
ON THE ZEROS OF THE DERIVATIVES OF SOME
ENTIRE FUNCTIONSC1)

BY

ROBERT M. McLEOD

1. Introduction. 1.1. Objective. Let/ be an entire function. Let <£/ be the

set of points z such that to each disk D centered at z there corresponds a

sequence of integers {nk} and a sequence of points {zk}, zkGD, such that

/C«ft)(zA) =0. In [6] Polya determined £/ for functions/of finite order at least

2 having only a finite set of zeros. The object of this paper is to extend the

results by relaxing the restriction on the set of zeros of/.

1.2. Notations. Throughout the paper the following notations will be

used: C is the complex plane.

D(z, r) = {u: \ u — z\   < r};        C(z, r) = {u:  \ u — z |   = r}.

If c= \c\eit, 0g7<2?r, |c| >0, then

(1.1) ak(c) = exp [ — yi/q + 2irki/q], k = 0, I, ■ ■ ■ , q — 1,

and t3k(c) = | c\ -1/9aft(c). Also,

Ak(c, p) = [u: \u\   > 0,  | arg [ak(c)/u] |   < p}

and E(c, p) = U|Z0 Ak(c, p). If wGC, F(z) =w, then F*(z) =w*, where w* is

the complex conjugate of w. If F is a bounded, real-valued function,

M(F, z, r) =    Sup   F(u).
ueD(j.r)

1.3. Results. Suppose f(z) =d>(z) exp (czq+dzq~1), a^2, where

M(log \<p\,0,r) = o(r*»).

Let (R/ be the set made up of the q rays emanating from the point —d/(qc)

and passing through — d/(qc) +ak(c)ei*,q, k = 0, 1, • • • , q — l. Polya proved

that £/ = (R/ if / has a finite set of zeros. By application of his result to

functions approximating to an / having an infinite set of zeros, it soon

becomes clear that only in the directions ak(c) do the zeros of/ influence £/.

For functions / of the classes 5 and g defined below it is again true that
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£/ = (Rf. The theorem to this effect is given in §4.

Definition 1. /G SF if and only if f is entire and there exist c and d in C,

C9*0, an integer q, q^2, and p>0 such that

(1.2) Max log |/(z)e-C2'|   = o(r<0 as r —>oo,
1*1-r

(1.3) log | fiz)<r",-d'9~11   =o(| zk1), z GP(c,P).

Note that (1.3) requires/to have a finite set of zeros in P(c, p).

Definition 2. /G9 */ and °nly if f is entire and there exist c and d in C,

C9*0, and p>0 such that

(1.4) Max log |/(z)e-"21   = o{r2) as r —> oo,
l«l-r

(1.5) log  |/(z)e-"2|   = o(|z|2) asz-^ =o,zGP(c,p),

(1.6) log \<Piz)/tpiwl) |   = oi\ A ),asz-> oo, z G £(c,p),

wAere <p(z) =/(z) exp [ —cz2 —ciz] czM<i wz m </ze reflection of z in the line through

the origin and the points akic)e'*12, k=0, 1.

The classes SF and g intersect. SF includes the class treated by Polya.

In §6 there is given a class with yet weaker conditions on the zeros of/

for which (R/ may be a proper subset of £/.

1.4. Methods. The proof here is fundamentally the same as that used by

Polya. But the details are somewhat simpler. The method of proof is: (1)

find the asymptotic behavior of/(n)(z) in certain sectors using a modification

of a generalization of Stirling's formula due to Hayman [2, p. 69], (2) apply

a theorem of Ganelius [l, p. 33] which gives an estimate from below on the

number of zeros in certain neighborhoods.

1.5. Related work. Wyman and Moser have developed, in [4; 5], asymp-

totic series expansions for/(n)(z) where / is the exponential of a polynomial.

Theorem 1 of this paper gives only the first term of the asymptotic series.

Results similar to that of Ganelius have been given by Kay in [3].

General surveys of the study of the zeros of the sequence of derivatives

are available in [7; 10 ].

