ON AN INTEGRAL OF MARCINKIEWICZ

BY
DANIEL WATERMAN

Let f() be a function of period 27 and class L;, p>1. By F(6) is meant a
primitive of f(8), i.e.,

0
F(8) =f f(x)dx + C.

Marcinkiewicz [3] defined the function

2 1/r
4r(0) { ) <[F<o+z)+F<e—t>—2F<o>]r/z'+l>dt}»

{ [ [F«a +0+ F(to -0 - 2F(o):|' dt} ur

and demonstrated the inequalities(!)
lall> = A1l P22
Il> = A4kl 1<p=2

Since addition of a constant to f(f) does not alter u,, the second inequality
clearly requires

2r

f(6)do = 0.
0
Marcinkiewicz raised the question whether u=p,, i.e.,
2r 1/2
b= { [FO6+ 1) + F(o — ¢) — 2F(0)]2/¢3dz} ,
0

satisfied the inequality
Ap”f”p = ”“”D = Ap“f”p

(the left side requiring, of course, that f.f'fd0=0). This was affirmatively
answered by Zygmund in [7], to which paper the reader is referred for an
account of the origin of this problem and its relation to other problems in the
theory of Fourier series and in the theory of functions.

Presented to the Society, April 25, 1952; received by the editors February 24, 1956, and,
in revised form, May 20, 1957.

(%) Here, as in the sequel, ||s(¢)|| » denotes { f&|s(¢)| d¢} /7, the range E being suitably de-
fined to meet the exigencies of the particular situation. A constant is denoted by an upper-case
latin capital, dependence on a parameter being indicated by a subscript; one letter will be used
to denote more than one constant.
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The purpose of this paper is to extend this result of Zygmund to the
analogously defined function

© 1/2
) u(r) = { [T+ o+ re -0 - 2F<r>]2/t3dt} ,

where F(7) is a primitive of a function f(r) of class L,, p>1 in (— o, «).
Our result is stated explicitly in the following theorem.

THEOREM. Let f(1) be a function of class L,, p>1, in (— «, ) and u(r)
defined as in (1), then

Al s = llell> = 41l

It will be necessary to utilize certain concepts and results of the theory of
functions, which will be briefly noted here.
If f(r) is of class L,, p>1, in (— =, =), its conjugate function f(r) is
defined by
O G (€)

TJ T —2X

dx;

the integration, naturally, is meant in the principal value sense. The function
f(r) is of class L,, and [4] we have

A|fll» = [1ll> = A5l|7]-

P(o, 7) will denote the Poisson kernel for the half-plane, ¢/(¢2+72), and the
Poisson integral

1 p- i
8(5) = 8l + i) = — [ () + ) Plo, 7 = 2)a
is an analytic function in ®(s) >0 and is in class 3C,, i.e., the integral

fw | ¢(o + ir) |7dr

—0

is uniformly bounded in 0 <o < . If

O | T

then ||¢||, will denote ||$(0 +47)||,. It may be shown that
”d’(" + i")Hp —0

as ¢— o, continuously and monotonically, that
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| o(o + i7) [ < Ca‘”"”qb”,,,
| ¢/(c + i) | < Comtnrin]g]|,,
and also that for § >0,
lim | ¢(5 4 pe®) | =0, —7/2 20 < 7/2,

p—®

uniformly in 6 [2].
We shall list several lemmas to which we shall refer later.
Let

&(7) = sup | o(s) ‘

reRe
where
R, =[s|s=ir4pe®,p>0,—a<0<a<x/2].
LEMMA 1. If ¢ is in class 3C,, p>1, then
l2ll> = 4. 4]5-

This result is due to Hardy and Littlewood [1] in the case of the circle;
the extension to the half-plane is due to E. Trombley [5].

