
ON AN INTEGRAL OF MARCINKIEWICZ

BY

DANIEL WATERMAN

Let/(0) be a function of period 2w and class LT, p>l. By F(6) is meant a

primitive of/(f), i.e.,

F(6) =  f f(x)dx + C.
J o

Marcinkiewicz [3] defined the function

Pr(6) = j J \[F(B + t) + F(0 - 0 - 2F(d)Y/r+l)dtl

( r *      rF(d + t) + F(8 -t)- 2F(9)1 r\ w

and demonstrated the inequalities(1)

IW|P ̂  Ap\\f\l, P = 2
11/11, = ̂ J!m,||p, k^2.

Since addition of a constant to f(6) does not alter p.p, the second inequality

clearly requires

f   f(6)d6 = 0.
J o

Marcinkiewicz raised the question whether p.=p.i, i.e.,

U2x \   1/2
[F(6 + 0 + F(9 - t) - 2F(6)]2/t*dt\     ,

satisfied the inequality

^,11/11, ^ U\, = ̂ Jl/ll,
(the left side requiring, of course, that J\2rfdd = 0). This was affirmatively

answered by Zygmund in [7], to which paper the reader is referred for an

account of the origin of this problem and its relation to other problems in the

theory of Fourier series and in the theory of functions.

Presented to the Society, April 25, 1952; received by the editors February 24, 1956, and,

in revised form, May 20, 1957.

(') Here, as in the sequel, ||sM||p denotes {/b|sM| pdt}1/l', the range E being suitably de-

fined to meet the exigencies of the particular situation. A constant is denoted by an upper-case

latin capital, dependence on a parameter being indicated by a subscript; one letter will be used

to denote more than one constant.
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The purpose of this paper is to extend this result of Zygmund to the

analogously defined function

(1) "(t) =   {/V(r + 0 + F(t - t) - 2F(r)]2/M/j      ,

where F(r) is a primitive of a function/(r) of class Lp, p>l in (—00,  00).

Our result is stated explicitly in the following theorem.

Theorem. Let f(r) be a function of class Lp, p>l, in (— 00, 00) and p.(r)

defined as in (1), then

AP\\f\\P fz \\u\\p g Ap\\f\\p.

It will be necessary to utilize certain concepts and results of the theory of

functions, which will be briefly noted here.

If /(t) is of class Lp, p>l, in (—°°, °o), its conjugate function f(r) is

defined by

IT  J -x   T  —   X

the integration, naturally, is meant in the principal value sense. The function

f(r) is of class Lp, and [4] we have

Ap\\]\\p g 11/11, 2£ AP\\f\\p.
P(tr, t) will denote the Poisson kernel for the half-plane, <t/(ct2+t2), and the

Poisson integral

1   rx
cb(s) = cb(cr + ir) = — (f(x) + if(x))P(a, t - x)dx

TT   J -00

is an analytic function in (R(s)>0 and is in class 3C„, i.e., the integral

XOO
I <jS(<r + ir) \pdr

-00

is uniformly bounded in 0 <cr < °° . If

/    /• 00 \   Up

\\cj>(cr + ir)\\p =   I J      I cb(cr + ir) \'dr>

then \\cb\\P will denote |[<A(0+tr)||p. It may be shown that

\\<b(tr + tV)||p—> 0

as cr—> 00, continuously and monotonically, that
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| tp(a + ir) |   < Ca~1l"\\<t>\\p,

| tb'(a + ir)\   < Co-(1+p)/3,||4>||„

and also that for 5>0,

lim | tp(8 + peie) \   = 0, -tt/2 ^ 0 = tt/2,
p—» 00

uniformly in 0 [2].

We shall list several lemmas to which we shall refer later.

Let

$(r) = sup I <p(s) |
reB«

where

7?T = [s\ s = ir + pei8, p>0, -a<0<a< tt/2].

Lemma l.Iftp is in class 3CP, p>l, then

11*11, = Ap\\tp\\p.
This result is due to Hardy and Littlewood [l] in the case of the circle;

the extension to the half-plane is due to E. Trombley [5].

Lemma 2. If <p(s) is in class 3CP, p^l, then

<p'(s) = o(l)

as | s| —><» uniformly in every half-plane a>a>0.

A proof of this is to be found in a paper of this author [6].

Lemma 3. If

UK -j    1/2
0-\tp'(tT +  iT)\2d<j\

and tf>(s) is in class 3CP, p^l, then

\\g\\P ^ ^,11*11,.
Lemma 4. If

g*(r) = g*(r;tb) =   |— J   ada J    \ tp(<r + iB) \2P(a, r - 8)dd\      ,

and d>(s) is in class 3CP, p>l, then

\\g% ^ APU\\P.
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These results (together with their converses, which are not required here)

are also to be found in [6].