2. A generalization of Stirling's formula.

2.1. Definitions. For convenience let P(0, oo) = C. Suppose / is holo-

morphic in P(0, R), 0 <P:2 oo. Associate with / the functions a; and b; de-

fined by

(2.1) «,(*) = zf'iz)/fiz),

(2.2) bfiz) = zaf'iz).

Definition 3. The class XR consists of those functions f, holomorphic in

D(0, R), with the following properties:



356 R. M. McLEOD [May

(a) There exist numbers K/ and Rf, 0<Rj<R, and for each r^Rfa nonvoid

set I/(r) such that zGIj(r) implies \z\ =r and

(2.3) [Im 0/(2)]2/[Re b,(z)} g Kf.

(b) There exists a real-valued function 8f defined on the interval (Rf, R)

such that 0 <8t(r) <ir and

(2.4) f(ze») = [1 + o(l)]f(z) exp [ita,(z) - (t2/2)bf(z)]

as r-^R, zGI/(r), uniformly for \t\ g5/(r), while

(2.5) f(ze«) = oti&Mz)]-1!*]

as r—>R, zGI/(r), uniformly for 8j(r) g |/| g7r.

(c) There exists a number M/ such that

(2.6) | bf(z)/Re b,(z) |   g Ms,       z G I/(r), Rf g r < R.

Furthermore,

(2.7) | bf(z) |  -» oo        as r^>R,zGI/(r).

2.2. Theorem 1. LetfGZR. Then, as r—*R,

/W(0)   n /(»)        /       f     («/(*) ~ re)2"] -»
(2-8)   -^zn=i2^)FrpL—2^rJ + o(1)}'

if zGIfir), uniformly for all integers re.

Moreover, if V? is a subclass of Zr such that there is a number R0 satisfying

i?/^i?o,/GW, and such that (2.3), (2.4), (2.5), (2.6), and (2.7) hold uniformly
for all f in W, then (2.8) holds uniformly for all fin W.

This theorem generalizes that of Hay man [2, p. 69]. The difference is

primarily that Hayman requires that f(z) be real if z is real and that I/(r)

= lr}-
The following lemma anticipates our needs in proving Theorem 1.

2.3. Lemma 1. Let 8 be a positive number. Let a and b be complex numbers

with Reo>0. Let co be a continuous, complex-valued function on the interval

[-8, 8]. Let fi = Max \a(t)\. Set a=ai+*'a2, b=bi+ibi, and bi = (Bi)2, Bi>0.

Then

co(t)ea'-h'2dl   g fi7r1/2.Br1e'"i'4i">  '.

-s

Furthermore, if Bi8—ai(2Bx)~1>0, then

I  c* °°
(2.10) I    eat~htidt   g Br1e-B^1+^5.

\J B
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Proof. By obvious steps,

I   toit)eat-»t2dt   = Q I   «*i«-»i«'£tt
J s J-i

= fie"''4*!)"1 J    e-^'-'i'^dt.
J -t

The dominant becomes larger if /"«, replaces fL{. But

/CO ^»   00

exp [-iBil - ai/2Bi)2]dl = (l/£,) J     exp (-x2)c*x = Tr^l/^).
-00 "  -CO

Thus we have (2.9).

In like manner,

I      /»  oO y»  so

I    e-'-1"2^   g Pr1e<,,(4B8>"' j    <r*2cfx

where p = Bi8 — ai(2Pi)-1. But, as one shows easily by a change of variable.

p>0 implies /pexp(— x2)dx<exp( — p2). Thus we have (2.10).

2.4. Proof of Theorem 1. For convenience, we omit the subscript/.

From Cauchy's formula,

/(n>(0) 1   /•**-»('■>
-zn = — I fizeu)e-ni'dl.

n\ 2ir J -Ur)

With the same integrand, set P = (1/2tt)/% and I2 = il/2ir)fl^Hr\ From

(2.5), P=/(z)[27r6(z)]-,/2o(l) as r—»P, if zG/(r), uniformly with respect to n.

