
SEMIGROUPS WITH IDENTITY ON A MANIFOLD^)

BY

PAUL S. MOSTERT AND ALLEN L. SHIELDS

The principal question with which this paper is concerned is the follow-

ing: if a manifold M admits a continuous associative multiplication with

identity and no other idempotents, is it a group? We are able to show that

in the case M is the line or plane, the answer is in the affirmative. However,

the general problem remains open.

We show that in any case, there is a maximal, connected, open subgroup

G of M containing the identity. This then determines a subspace L, the

boundary of G in M, which we show is an ideal of G~ (the closure of G). Thus,

a study of M necessarily involves a thorough study of P. We conjecture, for

example, that P always contains an idempotent (we prove this in case L is

the line or plane, or when M is two dimensional and P is a regular boundary).

Clearly this would imply an affirmative answer to the question raised above

for arbitrary dimensions.

The existence of the open subgroup G gives us as corollaries two results

of A. D. Wallace [l; 2], both of which are encompassed in the following

more general result: if a compact manifold 5 with boundary £ is a semigroup

with identity, then the set of elements with inverses is contained in £ or else

is all of 5.
We consider also the following problem: if the closed right half plane is a

semigroup in which the open half plane is a group G, how many possibilities

are there for multiplication on the y-axis (=P)? We show that if G is iso-

morphic to the two dimensional vector group, there are exactly four possibili-

ties, and examples are given of each of them. If G is the nonabelian group,

we can identify two possibilities, but we are unable to prove these are all.

(It might be interesting to note that even in the plane, we are unable to de-

cide whether P need be a regular boundary for G or not.)

Background material. 0.1. By a semigroup 5 we mean a topological semi-

group, that is, a Hausdorff space with a continuous associative multiplication.

If there is an identity it will be denoted by 1. P7(l) denotes the set of ele-

ments with inverses; it is a group.

0.2. A set A in a semigroup 5 is a left ideal if SAQA. Similarly one de-

fines right ideal. By ideal we mean a two-sided ideal. If A is a left ideal and

£ is a right ideal, then £.4 C^4^£, so every left ideal meets every right ideal.
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The closure of an ideal is an ideal, and similarly for left and right ideals.

0.3. In a connected semigroup S with identity every ideal is connected.

Indeed, assume A were a disconnected ideal, and let x, yG^4 be in different

components. Then xS is a connected subset of A containing x, and is therefore

contained in the x-component. Similarly Sy is in the y-component. But by

0.2, xS meets Sy, which is impossible.

0.4. A~ denotes the topological closure of A; A\B denotes set-theoretic

difference.

0.5. A compact semigroup always contains an idempotent [3].

1. 1.1. Lemma. Let Q be the solid unit ball in Euclidean n-space, and let f

be a map of Q into itself such that: d(x, f(x)) < 1/2 for all x. Then 0 G/((?).

This is an immediate consequence of the Brouwer fixed point theorem"

See Hurewicz-Wallman, Dimension theory, Chapter 6, Example VI.2, p. 75'

1.2. Theorem. Let S be a semigroup with identity having a Euclidean

neighborhood U of the identity. Then there is a neighborhood V(Z U of 1 such

that every element of V has an inverse in U. H(l) is an open subset of S and is

a Lie group.

Proof. We identify [/with Euclidean w-space with its metric, d. Let e>0

be given and let Q be the solid ball of radius e centered at the identity. By

the uniform continuity of multiplication on Q there is a 5 such that

d(x, xy) < e/2,        d(x, yx) < e/2

whenever d(y, 1)<5 and xGQ. By Lemma 1.1, lG(?y and lGy(?> so y has

both a left and a right inverse in Q, hence has a unique two-sided inverse in Q.

The proof shows that inversion is a continuous operation, and therefore

11(1) is a topological group. Since it contains an open set it must be an open

set, so it is locally-Euclidean and therefore a Lie group.

1.3. Corollary. If S is a compact connected semigroup with identity having

a Euclidean neighborhood of the identity, then S is a Lie group.

Proof. By 1.2 H(l) is open, and in a compact semigroup it is always closed,

hence it must be all of 5.

1.4. The pair (S, B) is called a relative manifold with boundary B if 5

is a connected Hausdorff space and B is a closed subset such that S\B is

locally Euclidean.

1.4.1. Corollary. If S is a compact connected semigroup with identity

and (S, B) is a relative manifold with boundary, then either S is a group or

H(1)QB.

