+g=1, and (c) if h RA Rk and g R g’ then
o, g g) Ro(h, f, g)-

DEFINITION 4.3. A semiring S, with identity 1 and transitive relation R,
which is relatively complemented at k,&S, and which satisfies conditions
(22)—(28) is an R-semiring at h,.

Evidently an R-lattice is an R-semiring at every one of its elements. To
obtain another class of examples, consider a ring S with identity. Let R be
either the canonical or strong canonical order on (S, :). Then f R g implies
fOg, and k& RO implies £ =0. Define ¢(%, f, g) =1—g. It is easy to see that
¢ satisfies (a), (b) and (c) of condition (29), with & =h,=0. Further, the
conditions (22)—(28) are all satisfied except possibly the denseness condition
(24). Consider (26), for example, with R=0% If f O? g and k 0% g, then there
exist elements e; and e; such that fOe Og and h Oe; O g. It follows that
(f+4h) O (e1+e2—eies) O g, and hence that (f+£k) O g. The required poly-
nomial in (23) is the “circle” polynomial 7 (x, y) =x+y—xy. Condition (28)
follows since f R g and f+m =1 now imply g4+(1 —g)m=1.

In a biregular ring with identity, for example, the canonical order is
dense, since for any f, there exists an idempotent e, in the center, and ele-
ments x, ¥ and z such that f=xe; and yfz=e,. Hence f O ¢, and if f O e for
some ¢, then ¢; O e. The canonical order need not be dense on rings K(X);
however, the strong canonical order is dense on these rings (see Remark 5.4
and the results just preceding it).

DEFINITION 4.4. A ring with identity on which the strong canonical order
is dense is an R-ring.

REMARK 4.5. It is useful to make these elementary observations: (i) an
R-ring is an O%-semiring at 0 with ¢(k, f, g) =1—g; (ii) a set I is an O-ideal
if and only if it is an O%ideal; (iii) in the presence of (22) and (25) every
R-ideal is an O-ideal and therefore is a s.g. ideal; (iv) if S is an R-semiring at
ho, k1 is as in Definition 4.2 and & R & R h,, then S is also an R-semiring at #;
(v) if the canonical order on a semigroup is dense, then it coincides with the
strong canonical order. In particular, a biregular ring with identity is an
R-ring, in virtue of the comments prior to Definition 4.4.

REMARK 4.6. If the strong canonical order is dense on a semigroup S then
its restriction to any Silov (O) semigroup S, is dense on S,. For take f, e€S,
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such that f O% e. Then there are elements %, and #’' &S such that fO0?k 0% i’
O%e. Since S, is Silov (0) there are elements e;, e, and e;ES, and in the
center of Ssuch that fOe; O b,k O e; O b and b’ O e3 O e. But then fO%¢, O% ¢,
so 0% is dense on S,. Similar arguments show that a subset .S, is Silov (O) if
and only if it is Silov (0?), still under the assumption that O? is dense on S.

Now take R to be a fixed transitive relation on S. We assume that S is
an R-semiring at k,, and study the R-ideal structure of S.

LeEmMA 4.7. A subset ICS is an R-ideal if and only if I 1s an 1deal such that
(*) for each fEI there 1s eI such that f Re.

Proof. Suppose I is an R-ideal. I obviously satisfies (*); and by Remark
4.5 (iii), it is a s.g. ideal in (S, -). It remains to show I+ICI. Take fi, . & 1.
There is e€1 such that fie=f; for 1=1, 2. Therefore fi+f.=(fi+f2)e. Hence
fi+f: €1, since [ is a s.g. ideal.

Conversely, suppose [ is an ideal satisfying (*). Then I is an ideal with
respect to R, since R is as strong as the canonical order. And I is R-directed;
for take fi, f, e1 and e €1 such that f; Re; for =1, 2. By (23), there is a
polynomial 7 such that f; R w(ei, e;) for ¢=1, 2. Since I is an ideal, we have
w(e1, e2) €I. Therefore I is an R-ideal.