LeMMA 2. If ¢(s) s in class 3Cp, p =1, then
¢'(s) = o(1)
as |s| — o uniformly in every half-plane o >a>0.
A proof of this is to be found in a paper of this author [6].
LemMma 3. If

8(r) = 873 @) = {fow”‘ ¢/ (o + i1) ]2da} v

and ¢(s) is in class 3¢,, p=1, then

llell» = 4|45
Lemma 4. If

mﬂ=¢mw={%ﬁﬁwf:w@+wﬂwwr—mw¥7

and ¢(s) is in class 3Cp, p>1, then
”g*”,, = Ap“‘i’”p-
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These results (together with their converses, which are not required here)

are also to be found in [6].
We demonstrate first that

s = Alell,
Let

Fo) = [ oa
C
Then
1 © 1 0
flo, 1) = — f fOP(o, 7 — fdt = — f F(t)P(o, 7 — D)dt
T Vv — T J
and
1 o
felo, 7) = —f F()P.r(o, 7 — t)dt.
T J -
We note that P,.(c, 7) is even and that [¢°P,,dr =0. Thus we may write

1 o
f‘f(o-) T) = :f F(T + t)Pu(o’, l)dt

1 ©
N er_w[F(T + 0) + F(r — 1) — 2F(7)]Pu(o, t)t.

Let us fix 7. We write
F(r+ 8 4+ F(r — ) — 2F(r) = £(@).

Consider

2

a|ff(¢r, T) |2 =< Ao¢

fws(t)Pu(tT, t)dt

A simple computation shows that for |¢| <o

| Pu| < Co3,
and for |t| >¢

| Pi| < Cot.

I'd 2 I'd 2 g
a(f gp,,dt) < Ca‘5<f | £] dt> < cwf | £ |2d1
0 (1] 0

Thus

and
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© 2 © 2 ©
a( f EPudt) < C0'3( f | £] t“dt) <cC f | £|2at.

Integrating with respect to o,

[Tetao [lebas [Crel([Too)a = e
ﬁ2%LWHWW§JT|W”(ﬁEOW=Ma

Hence, if w(r) denotes
© 1/2
{f alf,(a', T) Pda-}
0

w(r) £ Cu(r).

and

we have shown that

We shall now demonstrate that

”f”p = Ap“w”p

and thus the required inequality will be established.

We assume a right translation of the vertical axis so that f(r) assumes
its original values on ®(s) = —», n>0.

We define

£@ = fv) = | 7|7 (signum Hx, (),
where
1, || <N =1,
x,m=1 0 [7| >n,

>0, =1, and is continuous elsewhere.

The following notation is adopted:
¢ = u + v is the analytic function associated with f,
¥ = u* 4 w* is the analytic function associated with f*,
v =g ¥).

Consider

K K

- (uu*)] .

€

f‘ Ko(uu*),,da = a(uu*),:l

€



134 DANIEL WATERMAN [April

Using a procedure identical with that given in [6], where this device is em-
ployed in proving our theorem on g(7), we may show that

K
j; o(uu*),ede = u(0, 7)u*(0,7) + o(1) O

for large K.
Further we may show that for >N

f_iff*dr = f_:ff*dr < 2foK o

where €(y) denotes a function o(1) as y— .
We shall show that

N * *
f (.44, + wtts)dr | do + Ke(N) + e(K)
-N

N
f (u,u: - u,ut)df = o(1)
-N

as — o for ¢>0, that it is bounded by a function of class L;, and hence

© * K N *
f ffdr £ 4f o f UM dT
—0 0 -

We note that (u,u} —u,u) = ®(¢'¢’). Consider the rectangle A with edges
a: (6 — 19, o + i1N), B: (¢ + 19, ¢ + v + 1N),
y:(c+v—10, 0+ v+ iN), 6: (¢ — 1N, 0 + v + iN).

g( fA (¢'¢')ds) 0.

= f | ¢'v | dr +f | —uouX 4 vouk| do.
Y B,8

do + K2(9) + «(K).

Clearly

Thus

N
f (uent — u,uX)dr
-N

We have

*
|

N ot — 1)
< - . d
Scf_sn T
< NCo lrl + N
@+ (7] = W)

= o(1) as l -rl — oo, uniformly in o,

and similarly
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| * N ‘(‘r—t)z—azl

.| =C B ——
* v @+ (- )9

N 1

_s_cf —_——d!
-~ o+ (r—1)?
1

o+ (|| = N)?

o(1) as | 1-| — oo, uniformly in .