Proof. Assume an element g of H(l) is in S\B and thus has a Euclidean

neighborhood. Then there is a Euclidean neighborhood of 1, and by 1.3 5 is

a group.
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In case 5 is a subset of Euclidean space and has interior points then it

cannot be a group (since a group is homogeneous space) and we get the result

of Wallace quoted at the beginning.

Theorem 1.2 is not true for general locally convex linear spaces. For exam-

ple, if S is the set of all real-valued continuous functions defined on — <*> <x

< oo, with the (metric) topology of uniform convergence on compact subsets

and with composition as the semigroup operation, then 77(1) is not open.

This example is not a Banach space and we do not know whether or not

Theorem 1.2 is true for such spaces. In particular, can Hilbert space be a

semigroup with identity in which 77(1) is not open?

2. In this section we consider connected semigroups J? with identity in

which 77(1) is open. By 1.2 this includes the case of a semigroup with identity

on a manifold. It also includes, for example, the case of a commutative Ba-

nach algebra with identity.

We shall use the following notations. G will denote the component of

77(1) containing the identity, and P will be the boundary of G. We shall be

concerned only with the subsemigroup G~ = GUP. We show that P is an ideal

in G~, and that L is connected. We conjecture that P must contain an idem-

potent when 5 is a manifold but we are able to prove this only with addi-

tional assumptions.

2.1. Lemma. L is a connected ideal in G~.

Proof. We show that P is an ideal in G~, the connectedness then follows

by 0.3. If xGP g€zG and xg = /?GG, then x = hg~1€j.G which is impossible.

So LGC.L. Similarly GLQjjL. Since L is closed LG~(j_L and G~LC.L.
2.2. If x, yGP, then xG and yG are either disjoint or identical. These are

the right orbits if we think of G acting as a transformation group on P by

right multiplication.

2.2.1. The closure of each orbit is a right ideal. Indeed, (xG)~ = (xG~)~,

and xG~ is a right ideal (in G~). Similarly (Gy)~ is a left ideal for each yGP-

Hence by 0.2 each right orbit closure meets each left orbit closure.

2.2.2. If zS(xG)~ then zGC(xG)~ since (xG)~ is a right ideal.

2.3. Lemma. If xG = Gx for some xGP, then either xG is a group, or it

contains none of its products, that is, w, y^xG implies wy(£xG.

Proof. Assume we have a pair w, y(£xG such that wy=v(E.xG. Then

vG = wG=yG = xG = Gx = Gy = Gw = Gv. To show wG is a group it suffices to

show: (wG)u = u(wG)=wG for each wGwG. Let u = xg= hx with g, h^G.

Then u(wG) =xg(Gy) = (xG)y = (Gw)y = Gv = wG, and similarly for (wG)u.

Example 4.6.2 shows that if the hypothesis xG = Gx is omitted, then Gx

may be a closed subsemigroup that is not a group. In all our examples either

xG is a subsemigroup or it contains none of its products, but we do not know

if this is always true.
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2.4. Lemma. If there is an xGF for which x2(ExG and x2(E.Gx then L

contains an idempotent.

Proof. By hypothesis there are elements g, h(EG ior which x=x2g = hx2.

Let e = xg = hx2g = hx. Then e2 = (hx) (xg) = e.

2.5. Lemma. If there is a closed right orbit xG and a closed left orbit Gy,

x, yGF, then L contains an idempotent.

Proof. By 2.2.1, xG meets Gy. Let zG.xGr\Gy. Then zG = xG, Gz = Gy, so

zG and Gz are subsemigroups. Thus z2<EzGr\Gz and the result follows from

2.4.

2.6. For any set 4CF let F(A) =A~\A.

2.6.1. Theorem. If L is finite dimensional and dim F(xG) <dim xG,

dim F(Gx) <dim Gx for each xGF, then L has an idempotent.

Proof. Let xGF be an element such that xG has minimum dimension for

right orbits. Then xG is closed, for if z(ElF(xG) then zGC.F(xG) by 2.2.2 and

dim zG <dim xG, which is impossible. Similarly there is a closed left orbit,

and the result follows from 2.5.

2.7. Corollary. If S is the plane and G is the open right half plane, then

there is an idempotent on the y-axis.

3. In this section we show that if the line or the plane is a semigroup

with identity and no other idempotents then it is a group.