THEOREM 4.8. Suppose I, and I, are R-ideals and let J=I,\JI,. Then the
set I'\/ I; of finite sums of members of J is an R-ideal.

Proof. It is immediate that I;\/I; is an ideal of S. By the previous
lemma, it remains only to show that I,\/I; satisfies (*). It is sufficient to
show that if A=h,+h,, with h;E1;, then there is e&I;\/ I, such that & Re.
There exist elements e;&I; such that &; Re;, for i=1, 2. By (23), there isa
polynomial w such that &; R (e, e2), for =1, 2. By (26), we have & R 7(e1, ¢2).
Since I, and I are ideals, we have w(ey, es) EI1\/ I,, and the proof is complete.

Recall that every R-ideal is an O-ideal (by Remark 4.5 (iii)). Therefore
the collection of R-ideals admits the dual Stone topology by 3.10. The maxi-
mal R-ideal space is the subspace of maximal R-ideals defined in 3.11.

COROLLARY 4.9. If M, and M, are distinct maximal R-ideals, then M,\/ M,
=S. Hence the maximal R-ideal space M(R, S) of S 1s Hausdorf.

Proof. The first result is immediate. The second follows since the sets
U(f) form a base for the topology of M(R, S). If M1\/ M,=S, then there are
elements e;& M;, 1=1, 2, such that e;+e;=1. Therefore U(e;) N\U(ez) = &.

COROLLARY 4.10. No proper ideal can contain distinct maximal R-ideals.
Proof. Obvious.

LEMMA 4.11. For e€S, let L(e)={fES:fRe}. If L(e) is non-null, then
it is an R-ideal. If NCS is an ideal, and if L(N) = {fES: f R e for some e N}
is non-null, then L(N) is an R-ideal.
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Proof. Being non-null, both L(e) and L(N) are s.g. ideals, by (25). By
(26), L(e) +L(e) CL(e); L(N)+L(N)CL(N) in virtue of (23). The denseness
condition (24) implies that for each f&L(e)[L(N)] there is e’ L(e) [L(N)]
such that f Re’. By Lemma 4.7, L(¢) and L(N) are R-ideals.

THEOREM 4.12. If M is a maximal R-ideal, if f €€ M and f R e, then there is
m& M such that e+m=1.

Proof. By definition, f& L(e), so L(e) is an R-ideal by the previous lemma.
By Theorem 4.8, M\/L(e) is an R-ideal. It properly contains M, since f& M,
and therefore contains 1. If 1&L(e), then by (22), 1 =e. Now by (27), there
is m& M such that e4+m =14m=1. Otherwise we have 1EL(e) + M, so for
some h Re and nEM, h+n=1. By (28), there is ¢'ES so that ete'n=1.
Since M is an ideal, we have 1 &e+ M, and the lemma is proved.

COROLLARY 4.13. Every maximal R-ideal is prime-like (R).

Proof. Let M be a maximal R-ideal and suppose f, ¢S such that f M
and f Re. By the theorem there is m&E M so that e4+m=1. Thus for any
hES we have he+hm =h. Therefore he & M implies & is in M, and the proof
is complete.

CoROLLARY 4.14. If f R e, then, in the maximal R-ideal space M(R, S) of
S, we have U(f) Da(U(e)).

Proof. Suppose M,Ec(U(e)). That is, suppose
M, CU{M EMR,S):eC M}.

If f& M,, then there is m& M, such that e4+m=1. But then m is in M for
some M EU(e). Since this is impossible we have f&€ M,.

So far, condition (29) has not been used. It is needed in the following
partial converse of Corollary 4.13.

THEOREM 4.15. Every prime-like R-ideal M which contains h, is maximal.

Proof. Suppose %, is as in Definition 4.2, and that M < M’, where M’ is an
R-ideal. Take h&S such that b R k R h, and choose k& M'\ M. Since M’ is
an R-ideal, there are elements f and g in M’ such that R Rf, h R fand f R g.
Hence there is an element ¢(k, f, g) such that ¢(k, f, g)f=h and ¢ (h, f, g) +¢
=1. Since M is prime-like (R), we have ¢(k, f, g) € M, so by the second equa-
tion, 1€ M’. Hence M’=S, and M is maximal.