From (2.4),

fiz) rHr)
Ii= — [1 + to(t)] exp [i(a(z) - n)l - b(z)P/2]dt

2lC  J -J(r)

where to(t) =o(l). Call the exponential in the integrand E(t). Set

fiz) ( rx rSM r r_S(r)    r* i      i
/i-V^il    Eit)dt+\       toit)Eit)dt - \ +j        £(/)*[•.

27T    W-oo J -i(r) LJ-<n «'o'(r)J )

To apply Lemma 1 to the various terms we need some deductions from (2.4)

and (2.5).
Taking in turn / = 5(r), t= — S(r) in (2.4) and (2.5), one infers that

exp |a(r) Im aiz)-52(r) Re£(z)l = o([b(z)]-li')

and
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exp [-8(r) Im a(z)-82(r) Reb(z)~\ = o^z)]-1'2).

Out of these relations and (2.7) it follows that

— 82(r) Re b(z) - 8(r) | Im a(z) |  -> oo as r -> R.

In particular, Re b(z) is positive for r sufficiently large.

From these facts we may verify the hypotheses of Lemma 1 for the last

three integrals in the expression for lx. Therefore, in view of (2.3),

lx = — { f °°E(t)dt + o([Re its)]-1") j

uniformly for all integers re. But now

f   E(i)dl = e-c'[b(z)/2]-1i2 f e~^dy
•i-oo J L

where c= [a(z) — re] [2b(z)]~112 and L is the parametrized path given by the

function t—^t[b(z)/2]ll2—ic, t real.  (The square root   [&(z)/2]1/2 is the one

having positive real part.) A simple application of Cauchy's theorem gives

/z,exp( -y2)dy =/!!«, exp (-x2)dx.

Finally, in view of (2.6),

r     /(z)   /   r (a(z) - w)2i, fU\

On combining this with the earlier estimate on /2 we have (2.8).

The statement regarding uniformity over a class "W is easy to check.

3. The classes \J and g.

3.1. General lemmas. The first of the following lemmas has been given by

Hayman, [2, p. 78], in very slightly different form.

Lemma 2. Let f be a function which is holomorphic and has no zeros in the

disk D(w, p\w\), 0 <pgl. Let aj and b/ be defined by (2.1) and (2.2). //

(3.1) | bf(z) |   <C\bt(w)\, zGD(w,P\w\),

then

(3.2) log f(weil) = log f(w) + itaf(w) - t2bs(w)/2 + v(w, l)

where \rj(w, t)\ <C\b/(w)li\ /p for \t\ gp/2.

Lemma 3. Let f be a function which is holomorphic and has no zeros in

D(w, p\w\), w^Q. Let gt(z) = id'-/dzk) log/(z), ktl, g0(z) =log/(z), and h(z)

= log [f(z)/f(w)]. If 0 <t <a<p, there is a positive number A, depending on a

and t, such that
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(3.3) \gkiz)\   £k\Ak\w\-kMiReh,w,cr\w\)

for k'lzl and z in P(w, r|w|).

Furthermore, there  are numbers B and to such that for k^O and z in

P(0, to\w\)

(3.4) gkiw + z) = gkiw) + rjkiw, z)

where

| rikiw, z)\   < ik + 1)! | z I I B/w |*+1ilf (Re k,w,<r\w\).

Proof. Set € = (r+cr)/2. Since the functions gk, k^l, are also derivatives

of h, Cauchy's integral yields

kle
I &(z) I   = "7-^17 I w \~kM( \h\,w,t\w\)

(e — t)*+1

if z*2D(w, t\w\). The Borel-Caratheodory inequality,

Max | cp(z) |   ^ - Max Re <p(z) -\-I 0(0) I ,   0 < r < R,
|«|-r R — r \m\=r R — r

(see [8, p. 174], e.g.) gives

ii                i            2e ii
M( | h I , w, e | w | ) :S-M (Re h, w, tr\w\).

cr — s

The conclusion (3.3) is now only a matter of naming an appropriate number

A.
The Taylor expansion

oo

gk(w + z) = gk(w) + Z gt+piw)z'/p\
p=l

yields r?i(w, z) in an obvious way. From i3.3)

zp A  " ik + p)\   Az p
gk+piw)—   g   —   MiRe h,.w,tr\w\)-.

p\ w p\ w

Since Z"-i xpik+p)\/p\=k\[il — x)-*-1 — l] when |x| <1, it is an easy mat-

ter to name suitable numbers co and B.