We demonstrate first that

\\f\\p ^ aMp-
Let

F(r) = j rf(t)dt.

Then

f(*, r) = — f   f(t)P(c, r - t)dt = —  f   F(l)PT(a, r - t)dt
IT   J —a, 7T   J _«,

and

i r"
fT(cr, t) = — F(t)PTT(a, T - t)dt.

T  J _„

We note that P„(cr, t) is even and that fo°°PTTdT = 0. Thus we may write

fr(cr, r)   = -   f    F(t + t)Ptt(cr, t)dt
W    J _oo

= — f   [F(t + t) + F(t - t) - 2F(r)]Ptl(cr, t)dt.
2x J-oo

Let us fix t. We write

F(t + t) + F(t - t) - 2F(t) = $(<).

Consider

c\fr(cr, r)|2^   ,4J    f    H(t)Ptt(cr,l)dl    .
I »/ 0

A simple computation shows that for \t\ <cr

\Pu\ < Cc~\

and for 11\ >a

\Ptt\ < Cat~\

Thus

an \  2 /     f* a \ 2 /* <T
ZPudt)   <C<7-6N     \t\dl\   ^ C<7-4 I    |*|2d7

and



1959] ON AN INTEGRAL OF MARCINKIEWICZ 133

a oo \  2 /    p oo \  2 *% co
|7Vn <c<r3f I    |f|r4Aj ^cl    |{|*r4#.

Integrating with respect to cr,

<7-4<f<r  I     |?|2^^1      U|2(   I     cr-^crj rf/ = CM2(r)

and

r <Tc/<7 r 11 i»r«A = r i ti«r* (r &) ̂ =^m.

Hence, if w(r) denotes

Uoo \   1/2
^   o-|/T(«r,T)|»Ar|

we have shown that

w(t) = Cfi(r).

We shall now demonstrate that

11/11* = ̂ Nl*
and thus the required inequality will be established.

We assume a right translation of the vertical axis so that f(r) assumes

its original values on <R(s) = —n, ?j>0.

We define

/*W -Air) =   l/l-1 (signum/)Xjv(r),

where

'    1,     \t\   < N - I,

Xn(t) =       0,     I t- I   > TV,

. >0,    ^ 1, and is continuous elsewhere.

The following notation is adopted:

d> = u + iv is the analytic function associated with /,

\p = u* + iv* is the analytic function associated with /*,

7 = g(r; $)■

Consider

n K -IK -iK

I     o(uu*)„„do- = a(uu*)„      — (mm*)
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Using a procedure identical with that given in [6], where this device is em-

ployed in proving our theorem on g(r), we may show that

rK K
I      cr(uu*),jcr = U(0, T)U*(0, t) + o(l) -

Jo K2 + T2

tor large K.

Further we may show that for 31 > N

I     ff*dr =   I     ffdr g 2  I      cr     I      (uTur + u„u,)dr  d<r + Ke(Sl) + t(K)
J -N J _M J0       I J -91

where e(y) denotes a function o(l) as y—>oo.

We shall show that

(u„uc — u,uT)dr = o(l)
-31

as 31—»<» for <r>0, that it is bounded by a function of class Lu and hence

// dr ^ 4 j    cr    I     wTwrcfT cfo- + K2c-(Sl) + c-(K).
Jo     I J-31

We note that (u„u*—uTu*) = (R(cp'cp'). Consider the rectangle A with edges

a:  (<r - iSl, cr + iSl), 8- (<r + iSl, cr + v + iSl),

y: (<j + v - i<Sl, cr + v + i'Sl),        h: (a — i'Sl, a + v + iSl).

Clearly

tf(J" W)ds\ = 0.

Thus

\ rsi I    r i     i       r i i
I       (u,u* — uruf)dr\ 5=   |    | <p'\p' \ dr +   I      I —u,u* + v„u* \ da.

I J-31 I       JT J|3,S

We have

,*, f 31 cr(r - /)
\ uT\   < C -dt
1       '   -      J_3l  (<72 + (r - 02)2

I t|   + 31
^ iVCcr -L-[Ln-

(<x2 + ( | r |   - AO2)2

= o(l) as | t |  —* co , uniformly in a,

and similarly
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, *        rN  \(r-ty-tj2\
m J   <C \       —- dt

1 " ~   J_N (*2 + (T - tyy

rN            1
< C |       -dt

J_*   <r2 + (r - t)2

1
=  CN  -r—.-

a2+ (\r\ - N)2

= o(l) as | t |  —* oo , uniformly in cr.