The following lemma concerns the continuity of certain maps.

LEMMA 4.16. Suppose that { M: MEM} is a collection of prime-like R-
ideals 1n U(h,). Suppose N is a collection of ideals such that ﬂ{M M EEUE}
CN{N: NER}. Let M, be a prime-like R-ideal in \l(h,) and let N, be a proper
ideal such that M,CN,. Then M,U{ M: MEM} implies N{N: NER} C N..

Proof. Suppose 4, is as in Definition 4.2, and take & such that &y R & R h,.
There are elements &, f, gEM\U{M: MM} such that kRf, h Rf and
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f R g. Therefore there is an element ¢(k, f, g) such that ¢(%, f, g)f=h and
¢(h, f, g)+g=1. Since each M is prime-like (R), the first equation implies
é(h, f, g) is in N{M: MEM}CN{N: NER}, and the second implies
& (%, f, g) ENo.

THEOREM 4.17. The identity map on the collection U(ho) of maximal R-ideals
containing h, is continuous from the Stone paratopology to the dual Stone topol-

ogy.

Proof. First recall that the members of U(ko) are prime-like (R) by 4.13.
Then apply the lemma, with I =N and M,=N,.

LeEMMA 4.18. Let hy, h, be as in Definition 4.2 and take h, k' €S such that
M RKE RERh, If N is a proper prime-like (R) ideal containing h, then
L(N)={f:f R e for some e N} is a maximal R-ideal containing h'.

Proof. The set L(N) is proper, for 1& N, and as we have seen, 1 Re im-
plies 1 =¢. Now L(N) contains 4’ by definition, and is an R-ideal by Lemma
4.11. If M is a proper R-ideal containing L(N) then, as we shall show,
MCN. Therefore M =L(N). For if MCN then L(M)CL(N); but L(N)CM
CL(M), since M is an R-ideal. Hence L(N) is maximal.

We prove M CN by contradiction. Suppose k& M\N. Take elements ¢
and ¢'€S such that . R¢' RqRA. Then ¢&EM, so there are elements
f, g, ¢ €M such that kR f and ¢ R f, while f R g Rg’. By condition (29),
there are elements ¢(¢’, g, g’) and ¢(q, f, g) such that ¢(¢, g, g’) Ro(q, f, g),
o(q, f, )f=¢EN, and ¢(¢’, g, g') +g' =1. Since N is prime-like (R), we have
é(q, f, g) EN. Therefore ¢(¢’, g, g ) EL(N)C M. But g'EM and ¢(¢’, g, g') +¢
=1 yield a contradiction, since M is a proper ideal. It follows that M CN,
and the proof is complete.

Let P(S) denote the space of all proper prime-like (R) ideals in S with
the Stone paratopology. B(S) is compact by Corollary 3.6. For AES, let
N(h) be the collection of members of P(S) which contain k. N(k) is compact
since it is a closed subset of B(S). Suppose % and %’ are as in the previous
lemma. Then L maps N (%) into the collection 11(A’) of maximal R-ideals con-
taining #'. Regard U(k’) as a subspace of M(R, S). Since the members of
U(#') are prime-like (R) by 4.13, another consequence of Lemma 4.16 is that
L is continuous: Replace k%, of that lemma by #’. S is an R-semiring at 4’ by
Remark 4.5 (iv). Take RCN(h) and N,EN(k). With M=L[N] and M,
=L(N,), the continuity of L is immediate.

Now U(k) CL[N(k)]. For on the one hand, if MEW(k) then MEN(K) by
4.13. On the other hand, M =L(M) since L(M)CM for any ideal, and
L(M)DM, if M is an R-ideal. Therefore MEL[N(h)].

Finally, since & R h, we have ¢;(U(k,)) CU(k) by 4.14, where ¢;(1l(k,)) is
the dual Stone closure of U(k,) in M(R, S). Therefore c;(U(ko)) is compact,
being a closed subset of the compact space L[RN(k)]. Since the sets 11(k)
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form a base for the maximal R-ideal space M(R, S), we have the following
generalization of a part of Shirota’s Theorem 1 [15].

