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1. Introduction and statement of results.The problem of computing the

cohomology groups of a fibre space whose fibre is of type 3C(ir, w), and whose

base space and characteristic class are known, is one of the important prob-

lems in present day algebraic topology. There are two existing techniques

which can be applied to the problem. The first of these is, of course, the

technique of spectral sequences (see e.g.(x) [4]). The second is the method of

G. Hirsch [7]. This paper is concerned with the application of this latter

method to the problem.

I shall consider, therefore, fibre spaces (E, B, F) in the sense of J. P.

Serre [9], with arcwise connected base space B, and fibre F of type X(w, n).

The cohomology theory of fibre spaces used will be that of Serre, loc. cit.,

using singular cubes, and his notation will be used as far as is possible.

The following assumptions will be made. Firstly, coefficients will be as-

sumed to be taken in a commutative ring K with a unit element. Secondly,

the fundamental group irx(B) will be assumed to operate trivially on the

(unitary) cohomology TT-module H*(F; K) of the fibre, which will be assumed

to have a homogeneous K-basis, finite in each dimension.

These conditions ensure that the first term, E*, of the spectral sequence

in cohomology associated with (E, B, F) is isomorphic with the tensor prod-

uct, (overX), C*(B; K) ®K H*(F; K) = C*(B; K) ®K II*(ir, n; K). They are

certainly fulfilled(2) in case tt is a finitely generated abelian group, and K = ZP,

the ring of integers reduced modulo a prime p. A discussion of the possible

relaxation of these conditions to include the case when rr is not finitely gener-

ated, i.e. when the AT-basis of H*(F; K) need not be finite in each dimension,

will be included. The exposition, particularly in §2 below, is, I think, made

somewhat more readable by making the more stringent assumption (which

seems also to be of more practical value).

Under these conditions, then, the method of G. Hirsch, loc. cit., gives a

monomorphism(3)
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(') The determination of the groups //*("", n; Zp) by H. Cartan [2], enables one to extend

to higher dimensions the results of [4]. The interpretation of the transgression homomorphism

used in [4], in terms of the cohomological operations corresponding to H*(r, n; Zp) for q = n,

n-\-\, 7Z+2, is replaced by the interpretation in terms of the general operations with coefficients

in Zp, e.g. the Steenrod powers (cf. e.g. §5 below).

(»)See[2].

(3) As is noted in §2 below, the method of Hirsch is not of course restricted to the case when

Fis of type 3C(tt, n).
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u: C*(B; K) ®K H*(ir, n; K) -» C*(E; K)

such that the image u(C*(B; K)®K H*(ir, n; K)) is a graded sub-AT-module

of C*(E; K), stable under the coboundary operator d: C*(E; FT)—>C*(£; K).

By means of u the operator d can be "pulled back" to C*(B; K) ® K H*(ir, n;K)

and a coboundary operator d can be obtained in this tensor product, such

that the cohomology modules given by d (with the usual (total) grading of

the tensor product) are isomorphic with the corresponding cohomology mod-

ules Hr(E; K), for all r. Stated in precise terms in the present context, we

have as follows the theorem of Hirsch.

Theorem of Hirsch. For all integers m^O there exists a coboundary

operator.

d:    £   Cp(B;K) ®KH"(ir, n; K)-+     £    CP(B; K) ®K H*(ir,n; K)
p+q=m p+g=m+l

such that the cohomology modules Hm(C*(B; K)®k H*(ir, n; K)) which are

defined by this operator are isomorphic with the cohomology modules Hm(E; K).

Now let dB: C"(B; K)^>Cp+l(B; K) denote the coboundary operator in B.

Further, recall that given any element, and therefore in particular any basis

element, say x<=II'*(ir, n; K), 0<q<2n, there exists y^Hq+1(ir, n + l; K)

such that x = a*y where a*: H"+l(ir, n + l; K)^>Hq(ir, n; K) denotes the

(cohomology) suspension isomorphism in these dimensions. Let

T(y): Hn+1(B; ir) -» Hq+1(B; K)

denote the cohomological operation associated withy, and if kn+l^Hn+l(B; ir)

denotes the characteristic cohomology class of (£, B, F), let T(y)kn+l denote

a chosen cocycle in the class T(y)kn+l. In dimensions 0<m<2n the Hirsch

coboundary operator can now be made explicit, in these terms, as follows.

Theorem. In case 0<m<2n the coboundary operator d of the Theorem of

Hirsch can be defined by setting

d(b ® 1) = dBb ® 1,

d(b ® x) = dBb ® x - (-1)'{}U T(y)k"+1} ® 1,

for all b£iCp(B; K), and all basis elements x^Hq(ir, n; K), where p+q = m,

a*y = x, and 1 denotes the unit element in H*(ir,n; K).