3.2. Lemmas for entire functions. We shall deal with entire functions /

satisfying one or more of the following:

(3.5) Max log | fiz) \   = o(r") as r -* oo ;
|<|-r

in a certain unbounded region G,
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(3.6) log |/(a) |   = o(\z\*) asz->oo;

(3.7) log |/(z)//(-3*)|   = o(\z\) as z-> oo in G.

Note that (3.6) implies a finite set of zeros of/in G.

Lemma 4. Let f satisfy (3.5), (3.6), and (3.7) w«7& g = 2 area* G = £(l, p) /or

sc?reep>0. Then, for a <p,

f(w + z) .     .
lo8  ~T,-T~,—T   = o(\w |)        05 w-> =o in£(l,cr),

/(-w*+ w)

uniformly for z and u in D(0, R).

Proof.  In the notation of the previous lemma, consider

Re[g0(w + z) — go(-w* + «)].

Use (3.4). The dominants for r)0(w, z) and r]0(—w*, u) in combination with

(3.5), (3.6), and (3.7) yield the desired conclusion.

Lemma 5. Under the hypotheses of Lemma 4,

af( — w*) — a/(w) = o(\ w\)

as w—>oo in E(l, a), o~<p.

Proof. If 0 is a function holomorphic in an open set E, then c/>*: z—*

—cp*( —z*) is holomorphic in the set £* which is the reflection of E across the

imaginary axis. Furthermore, d>*'= ~<£'*• Set 0 = log/. There is a number

M such that both <p and #* are holomorphic in £(1, p)C\{z: \z\ >M}. Let

wGE(l, cr), tr<p, and set xp(z) =d>*(z)+4>(z) — <p+(w) — tp(w). There is a num-

ber r such that D(w, 2t|w|)C-E(1, p). Then

| \p'(w) |   g (t I w I )_1M( | ̂  | , w, t I w \ )

for large |w|. Using the Borel-Caratheodory inequality we get the further

inequality

. , 2 ,
| \p'(w) |   g —j—r Af (Re ^, w, 2t | ze» I ).

t | w I

But Re^(z) =log |/(z)//(-z*)| -log \f(w)/f(-w*)\. Therefore (3.7) implies

that \p'(w) =o(l) as w—>oo in £(1, cr).

Now a*( — w*) —af(w) = —wip'(w). The conclusion is immediate.

Lemma 6. /ei/ be an entire function such thatf(z) =<p(z) exp (czq) where d>

satisfies (3.5) and (3.6) wi/fe G = E(c, p) /ar soreze p such that 0 <p<ir/q.

A. Let fu be the function z—>f(z+u). Given R>0 there exists xr such that to

each x, x^xr, there corresponds a set of q functions \pxk, defined on D(0, R) and

holomorphic there, with the property that a/u(\ffZk(u)) =x, «Gi^(0, R).
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B. To each u and k there corresponds a function f„* defined on a half-line

[m, oo) such that Im a/u(f„t(r)) =0, r^m, and %ukir) =rakic) exp [i9Ukir)],

0ut(r) real, 0„*(r)—>0 as r—>oo. Moreover i//xkiu) =^uki\^Xkiu)\).

C. // c>0, q = 2, and cp also satisfies (3.7), then ipxo(u)+\p*iiu)=oil) as

x—»oo.

D. Ifcpiz) =0i(z)02(z) exp idzq~l) where log |<ps(z)| =o(|z| q~l) as z—>oo in

P(c, p), <^eM

(3.8) tyxkiu) = txk — iqu + d/c)iq — l)q~2 + oil) asx-><x>,

uniformly in P(0, R), where txk is the number \pXkiO) got by taking fiz) =0i(z)

exp icz") in part A. In particular, if fiz) =exp icz"), then tXk= 8kic)ix/ q)11 q. In

general, tXk=Bkic)ix/q)1!qil+oil)).