THEOREM 4.19. If S is an R-semiring at ho, then c;(U(ho)) is compact in the
dual Stone topology. If h, is in every maximal R-ideal then M(R, S) is compact.
If S is an R-semiring at every h& S then M(R, S) is locally compact.

REMARK 4.20. Our proof of this theorem yields a different proof of the
local compactness of the space of maximal open ideals in an R-lattice from
that in [15]. This difference was not made necessary by the greater generality
of semirings. Shirota’s proof applies here with little change. On the other
hand, a proof which might generalize to semigroups still seems to be missing.

Recall that one hypothesis of Theorem 3.9 was that R satisfy the condi-
tion

(30) fRgand fRA imply f R gh.

For the remaining results, we assume

(@) S has a zero 0, and further, S is an R-semiring at 0 in which condition (30) holds.

REMARK 4.21. We shall need these consequences of (&):

(i) ORO.

For by (29), there exists ; such that ; R 0. By (22), 0hy =k, so b =0.

(ii) {0} is a proper R-ideal, so M(R, S) is not empty.

The first statement follows from (i), and the second from Zorn’s lemma.

(iii) 1 R1.

Since 0 R0, (29) implies that there is an element 8 =¢(0, 0, 0) such that
04+0=1 and @ R, since 0 R0. By (23), there is a polynomial 7= such that
6 R7(0, §) and 0 R7(0, ). By (26), (4+0) R« (0, ). Thus 1 R« (0, 6).
This implies 7(0,8)=1,s0 1 R 1.

(iv) h=h+0 for every hES.

Since 1 R 1, we have 0 R 1, by (25). Thus there is an element g=¢(0, 1, 1)
such that g1 =0 and g+41=1. Therefore 1 =140. Hence for every &S, we
have h=h-40.

REMARK 4.22. (i) It is asserted in [15] that, in an R-lattice L, if i R &
and f; R g» then fi\V/fe R g1\ g2(?). Thus (30) holds in an R-lattice. Hence if

(2) Shirota has sent us a proof of this result, which we now sketch. It is sufficient to consider
the case where fi and f; are equal to some f. Let j, &, &, h; and ¢i, i=1, 2, be elements such that
jRERRRmMRI R, and f R ¢; R gi. There are elements ¢(he, f, ¢:) and ¢(h, ¢i, g:) for
i=1, 2, such that ¢(h, qi, g1) R ¢(hs, f, g:). Let a=o(hs, f, ¢1) Ad(h2, f, ¢z) and let b=¢(h, q, g1)
A¢(h, g2, g2). Take a; such that b R a; R a. There are elements ¢(k, b, a1) and ¢(&, a1, @) such
that ¢(k, a1, a) R ¢(h, b, a1). We have only to prove that ¢(k, b, i) AfZg1 Vg2 and f2 ¢(k, a1, a)
Abhs, for then fZ¢(k, ai, a) Ahe R ¢(h, b, a1)/\fZg1\Vg2. We have bAg1=0 and b/\g2=0, so
bA(g1\Vg:) =0. Furthermore ¢(k, b, a1)Vb=k2g\V g, so ¢(k, b, a)Zg1Vge and fZaVes,
which proves the first statement. To prove the second, note that hy=¢(hs, f, ¢1)Vf and
he=¢(hs, f, ¢2)\V/f imply f\Va=fV(¢(k:, f, @) A¢(hs, f, g2)) =h2\/ h2=ha. Since ¢(j, b, a)N\a, =0,
we have ¢(j, b, a) AfAke=0(j, b, ) Af=9¢(j, b, a) A(fVa) Z¢(, b, a)A(fVa)=o(k, b, a1)
Abhs. Therefore f2(j, b, a1) /\hs, whence fZ¢(k, a1, @) /\ha.
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L has an identity, (i.e. a zero for (L, \/)), then (o) holds. (ii) The hypothesis
() obviously holds in an R-ring, with R in (30) and (@) replaced by O2.