3.1. Theorem. If the real line S is a semigroup with identity and no other

idempotents then it is a group.

Proof. If G is the identity component of H(l), then by 1.2 G is an open

interval. So it is isomorphic to the multiplicative group of positive real num-

bers since there is only one group on the line. Hence for xj^i, x always comes

between 1 and x2. Now if G^S, let e be an endpoint of G and let x„—>e,

xn(£G. Then x2—>c, so e2 = e.

For the remainder of the section S will denote the Euclidean plane which

we assume to be a semigroup with identity and no other idempotents. We

assume 5 is not a group, and therefore, with the notations of §2, L is not

vacuous.

3.2. Dim F = l, dim xG = dim Gx = l for each xGF.

Proof. L is the boundary of an open set, so dim L = l. Each xG is a con-

nected subset of L; if it Avere zero dimensional it would be a point. But then

xG = x, which implies xG~ = x, and therefore x2=x. Similarly, dim Gx = l.

3.3. If Gr(x) = {gE.G:xg = x} and Gi(x)={g^G; gx=x], then Gr(x)
=Gi(x).

Proof. Dim G,(x)=dim G —dim xG = l, and similarly for Gi(x). Hence if
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Gr(x)^G;(x) we must have GT(x)Gi(x)=G. Thus there exist g„GGr(x),

AnGGi(x) such that gnhn—*x. Hence x3 = lim xgnhnx = x2. Thus (x2)2 = x3x = x2x

= x3 = x2, so P contains the idempotent x2.

We shall call the group leaving x fixed G(x).

3.4. 7/x, yGP, then G(x) =G(y). This group will be called H.

Proof. As in 3.3, dim G(x) = dim G(y) = 1. If they are unequal, then

G(x)G(y)=G. Also, xyG(y)=xy, G(x)xy = xy, so G(x)VJG(y)CG(xy), and

therefore GCG(xy). But then xy is a zero for G~, and in particular is idem-

potent.

3.5. 77 is a normal subgroup of G.

Proof. If g(EG, xGP, then gxGP- Hence Hgx = gx, so that (g_177g)x = x.

Then by 3.4 g-'HgQH.
Remark. One can easily verify that 77 is closed in G~, so one is tempted

to form the quotient semigroup G~/H. Unfortunately this will not in general

be Hausdorff; see 4.5.5.

3.6. 77 is isomorphic to the group of real numbers.

Proof. This follows from the following facts: (i) 77is closed in G; (ii) dim 77

= 1; (iii) G has no nontrivial compact subgroups; (iv) no orbit xG where xGP

has compact closure. Indeed, it follows from (i) (ii) (iii) that 77 contains a

subgroup 77' isomorphic to the reals. If H^H' then G/77 would be compact.

But if xGP there is a natural one-to-one continuous map from G/77 to xG,

and this violates (iv).

(i) is obvious from the definition in 3.3. (ii) was proven in 3.3. As to (iii),

■:he only two-dimensional Lie group imbeddable in the plane which has a

compact subgroup is the circle cross the line. In this case P has an idempotent

and 5 has a zero. For a complete discussion of this case see [4]. (iv) follows

from 2.2.1 and 0.5.
Remark. From (iii) above we see that G must either be isomorphic to the

two-dimensional vector group or to the nonabelian group of affine trans-

formations of the line: y = ax+b, a>0.

3.7. Theorem. If the plane S is a semigroup with identity and no other

idempotents then it is a group.

Proof. Assume L is not null; we must show that it contains an idempotent.

Fix an xGP- If x2GxGP\Gx, then the result follows from 2.4. So we may as-

sume x2(£xG.

Let R he any one-parameter subgroup of G different from 77. Then R is

a cross section for 77 in G. Let P= [a-1, a] be a symmetric neighborhood of 1

in R, and for xGP let 7 be a neighborhood of x2 of the form 7~= CT, where

C is a local cross section to the local orbits of P at x2. Then V~ is homeo-

morphic to CX.T under (c, t)^>ct.

xR must cluster at x2. Indeed, let g„—>x, g„GG. Then xgn—>x2. But

xR = xG, so x2G(xP)~. Hence xR gets inside V. We choose the ordering on R
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in which a> 1. This induces an ordering on xi?. Let R+ be the elements 2:1

in R, and i?_ the elements ^1. Then either xR+ or xi?_ clusters at x2, so we

may assume it is xR+.