Proof. It suffices to take c = l since the general case is easily derived from

this special case. We abbreviate j4*(1, p) to ^4i(p) and a&(l) to a*. We regard

k as fixed throughout the proof.

Let 0U be the function z—->0(z+w). Let R and a be positive numbers with

cr<p. Then 0U satisfies (3.5) and (3.6) with G=Akio~), uniformly for u in

P(0, R). With the aid of (3.3) we find that

o/.CO = ?z9 + "(z4"1),       */.(*) = 92z' + o(z*-1)

as z—>oo in Akitr), uniformly for u in P(0, R).

Let w be a number in ^4*(cr) such that wq>0. Then by quite simple con-

siderations one may show that there is a positive number tt such that

\zq — wq\ ^tt\z \q for all z inside -4*(cr) but outside P(w, e| w\).

Let Skis, tr) =Akitr)C\ [z: \z\ >s]. Fix e for the moment and choose s so

that

I <*/„(«) - qz'\   g   \z\'qt./2

for all zin Skis, a) and all u inP(0, R). Let x be positive and set w=akix/q)llq.

Evidently there is a number xr such that x ^Xr implies | ajuiz) —x\ ^ qtt \ z\ q/2

for all z inside Skis, a) but outside P(w, «|w|) and |d/u(z) — qz"\ <\qzq—x\

for z on C(w, e\w\). The disk P(w, e| w\) is the only part of Skis, tr) in which

a root of ci/u(z) =x can lie. Rouche's theorem guarantees exactly one such root

there. Denote it by \(/xkiu). The function d/zk: u—>\(/xkiu) is defined at least on

P(0, R) and is holomorphic. This last property may be deduced from the

standard implicit function existence theorem.

The preceding argument is valid no matter how small e may be. Thus

**(«) = akix/qyiqil + oil))

as x—>oo, uniformly for u in P(0, R).

The problem in part B is to study the equation Im a/u(z) =0. We know

already that the numbers ipxk{u) satisfy it. Since the function x—>\//Xkiu) is

continuous,  the image of (x«,   oo)  is connected; thus it meets the circle
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C(0, r) if r is large enough. Actually the intersection consists of only one point.

One may show this by applying elementary calculus to the function

6—>lmatu(reie), 6 real. The conclusions of part B are now immediate from the

facts given in this paragraph and the one before it.

The first step in proving C and D is to show that there are numbers <r and

r such that

(3.9) | afu(w + z) — a/u(w) |   jg   | zwq_1 \

provided wGSk(r, a) and zG/)(0, cr|w|).

There is a number r such that the right-hand member of

- (Tt) O

afu(w + z) - afu(w)-bfu(w) = ZZ afu iw)z IP*
w P_2

has the dominant ^4|z/w| 2| w\ q if wGSkir, p/3), zGD(0, \w\p/3). But r can

be chosen so that, in addition,  |6/„(w)| =^g|w|c. The choice

a- = min [p/3, q/2A]

yields (3.9).

Now we finish C We can say equally well that (3.9) holds if w lies in

£(1, cr) with |w| >r. Then, using Lemma 5, we find that

I a/„i~w   + z) — a/u(w) |   2:   \ zw\ /2

provided 0<eg|z| gtr|w|  and |w|  is large enough. Taking w=\px0(u), we

conclude, remembering that x is real, that \pxi(u) lies in D(—\p*0(u), e) since

we know from the remark four paragraphs above that it lies in the concentric

disk of radius tr\\pxo(u) \. The conclusion is now immediate.

To finish D one need only prove that

2 q—1

a/uil*k — iqu + d/c)(q — l)/q ) = x + o(lxk )

and use (3.9). The computation is quite straightforward; we omit the details.