LeEMMA 4.23. Assume (a) holds. If f#0 and f R e, then there is a maximal
R-ideal M such that e€E M.

Proof. The set A(f) = {hE€C(S): if =0} is an ideal. Let I =L(4(f)). Since
0 RO, I is not empty. Therefore I is an R-ideal by Lemma 4.11. Since 1 €4 (f)
we have 1€ 1, so there is a maximal R-ideal M containing I. Now there are
elements ¢ and ¢’&C(S) such that fRe’” Re’ Re. By (25), 0 f Ré", so
0 R¢". Since S is an R-semiring at 0, and 2 R 0 implies =0, there are ele-
ments ¢(0, ¢, ') and ¢(0, ¢, €) such that ¢(0, ¢’,¢) R (0, e, ¢"), $(0, ¢, e )e’’
=0 and ¢(0, ¢, ¢)+e=1. Since fe'' =f, we have ¢(0, ¢, ¢')EA(f). Hence
¢(0, ¢/, e)&IC M. Clearly e is not in M.

THEOREM 4.24. Assume (a) holds. Then the intersection of the collection of
all maximal R-ideals of S s zero.

Proof. According to Theorem 4.19, the maximal R-ideal space IM(R, S)
of Sis compact. Now MM (R, S) is not empty, by 4.21 (ii). Therefore by Theo-
rem 3.9, I=N{M: MEM(R, S)} is an R-ideal in S. If I contains f0 then
it also contains e such that f R e. But this is impossible by the lemma.

THEOREM 4.25. Assume (a) holds. If J is an ideal, then
J=N{M+J:MEMR,S)}.

Proof. It is immediate from 4.21 (iv) that JCN { M4+T: MEM(R, S)}.

Suppose fEN{M+J: MEM(R, S)}. If MEM(R, S), then there is
m& M and k& J such that f=m-+k. Take ¢, ¢ © M such that m Re’ Re. By
(25),0 R ¢, so there is an element ¢(0, ¢, ¢) such that ¢(0, ¢/, ¢) +e=1. Since
f=m+ %k and m Re, we have fe = m + ke. Therefore fe + ko(0, €, e)
=m-+kp(0, ¢, &) +ke=m-+k=f. Since J is an ideal, we have f&fe+J. Thus
the collection {11(e):f€fe+]}, as e ranges over S, is an (open) cover of
M(R, S).

Since M(R, S) is compact, there is a finite set ey, €3, - + - , €,&.5 such that
every M&IM(R, S) contains some ¢;. There are corresponding elements
ki, ke, - - -, kaEJ satisfying the n equations

(31) f=fe,~-l—ki.
An induction shows f&J. In case n=1, then ¢, being in every MEM(R, S),
is zero, so fis in J. In order to reduce # to n —1 such equations, multiply both
sides of f=fe,~+k. by e,_1. Substitute the expression obtained for fe,_; in
the (n—1)st equation. The new equation, combined with the remaining
n—2 equations, yields # —1 equations of the form (31).

COROLLARY 4.26. Assume () holds. If J is an R-ideal, then
J=N{M:MEMR, S) and MDJ}.
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Proof. Let J be an R-ideal. In virtue of the theorem, we can write J
=I'NI", where I'=N{ M+J: MEM(R, S) and MDJ} and

I"=U{M+J: MEM(R, S) and MDJ}.

If M is an R-ideal then M+J is an R-ideal by 4.21 (iv) and 4.8. If MDJ
then M+ J properly contains M, so, when M is maximal, M+ J=.S. There-
fore I'=S. On the other hand, if MDJ, then M+J= M, and the proof is
complete.

5. Applications. In this section, X will denote an arbitrary topological
space unless mention is made to the contrary. We show first that K(X) satis-
fies a condition which is stronger than that it be an R-ring.

Leyyma 5.1, Let S(X) denote any one of the multiplicative semigroups K(X),
K*(X), R(X) or R*(X). If e, f€S(X) and fe=f, then there are elements
e, h&S(X) such that (i) fer=f and (i1) e1(he) =e1.