=CN

Thus
f | — s + v.,ujl do < e(&)l)f | ¢’ | do = e(0)
8 8

since ¢’ = O(c—(1*»)/?) a5 ¢— » and is bounded in the half-plane (Lemma 2),
and similarly for the integral over segment 8. Also

N C c
f | o' |dr < C f @/ @/mir < = &l = =.
¥ - v v
If y=1/9 we have at once that

N
f (u,u: — u,u:)dt = o(1)
-N

as 91—« independent of o.
Since

N
< f | ¥/ | dr
-N

N
’ f (u,u: - u,ut)d-r
-Nn

< a9l

1

2

=cC

g

for large o, and by the previous argument is bounded for ¢ small and 9%
sufficiently large, clearly it is dominated by a function of class L;, and our
estimate of [ .fhdr has been validated.

Allowing 9 and then K to approach infinity, we have

f fhdr§Cf af | wy | dodo
—0 0 —00

and so
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f fhdr < cf af | uy'| drdo
1/2 © 1/2
gcf (f ol ul 2da'> (f a|¢'|2da> dr
—w 0

= Cf w(r)y(r)dr
< Cllel|5- [l
< Ayl ol 2]l
by Lemma 3. Allowing N to approach infinity we have

[ 1iPar = Al

or

”f”p = A,,“'w“,,'.

We recall, however, that a right translation of the vertical axis has been
made. For >0,

w(r; flo + 1 + 1)) = w(r; flo + 1))
and
7t + in)ll> = [l
as n—0. Therefore
IAl> = 4l
where f is as originally defined and w corresponds to it. Since
w=C,

our inequality has been established.
We turn now to the inequality

”“”p = Ap”f“p-
First we define (analogously to Zygmund [7])
t
F(o, 1) =f flo + ir)dr,
0

Fi(o,t) = F(o, 7+ t) + F(o, 7 — t) — 2F (o, 1),
Fl(t) = FI(O; t))
filo, 1) = 8F:(o, )/0t = flo, 7+ 1) — flo, 7 — ).
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We are then able to write
© 1/2
w) = { [Tkl
0

Let
Fi(t) = {Fi(0, ) — Fi(os, )} + {Fi(os, £) — Fi(o, 0)} = V + W.

Consider the function W. Proceeding in a manner similar to that of Zygmund
[7], we have

t 2 t
w2 < {f | fi(oey w) | du} =8| |fulosy v+ v|%0.
0 -t

Letting ¢(o+177) again be the analytic function associated with f(7), and
6t=t)

fo °°t-3W2’(t)dt = fo “da f_ | ¢'(c + i(r + v)) |2dv

< 4g¥ ().
By an integration by parts

ot

| V]| = | Fi(0,1) = Fi(oy, 1) | gf o| Fy,|do+ o] Fi(on t)| = Vi+ Ve
0

We write

V) §f ‘alf,(a,‘r+t)lda+f‘a‘f,(a,‘r-t)lda-i-f ‘alf,(a’,'r)lda'
0 0 0

= Vll + Vl2 + V13~

Letting o,=¢, we have

0 0 t
f Vid dl < f Cldt f o| filo, 7+ &) 'de
0 0 0

© t
< f ~2dt f | ¢'(c + i(r + 1) |*de < 4g¥(7)
0 0
and similarly
f Vf{sdt < Ag*z(f), f szt_zdt = gz(r).
0 0

Thus
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fo Vidt < Alg () + g¥' ().

Examining V, now,
Vz Crt' Fl,(az, l) I
ot| Foloty 7+ £) + Foloy, 7 — £) — 2F (04, 7) | .

Note that
Fulo, u) = f fulo, x)dx = f J.lo, 9)dx = J(o, ) — J(s, 0).

Hence
Vol flour )+ Jowr =) = Yoy )| S o [ ilff<m,r+v>dv,
and
Vis ad [ :|¢'<at+i<r+v>)!2dv.

Letting o, =14,
f Vot 'dl < Af dcrf | /(o + i(r + v)) |2dv < Ag*"(r).
0 0 —0

We have then
wi(r) < A{g) + '),
and by Lemmas 3 and 4
llell> = Aslfll,

for p>1, which completes the proof of our theorem.
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