Lemma 7. Let /Gff^g. Let d/nk be the function of Lemma 6, part B. Then to

each R there corresponds an A such that

^^.'■* »SD(0,R).w! vPnkW]"

Proof. From Cauchy's inequality,

|/<»)(«)/«!|   g  |lM«)|-"M(|/|,w, |iM«)|)-

The remaining task is to show that \f(z)/f(u+\pnk(u))\ gexp (^4re1_1/5) if

zGC(u, \ipnk(u)\) and uGD(0, R). This will be carried out in the proof of

Theorem 2.
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3.3. Theorem 2. Pd/GSFWg. There are qsequences \^nk\n~N, k = 0,1, • • •,

q — 1, such that ipnk is a function holomorphic in a region Dnk and

/<»>(«) f(u + fnk(u))(3.10) ./__w =    j\   t y»*i n

m! [^(«)]»(2rjn)1'»

uniformly in each compact subset of Sk, where Sk is the sector (or half-plane if

q = 2) given by

(3.11) Sk = \u:  | v\   > 0,  | arg akic) — arg v \   < ir/q)

where v = qu+d/c.

If B is a bounded set, then B(ZDnkfor n^nB- Finally, \bnk is given by (3.8).

3.4. Proof of Theorem 2; completion of proof of Lemma 7. Suppose, with-

out loss of generality, that e = l. Let/« be the function z—*f(z+u). The first

objective is to show that/MGZoo (see Definition 3) if mGU'Io •$/. However,

since the proof of Lemma 7 is also to be completed, certain inequalities will be

proved for wGP(0, R).

Throughout the proof k is regarded as a fixed integer.

From part B of Lemma 6 there is a function f such that Im o/u(f (r)) =0

and f(r) =a*(l)rei(l« with 0(r) real and limr.oo 0(r) =0. Let J(r) = ]f(r)} and

5(r) =r~2ql6. Now (2.3) is satisfied for/„ with AT=0.

From Lemma 2 we see that (2.4) is satisfied. Moreover, there is a positive

number ei such that (2.5) holds for 5(r) ^ | 0| ^=€i. Both relations are uniform

for u in P(0, P).
Let s=rei2Tklq.

The first and second derivatives of the function 0—> —log \fuiseie) |, 0 real,

are Im %M(sei9) and Re b/uiseu), respectively. Therefore |/u(-sei9)| ^ \fu($(r)) |

for | 0| f£p. Then in checking (2.5) for €i ̂  | 0| ^w we may replace/u(f(r)) by

Consider |/«(z)//u(^) | on that part of C(0, r) outside P(l, e) for any e>0.

One sees readily that there is a positive number 71 such that Re [zq — sq]

_ —ylrq. It is an easy step to show that to e there corresponds 7>0 such that

(3.12) log I/.(«)//.(*) I   = -yrq

if |z| =r and zGP(I> e), uniformly for u in P(0, R).

The following two inequalities are proved in succeeding paragraphs. Let

R be a positive number and H a compact subset of Akil, rr/q). Then there

exists a positive number A such that

(3-13) \Mz)/M£(r))\   =e^q~\ \z\   = r,

if mGP(0, R) and zGUy^t .4/(1, e). Also, there are positive numbers 7 and e2

such that

(3.14) I/.«//•(*■«) I   ̂ -"'"'



364 R. M. McLEOD [May

if qu+dGH and zGU/,** Aj(l, ei).
At this point we consider separately the cases /Gff and/Gg.

Let/Gff- Set du = qu+d and |a'u|e<T = c7ue-i2,r*/«. If z=seie, then

Re [^(z"-1 - 55-1)] =   | du | r'-^cos (r + (q - 1)8) - cos r].

Set f? = 27r;7g+2/3/(g-l), lg/gg-1. Then

cos (r + (q — 1)8) — cos t = — 2 sin ( — rj/q + 0 + r) sin ( — icj/q + /3).