Proof. Suppose first that ¢ is real-valued (but f is arbitrary). We show
that e; and % can actually be found in R*(X). Take a real number \, 0 <A <1,
and a bounded continuous real-valued function x defined for all real ¢, such
that x(1) =1, and if £ =\ then x(¢) =0. If we set es=x(e) and Ah=1/e\/\, then
both e; and % belong to R*(X), and fe, =f while e;(he) =e;. Now for arbitrary
e, apply the previous argument to eé, where ¢ is the complex conjugate of e.
Then there are bounded functions ¢; and A’ such that fe, =f and e,(h’ee) =e.
Hence (ii) holds with 2 ="/'¢, so the proof is complete.

LeMmMA 5.2. Let S be a semigroup which satisfies the condition (**) fOe
implies there are elements ey and h& C(S) such that (i) fey=f and (ii) ei(he) = e;.
Then the strong canonical order O* on S is dense.

Proof. Assume that f O? ¢; that is, for some ¢’ € C(S), we have fe' =f and
e'e=e'. Then there are elements h;, ke, e1 and e, & C(S) satisfying (i) fei =,
(i1) ex(le’) =er, (1)’ fee=f and (i)’ es(hee1) =es. It follows from (i)’ and (ii)’
that f O (hee1). On the other hand, (hse1) (Me’) = hser by (ii), and since e'e=¢’,
we have (le')e=he'. Therefore (hse;) 0% e and the proof is complete.

Hence from 5.1, we have the

THEOREM 5.3. The rings K(X), K*(X), R(X) and R*(X) satisfy condition
(**) and hence are R-rings.

REMARK 5.4. The canonical order on K(X) is not dense in general. For
¢eCK(X), let E(e)={xCX:e(x)=1}. Then fe'=f and e'e=¢ imply
N(f)~CE(e')CN(e') CE(e). However it can happen that fe=f, N(f)~=E(e)
and E(e) is not open. Hence no e’ such that f O ¢’ O e can be found.

REMARK 5.5. The condition (**) is genuinely stronger than denseness of
the strong canonical order. For let X be the closed unit interval and let S
be the ring consisting of those members of K(X) each of which agrees with
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some polynomial on an open interval of the form (1/2, 1/2+4¢). It is not
difficult to show that S is a Silov (0) semi-group of K(X) which does not
satisfy (**). By Remark 4.6, the strong canonical order on S is dense.

In any ring S, the O-ideals coincide with the O%*-ideals, by 4.5 (ii). If S
is an R-ring, then by 4.13 and 4.15, the prime-like O%-ideals and maximal
O%*-ideals coincide. The comments in the paragraph just preceding Theorem
3.9 show that every prime-like O-ideal is maximal. However there seems to
be no reason in general to think that prime-like O%-ideals are prime-like O-
ideals. In this connection we have the

THEOREM 5.6. In a semigroup satisfying condition (**) every prime-like
(0?) ideal is a prime-like (O) ideal.

Proof. Let P be a prime-like (0?) ideal and suppose f, ¢ and k&S are
elements such that f& P, f O e and ke& P. By (**), there are elements % and
et C(S) such that (i) feo=f and (ii) ei(he) =ei. Then f O? (he), and since
ke€c P, we have k(he)EP. Since P is prime-like (0%, k€ P. Hence P is
prime-like (0).

COROLLARY 5.7. A subset of K(X), K*(X), R(X) or R*(X) is a maximal
O-ideal if and only if it is a prime-like O-ideal.

REMARK 5.8. From the fact that a prime-like O-ideal is maximal and a
prime O-ideal is a prime-like O-ideal, it is apparent, from 2.10, that the ring
of continuous functions over the closed unit interval, for example, contains
no proper prime O-ideals.