Thus

/| — m„mt + vau, I da = e(9l)  I    | tp' | do- = e(9l)
a J a

since tp' = 0(tx~^1+p)lp) as tx—* » and is bounded in the half-plane (Lemma 2),

and similarly for the integral over segment 8. Also

| tp'xb' \dr = C (*/V) • (¥/V)<*t g - ||*||,INI,' = -.
Jy J -91 J-2 V2

If p = 1/91 we have at once that

(m„m„ — uruT)dt = o(l)
-91

as 91—* oo independent of cr.

Since

/9l       * *      I       f3l(m„m„ — uruT)dr  ^   I       | #V | ^r
-91 I      J_3d

= II$LII^IIp-~

1
= c—

CT2

for large cr, and by the previous argument is bounded for cr small and VL

sufficiently large, clearly it is dominated by a function of class Lx, and our

estimate of Jl^fhdr has been validated.

Allowing 91 and then K to approach infinity, we have

/oo n oo /. oo

fhdr = C I    a- J     I uTur | dTdo-
-oo •/ 0        J -oo

and so
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/OO y»  OO *%  OO

fhdr ^C \    cr |     \ury\ drdo-
-oo J 0 ^ -oo

/OO    /       « OO X1'2/      /* "° X1'2(   I     a | Mr|2cf<rJ      f   J     <r| ̂ '|2cfcrJ    dr

w(t)7(t)^t
-00

^ c||w||p.||7||p,

^ j4p||w||p||/t||p'

by Lemma 3. Allowing A7 to approach infinity we have

r\f\Vdr^Ap\\w\\p\\f\\T
J _„

or

11/11* ^ Ap\\w\\p„
We recall, however, that a right translation of the vertical axis has been

made. For tj>0,

w(T,f(a + ri + ir)) g w(r;f(cr + ir))

and

||/(» + fr)||,-*||/(r)||,

as n—»0. Therefore

II/IIp ^ ̂ NU
where / is as originally defined and w corresponds to it. Since

w ^ C„

our inequality has been established.

We turn now to the inequality

hh < ap\\j\\p.
First we define (analogously to Zygmund [7])

K*. D=  f /Or + ir)dr,
J o

Fi(<r, t) = F(cr, r + t) + F(o, T-t)- 2F(c, r),

Fi(t) = Fi(0, t),

fl(cr, t) = dFi(cr, t)/dt = /(cr, r + t) - f(c, T-t).
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We are then able to write

mw = {f~([Fx(t)]2/t°)dy\

Let

Fx(t) = {Fx(0, t) - Fx(trt, t)} + {Fi(er«, l) - Fx(<r„ 0)} = V + W.

Consider the function IF. Proceeding in a manner similar to that of Zygmund

[7], we have

IF2 =   |  f   | fx(o-t, u) | du\    = *3f   \fv(at, r + v\2dv.

Letting c6(cr+tV) again be the analytic function associated with f(r), and

at = t,

/( CO r% "-ft /% a

t-3W2(t)dt ^   I    dtr I      | <p'(tr + i(r + v)) \2dv
0 J o J —tr

= Ag*\r).

By an integration by parts

| V |   =  | Fx(0, t) - Fx(o-t, t)\   =  f '<T | Fx„ I do- + a, I F,>„ 0 I   = Fx + F2.
•7 o

We write

Fx =   f  'tr | /T(«r, t + t) \ dtr +  \    'cr | fT(tr, r - t) \ da +   f  'a\ /r(«r, r) | flV
•/ o •/ 0 «/ 0

= Fn + Vxi + F13.

Letting Ot^t, we have

FMr d/ g I r dt j o-1 /T(cr, t + o | </<r
0 J 0 •» 0

r207   I      (T |  C6'(cr +  t(T +  t)) \2dtT  =   i^fr)
0 J 0

and similarly

/'°°     2    -3 2 /*°°     2    -1 2F12*   cf/ ̂  ^g* (r), I    Fn/   dt £ g (r).
o •/ o

Thus
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f'vlr'dl =g A{g\r) + g*\r)}.
J o

Examining V2 now,

V2 = crt | Fir(crh t) |

= <n I F„(crt, r + t) + F,i<rf, t - t) - 2F,(ct, t) I .

Note that

fi(cr, X)dx =   I    fx(cr, X)dx = f(a, U) - /(cr, 0).
o J 0

Hence

V2 = crt\ f(a„ T + l)+ f(at, T-t)- 2f(crt, t) \    ^ crt J      \ fr(crt, T + v)dv,

and

V\ g Aa)-t J     | cb'(at + i(r + v)) \2dv.

Letting cr( =/,

/,00o9 r» 00 y» o"

Vif dt ^ A  I     da I     | 0'(o- + j(r + v)) \2dv ̂  ,4g* (r).
0 J 0 J — o-

We have then

u2(r) ^ ^{g2(r) + g*2(r)},

and by Lemmas 3 and 4

Ml, ̂ ̂ JI/IIp
for />>1, which completes the proof of our theorem.
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