Since gre+c7G^4*(l, t/?), |r| <ir/q; consequently —ir< —wj/q+T<0 and, if

\fi\ is sufficiently small, cos (r + (q —1)6) —cos r<0. It is now clear that to H

there corresponds an e2 and a 71 such that

Re [du(zq-x - s"-1)} g - yxrq~\ \z\   = r,

ii zGUjrtkAj(l, «2) and qu+dGH-

From (1.3),

log \fu(z)/fu(s) I   g Re [duiz"-1 - s^1)} + o(r*~i).

The last inequality alone makes clear the existence of the number A. The

last two inequalities show the existence of the number y.

Now let/Gg. Set du = 2u+d. In this case the convenient way is to con-

sider fu(z)/fuitir))- The set £(1, e) consists of the sectors A0(1, e) and -4i(l, e).

Putz=-{*(r)eie, 6 real, |0| ge. Then zG^i(l, 2e), 1=1-k, for large r. Put

w= —f*(r). From Lemma 2 one gets

log [fu(z)/fu(w)} = ia/u(w)8 - 82b/u(w)/2 + v(w, 8).

There is an e2 for which | 77 (w, 6)\ g Re bju(w)82/A if \d\ ge2. Therefore the real

part of the sum of the last two terms is negative. On the other hand, in view

of the definition of w and Lemma 5, Re[iaju(w)9] =o(r). Thus we assert that

log I/««//«(*•«) I   glog |/«(-r*(r))//»«V>))|   +o(r),

uniformly for u in D(0, R). But

\fu(w)/fu(-w*)\   =  \e^+^cbu(w)/tpu(-w*)\.

Using Lemma 4 we find that (3.13) and (3.14) hold for/Gg.

Lemma 7 follows from (2.5) for |t7|gei, (3.13), and (3.12) with

e = min (ex, ei) if we choose r so that f(r) =\pnk(u).

To establish (2.5) on €1 g | d\ g?r it is enough to use (3.14) and (3.12) with

e = min (ex, ei).

The remaining conditions (2.6) and (2.7) are easy to check.

Taking that r ior which f(r) becomes fnk(u), we get (3.10) from (2.8) since

[2^/u(^(«))]"2 = (2Tg«)1'2(l + •(!)).
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4. The principal theorems.

4.1. An auxiliary theorem. The tool to be used in determining £/ is the

following generalization of Jentzsch's theorem due to Ganelius [l, p. 33].

Theorem 3. Let {F«}T=i be a sequence of functions holomorphic in a region

containing the closure of the bounded region G. Let Zo be a point of G. Let X„

= Sup2gc log | Fniz) |. Suppose that X„—>oo and that there is a positive number 8

such that | F„(zo)| —8, n^ 1.

Set log+x = max(log x, 0).

Suppose that there is a region Gi containing z0 such that

(4.1) lim X^1 log+ | Fniz) |=0, zGGi.
n—»oo

Let E be the largest such region.

Let v be a boundary point of E that belongs to G. Then, to each neighborhood

V of v there corresponds a subsequence {F„t} aMd a positive number K such that

the number of zeros of F„t in V is not less than PXnjfc.

4.2. The set £/. Recalling from §1.3 the definition of (R/, let us note that

(Rj is simply the complement of iil-o ■$*, where Sk is the sector defined in

(3.11).

Theorem 4. LeZ/GSFUg. Let !>Gofy and let V be a neighborhood of v.

There exist numbers N and K such that the number of zeros of fin) in V is not less

than Knl~llq if n> N.

Proof. We may suppose that v lies on the ray between Sk and Sk+i. Let G

be the disk with center at v and unit radius. (We may suppose V to be a

smaller, concentric disk.) Fix Zo in GPiS*. Using the notation of Theorem 2,

set

= fMiz)tynkiz)Y[2TcqnYl2

nlfiz + tnkiz))

The functions F„ are certainly holomorphic in a region containing the closure

of G for all n sufficiently large, and the zeros of F„ in V are exactlv those of

/<">.
Out of (3.8) and (3.10) we shall establish that

Fniz) = 1 + oil), zGSkr\G,

log I Fn(z) |   ^ Mm1""', z G Sk+i n G.

In fact, the first of these is quite clear from the definition of F„ and (3.10).