We shall identify the (compact) maximal O-ideal space of K(X) after
the following example. Let ®(X) denote the family of open subsets of X
regarded as a semiring with -” =“U” and “+”=“N". Thus {X} is a zero
for ®(X) and {,@’} is an identity. For G, HE®(X), let G R H mean that
H is completely separated from X\G. It will be helpful to have the following
statement of Theorem 4.12 in terms of notions in ®(X):

(32) Let G be a maximal R-ideal in ®(X), and let H;, H,&®(X) satisfy
H, R H,. If for each GEG, we have GN\H,# &, then H,&G.

(We are indebted to the referee for pointing out the usefulness of (32) in
the sequel, and for observing that it clarifies the relationship of maximal R-
ideals to ultrafilters.)

ExAMPLE 5.9. ®(X) satisfies (22)—(30) with respect to R, and hence is an

. R-semiring at {X } which satisfies the hypothesis () of §4. Among the prop-
erties which must be checked, only (24) and (29) might require comment. If
F R G then there is e€E R(X) with 0 =e =1 such that el G=0and el (X\F)=1.
Let x and N be as in the proof of Lemma 5.1. Recall that e;=x(e) and &
=1/e \/\, so e|(X\F) =1 and ellZ(e1)° = 0. Hence F R Z(e))°. Since
hel (X\Z(e1)°) =1 and hel G =0, we have Z(e))° R G. Therefore R is dense on
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®(X) and (24) is verified. For (29), take %, and ki to be {X} and let
¢(X, F,G)=X\G~. Then if F R G we have ¢(X, F,G)UF=X,and ¢(X, F,G)
NG = . Furthermore, if FRG R G, then ¢(X, G, G') R¢(X, F, G). Thus
(29) holds.

Now corresponding to each x & X there is an R-ideal 3¢ having the prop-
erty P(x): x&EN {H: HE.’}C} (namely, {X}). Hence it can be embedded in
a maximal R-ideal G(x) with this property. By (32), if H, and H, are open
sets such that H; R Hy, and x&EH,, then HiEG(x). For if GEG(x) then
GNH,# &, since x &GN H,. As a consequence, ®(x) contains every R-ideal
having P(x), and hence is the only maximal R-ideal with this property.

Let v(X) be the maximal R-ideal space of ®(X). Let g: X—vy(X) denote
the correspondence which sends x into G(x). If A CX is a subset and x&EA4-,
then g(x)CU{g(a):aEA }, so g is continuous. For if GEG(x), then there
exists HEG(x) such that G R H. Since there is a€HMNA, we have GEG(a)
as above. It is as easy to see that the image of X is dense in y(X).

The following argument shows that every member f of R*(X) can be ex-
tended to y(X) as a continuous function. If G is any proper R-ideal, then the
family of (bounded) closed sets {f(G)‘: GEQ} has the finite intersection
property. Hence there is A, in the intersection of this family. If G is maximal,
then for every open set U of real numbers containing N,, f~}(U) E€G. For there
is an open set V such that A, & VC V-CU. Therefore f~1(U) R f~(V), and
for every GEG, fYU(V)NG#= . By (32), f Y (U)EQG. It follows that N, is the
only element in N{f(G)~: GEG}. Define *(g) to be this \,. Then f* is an
extension of f. Further, the set of G’ such that f~(V)&g’ is a neighborhood
of G in y(X). For any such ¢, we have f*(g") € V-C U. Hence f* is continu-
ous.

Thus y(X) is a compact Hausdorff space which contains a continuous
dense image of X. In addition, every bounded continuous function on g(X)
can be extended to a continuous function on y(X), so that R*(X) is isomor-
phic to R(y(X)). Thus we have another proof of Stone’s result that rings of
bounded continuous functions cannot be distinguished from rings of continu-
ous functions over compact spaces [17]. Finally, it is clear that a necessary
and sufficient condition for the above correspondence g to be a homeomor-
phism is that X be completely regular and Hausdorff. The necessity is im-
mediate. For the sufficiency, note that if G is an arbitrary open set and
x &G then there is an open set H such that G R H and x& H. The properties
of y(X) in this case distinguish it as the Stone-Cech compactification B(X)
of X. In virtue of example 2.11 we have a different proof from that in [1]
that B(X) can be constructed from the completely regular ends in X.