CT is ruled by the lines [cT], c£lC. We call these lines "strips," and give

each strip the ordering in which ca>c. Since x2(£xR, but xR+ clusters at x2,

infinitely many strips must be in xR+. From the way we have chosen our

orderings, it follows that if the strip cT is in xi?, then its ordering must agree

with the ordering of xR.

I-r-(-1 \xria \ xr.xa

^ \

ci-4 i>-
xr* J   xr\

I

-1> i-1 /
xriar1 %rxa l I

Let riG7?+ be such that xn^C. Then xn is on the strip [xna-1, xrxa]. Let

r2 be the first element of R+ greater than rx such that xr2 lies on C. Then xr2

lies on the strip [xr2a~l, xr2a]. Let D denote the simple closed curve consisting

of the part of xR+ from xrx to xr2 together with the part of the arc C from

xr2 to xrx. See the figure above where one possible configuration is shown.

D divides the plane into two regions one of which has compact closure.

Consider the two points xria-1 and xr2a. One of them is in the region interior

to D—to fix ideas we assume it is the point y = xria_1. Then all of yR- must

be interior to D. Indeed, xR is a one-to-one mapping, so yR_ cannot cross the

part of xR between xrx and xr2. And if yR- were to cross C between xr2 and
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xn it would be on a strip going in the opposite direction to the ordering on

the strip, which is impossible.

Therefore yR_ has compact closure. Let 2 be a limit point of yR-, say

yrn-^>z. Then yrnr—>zr for all rG-R, and if n is large enough r„rG7?_. Hence zR

is contained in the limit points of yR~, and therefore has compact closure.

By 2.2.1 (zR)~ is a semigroup and thus contains an idempotent by 0.5. This

completes the proof.

4. With the notations of §2 we now assume 5 is the plane and G is the

open right half plane, so that L is the y-axis. The problem is to determine the

possible multiplications on L. These will depend both on the group G and on

how G is imbedded in the half plane. There are two possibilities for G, it is

either isomorphic to the two-dimensional vector group or to the group of

affine transformations of the line: y=ax + b, a>0. We do not consider the

following question. Suppose two such multiplications GV)L and G'\JL' are

given, with G isomorphic to G' and L isomorphic to L'. Does it follow that

GWF is isomorphic to G'\JL'l

As before we work entirely with the semigroup G~ = GyjL. Any multi-

plication in G~ may be extended to the rest of S in various ways. For example,

for mG-S let p(u) be the reflection of u in the y-axis. For u and v in the left

half plane define uv = p(p(u)p(v)). For u in the left half plane and v in the

right half plane define uv = p(p(u)v), and vu — p(vp(u)).

Any orbit xG that is not a point must be an open interval, finite or

infinite.

4.1. x is called a left zero if xz = x for all zGG^. This is equivalent to the

right orbit being a point: xG = x.

4.1.1. If xGt^L and y is an endpoint of xG, then y is a left zero. Indeed,

yG^G since xG is an open interval, and yG is a connected subset of (xG)~

by 2.2.2, so yG^y.

4.2. Lemma. If L has a left zero that is not a right zero, then every element in

L is a left zero, and there is only one left orbit: Gx = L.

Proof. By hypothesis there is an element xGF such that xG=x, and

Gxt^x. Assume Gx^L. Then Gx is an open interval with at least one end-

point y. Clearly all elements of Gx are left zeros, hence y is a left zero too.

By the analogue of 4.1.1 y is also a right zero, hence is a two-sided zero. But

this is impossible, for then there could be no other left zeros.

4.3. Corollary. 7/xG has compact closure then it is a point.

Proof. If this were false xG would be an open interval with two endpoints

e and/. By 4.1.1 both are left zeros. This means there are no right zeros so by

4.2 xG=x.

4.4. Lemma. If L does not have a one-sided zero that is not two-sided, then

xG = Gx for every xGF, and either there are exactly three orbits one of which is a
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zero, or there is only one orbit which is a group.

Proof. Case I. Assume xGt^L and let y be an endpoint. By 4.1.1 y is a

left zero which must be a two sided zero by hypothesis. So yG = Gy=y. No

other left or right orbits can have compact closure by 4.3 so there must be

exactly three left orbits and exactly three right orbits. Therefore for wGP

we must have uG = Gu since both contain w.

Case II. If xG=P, then Gx = L by the analogue of Case I for left orbits.