To prove the second, one must treat two expressions: \d>nkiz)/if/n,k+iiz)\ and

|/(z+\r/n,t+i(z))//(z+^,r.t(z))| • In each instance it is convenient to distinguish

the cases /G SF and /G8-
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Set w = e~2rilq and ^ = | iMzW».*+i(z) | •

UfGZ,

Ink — m + o(l)
* =   -TT '

/„* — mto + o(l)

where m = (qz+d/c)(q — l)/q2 and tnk=Pk(c)(n/q)llq. Consequently log ^

= Re[m(co-l)/tnk]+o(n-llq). With z in S*+i, arg rej = arg tnk+2-w/q+r,

\t\ <ir/q. It follows that log 'i'^ii're-1'3.

Let/Gg and suppose, without loss of generality, that c>0. Then from

parts C and D of Lemma 6

tnk — m + o(l)

U + m* + oil)

and log ^ = Re [ — (m+m*)/tnk]+o(n~112). The conclusion log ^2:Kn~112

may be drawn from the fact that Re m Re tnk<0.

Nowset*=|/(z+^„,i+i(z))//(z+^(z))|. Using (1.3) and (3.8) it is not

difficult to show that

(  nm   T   1 1 Tl
log $ = Re {-\\ + oin1-1/")

1?  —   1 Un.k+X Ink J)

if/G?. Calling on Lemma 4, one shows as readily that

log $ = — Ac Re m Re <„* + o(w1/2)

if/GS- From each of these it follows that log $^&1_"«.

Finally, log | F„(z) | =w log ^r+log$ if zGSk+xf^G; consequently log

|F„(z)| ^Kn1-1'".

The inequality Kxn1-11q gX„ g AT2re1_1/5 is a consequence of the estimate

just obtained and Lemma 7.

The point v is a boundary point of the maximal region £ for the sequence

{Fn} and for each of its subsequences as well. The assertion of Theorem 4

follows now from Theorem 3.

Theorem 5. ///G^Wg, then £, = &/•

Proof. Theorem 4 implies (R/CjEf. The reverse inclusion follows from the

fact that (3.10) holds uniformly in compact subsets of Sk-

5. Some subclasses of J and g. 5.1. A subclass ofSF. Let

(5.1) /(z) = zmF(z)e«^)

where Q(z) = zZl~o bkZq~k and P is a canonical product of genus p, 0 gpgg —2.

In order that/GJ, with c = 6o and d = bx, it suffices that/have at most a finite

set of zeros in some set E(bo, p). The lemma of [9, p. 53] serves well as the

basis of a proof.
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5.2. A subclass of Q. Let/ have the form (5.1) with Q of degree 2 and P

of genus 1. Suppose that &0>0, that/has but a finite number of zeros in some

P(l, p), and that ZjT=i | Re (l/a*)| < °°, where {ak} is the sequence of zeros

of/ Then/G9 with c = boand d = bi+zZt=i ^e (1/°*)- The lemma mentioned

above again serves well in the proof.

6. A class outside SFUg. In the description of the subclass of SF given

above, let the requirement that in some £(6o, p) / has a finite set of zeros be

replaced by the requirement that / has in each disk in P(&0, p) at most one

zero, counted according to multiplicity. (A finite set of zeros may be ex-

cepted.) It is possible to find <£/ in this instance by a modification of the

methods used for JF and g. In fact, (R/CZjfy, but the inclusion may be proper.

£/ contains the half-line 5*P\{z: Im [z/a&(60)] =v\ if and only if for every

5>0 the half-strip

Sk r\ {z: t, - 8 g Im [iqb0z - iq - l)6i)(«2W&o))-1] ^ V + 8}

contains an infinite set of zeros off. These additional points in £/ arise from

the presence of zeros of/ near the path on which

Max   | exp [b0uq + biu"-1] | , z G Sk,
usC(2,r)

occurs.

It seems reasonable to conjecture that for each function / of the form

(5.1), without restriction on the location of the zeros but with 0^p^q — 2,

the set <£/ will have the description just given.
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