With the aid of the following characterization of O-ideals in K(X) in
terms of R-ideals in ®(X), we shall be in a position to identify the maximal
O-ideal space of K(X). The proof of this theorem is straightforward and
we omit it.
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THEOREM 5.10. Let o be a function on the set of R-ideals of ®(X) defined by
a(g) = {fEK(X): Z(f) DG for some GEG}, and let T be a function on the set
of O-ideals of K(X) defined by 7(I) ={GE®(X): GDZ(f) for some fEI}.
Then o is a mapping onto the set of O-ideals of K(X), and T is its inverse.

The restriction of 7 to the maximal O-ideal space is a one-to-one mapping
from the maximal O-ideal space of K(X) onto the maximal R-ideal space
Y(X) of B(X). Since every basic open set of maximal O-ideals is mapped onto
a union of basic open sets in y(X), this mapping is a homeomorphism. In
particular, when X is completely regular and Hausdorff, the maximal O-ideal
space of K(X) must be homeomorphic with 8(X). In virtue of Theorems 1.7
and 1.9 we have the following generalization of Milgram’s Characterization
Theorem [12].

THEOREM 5.11. The Stone-Cech compactification B(X) of a completely regu-
lar Hausdorff space X is characterized by any Silov (O) subset of the multiplica-
tive semigroup on K(X), where O is the canonical order on K(X).

REMARK 5.12. In a conversation with the author, Milgram raised some
questions concerning semigroups of matrix-valued functions. In this connec-
tion note that the previous theorem remains true if K(X) is replaced by the
ring S™ of n Xn matrices over K(X). To prove this, it is sufficient by 1.7
and 1.9 to show that some Silov (O) semigroup of S* characterizes 8(X).
But this is easy, for the center C(S) is a Silov (0) semigroup of S». On the
other hand, C(S™) consists of the scalar matrices, and is therefore isomorphic
to K(X).

The positive semirings of [16] include the semiring R+(X) of non-nega-
tive members of R(X). In this connection we have

ExAMPLE 5.13. The semiring R*(X) is an R-semiring which satisfies the
hypothesis (a) of §4, where R is defined as follows: let E(X) consist of all
gERT(X) such that g(x) =1 for all x€X. Define f R g to mean that g€ E(X),
and for some e E(X), f O ¢ O g. Note that this is the same as requiring that
gEE(X) and fO?g; for if ¢€R*(X) and fOe O g, then f O (eAl) O g, and
e/\1€E(X). Conditions (22), (25), (27) and (30) obviously hold. Conditions
(23) and (26) both follow from the fact that if g and g; are in E(X) then
sitg—agCE(X). If fRg, then fO?g. Now the function x which occurs
in the proof of 5.1 can be chosen to be non-negative. Thus R+(X) satisfies
condition (**) of 5.2. Therefore there is e € R*(X) such that fO%e 02 g. As
we observed above, this yields f 0% (e A1) O% g, and f R (e/A\1) R g. Hence (24)
holds. If g&E(X), then 1—g&R*(X). Therefore, in (28), we can take
g'=1—g. For (29), take hy=0=h, and define ¢(0, f, g) =1—g. Suppose
fRgRg' Then gEE(X),so (1—¢g') R (1—g), since 1 —g is actually in E(X).
Hence (29) holds.

For a final application, let S be a biregular ring with identity. As we ob-
served in 4.5 (v), S is an R-ring in which 0?=0. By Example 2.12, every



430 J. G. HORNE, ]JR.

ideal in S is an O-ideal. Therefore, as special cases of 4.9, 4.19, 4.13, 4.15 and
4,26, with R=0%?=0, we have the following results (the final conclusion is
a part of Corollary 3 of [2]).

THEOREM 5.14. If S is a biregular ring with identity, then (i) the collection
of maximal ideals in S forms a compact Hausdor[f space in the dual Stone topol-
ogy, (ii) a proper ideal is maximal if and only if it is a prime-like (O) ideal, and
(iii) every ideal is the intersection of all the maximal ideals containing it.
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