By 2.3 P is a group.

4.5. Theorem. If G is abelian then there are exactly four possibilities for the

multiplication on L:

I. L is a group.

II. P has a zero, 0, dividing L into the two sets A and B. Then AB=0 and

we have the three possibilities:

a. A and B are each groups.

b. ^2=£2 = 0.

c. A is a group and £2 = 0.

Proof. By 4.4 either (I) P is a group; or (II) P has a zero and there are

two other orbits A and £. By 2.2.1 A~ and B~ are ideals, so A~B-CjA-C\B-

= {o}. By 2.3 there are at most the three possibilities listed for II. The proof

will be completed by giving examples of all four possibilities. In the examples

the multiplication is given in coordinate form; we omit the verifications. In

the second and fourth examples we work in the first quadrant instead of the

half plane.

4.5.1. I. (a, b)(x, y) = (ax, b+y), a, x^0. Here (1, 0) is the identity.

4.5.2. Ha. (a, b)(x, y) = (ax, by), a, b, x, y^O. Here G is the open first

quadrant and (1, 1) is the identity.

4.5.3. lib. (a, b)(x, y) = (ax, ay+bx), a, x^O. Here (1, 0) is the identity.
4.5.4. He. Here we work in the first quadrant: a, b, x, ySiO. The product

is defined in three parts:

/ 1 + log2 ax \
(a,b)(x,y) = lax, by 1 if a, x > 0,

\ (1 + log2 a)(l + log2x)/

(0, b)(x,y) = (0,by ———— )        ifx>0,
\ 1 + log2 x/

(0,b)(0,y) = (0,0).

The origin is a zero, (1, 1) is the identity, the positive x-axis is a group, and

the product of any two elements on the positive y-axis is zero.

We indicate the verification of the associativity and continuity. Let </>(x)

be continuous and strictly positive for x>0, and <p(l) =1. Define a multipli-

cation on the "half-open" first quadrant o, x>0, 0, y ^0 by:
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/ cb(ax)   \
(a, b)(x, y) = ( ax, by-).

\ cb(a)cb(x))

The associativity is easily checked, (1, 1) is an identity, the positive x-axis

is a group, and the open first quadrant is isomorphic to the two-dimensional

vector group. The problem is to choose cp so that the multiplication may be

continuously extended to the y-axis in such a way that the product of any

two elements on the y-axis is zero. If this can be done the associative law

will hold automatically since it holds on a dense subset.

Let/(a, x) =cp(ax)/cp(a)cp(x). Then we want:

(i) f(a, x) bounded for a, x>0;

(ii)  lim f(a, x) =0 as a, x—>0;

(iii) lim/(a, x) exists, >0, as a—»0 and x—*x0>0. This limit will neces-

sarily depend continuously on x0.

All of these conditions are satisfied if one takes cp(x) = 1 +log2 x. The limit

in (iii) will then be: 1/(1+log2 x0). This completes the proof of Theorem 4.5.

4.5.5. If 5 is a topological group and H is a subgroup, then S/H is Haus-

dorff if and only if II is closed. This is not true if .S is merely a topological

semigroup with identity and H is a closed subgroup containing 1, even when

the cosets xH are closed sets.

For example, let 5 be the plane with the multiplication of Example 4.5.3,

and let IIbe the vertical line through (1, 0). His a closed subgroup; the coset

containing (a, b) is the vertical line through (a, b) if ay^O but is the point

(a, b) itself if a = 0. The coset space S/H is not Hausdorff.

4.6. If G is nonabelian there are at most five possibilities for the multi-

plication on L. These are the four, I, Ha, b, c of Theorem 4.5, and one more,

III, in which every element of L is a left zero (or the analogous case where

every element is a right zero). This follows from 4.2 and 4.4 just as in the

proof of Theorem 4.5. We give examples for lib and III and we conjecture

that the other three cases are not in fact possible.

4.6.1. lib.  (a, b)(x, y) = (ax, a2y+bx), a, x^O. Here (1, 0) is the identity.

4.6.2. III. (a, b)(x, y) = (ax, ay+b), a, x^O. Again (1, 0) is the identity.

This example is the usual representation of G as the group of matrices

C!)
In the other three cases, if they exist, one has xG = Gx for all xGF, and

at least one orbit is isomorphic to the group of real numbers. It can be shown

that such "an orbit is in the center of G~.
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