This theorem will be referred to as the main result of the paper. Its object,

evidently, is to make explicit in dimensions 0 <m<2n the group Hm(C*(B; K)

®H*(ir, n; K)) given by the Hirsch method. The theorem is proved in §3 be-

low. In fact the arrangement of the rest of the paper in detail is as follows.

First, in §2, there is given for the convenience of the reader a reconstruc-

tion of the proof of the Theorem of Hirsch within the framework of the

Serre cubical singular cohomology of fibre spaces. This section closes with
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two brief notes. The first outlines what is known about how the conditions,

under which the Hirsch Theorem has been proved, can be relaxed. This

covers, in particular, the case when ir is not finitely generated. The subsequent

required alterations in the proof as given are briefly indicated. The second

note deals with the analogous theorem in homology. Next, in §3, it is shown

that since the fibre F of the space (E, B, F), which is to be considered, is of

type X(ir, n), the coboundary operator d which is given by the Hirsch

method can be expressed up to dimensions 2w — 1 (i.e. within the "suspension

range") in terms of the transgression in the cohomology spectral sequence

associated with E. The theory of cohomological operations then allows this

fact to be exploited and the proof of the main result is completed, making

explicit the Hirsch coboundary operator up to dimension 2w — 1. Again this

section closes with a brief note on the nature of the coboundary operator

when ir is not finitely generated. In §4, results of the first paper under this

title [4] are reobtained in strengthened form as an illustration of the power

of the method. In particular a generalization of a group construction of

Eilenberg-Maclane [5, Theorem II] is obtained. In the final section, §5,

there is given a brief comparison, from the purely practical point of view, of

the two methods of computing the cohomology groups of E, namely the Hirsch

method as given here, and the spectral sequence method as used, e.g., in [4].

It appears that in any practical computations one would be driven back to

methods analogous to those of [4], whichever method is used.

The paper is independent of [4] except in §4 and §5 where reference is

made to the results and spectral sequence methods of [4]. Since these latter

methods are standard ones, I have not hesitated in §4 and §5 to accept their

use and implications, without explicitly carrying out computations analogous

to those of [4].

2. The method of Hirsch. I recall first, for convenience, the various facts

arising from the thesis of Serre [9] which will be required later. As far as is

possible I use his notation. It should be noted that throughout this section

the fibre F, of the fibre spaces (jE, B, F) which are considered, need not be

of type X(ir, w).

SI. First, then, in calculating the terms E* and E* of the cohomology

spectral sequence associated with a fibre space (E, B, F) Serre constructs a

monomorphism into the term Eg of the spectral sequence, namely

<b*:C*(B;C*(F;K))-+E0*,

with left inverse xp*. Both c/>* and ip* are cochain mappings in the sense that

they commute with the coboundary operator of C*(F; K) in C*(B; C*(F; K)),

and with the coboundary operator d%: E*v—">Eqv of the spectral sequence.

Thus each induces homomorphisms of the respective cohomology groups ob-

tained from these coboundary operators. In fact, if

C*(E; K) = A* = A*" jj) A*1 3 • • O A*" D A*^1 D ■ ■ ■
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is theSerre filtration of C*(E; K) and if Z*(F; K) and Z*(A*P/A*P+X) denote

respectively the i£-module of cocycles of F with coefficients in K, and the

X-module of d*-cocycles of A *P/A *p+l = E*p, then there is a commutative

diagram
<P*

C(B; Z*(F; K)) <=> Z*(A*p/A*p+1)■P*
XI ip

Cp(B; H*(F; K)) <=> H*(A*»/A*p+i) = £i*"

where X, p denote the natural homomorphisms(4) mapping cocycles into their

respective cohomology classes, and cp**, \p** are the homomorphisms induced

by cp*, xp* respectively. As of course is proved in [9], cp** is an isomorphism

onto H*(A*p/A*p+l), with inverse ip**.

S2. Secondly, the natural homomorphisms i*: C*(E; FT)—>C*(F; K), and

p*: C*(B; K)^>C*(E; K), which are induced respectively by the injection

mapping i: F—>E and the projection mapping p:E—>B of the fibre space,

can be interpreted within the context of the spectral sequence^). Thus let

Cfp denote as usual the elements of A*PCZA* = C*(E; K) which have co-

boundaries in A*p+r, and let(4) 8: C*p-^Z*(A*p/A*p+r) denote the natural

epimorphism arising therefrom, for any p, r. Then, in particular, there are

commutative diagrams

Z*(F;K) = C°(B;Z*(F;K))J^-Z*(A*/A*1)

8

Ci*°

and

. :£■£

Cp(B;K) = C»(B;H°(F;K))-^>Hp(A*»/A*p+l)
\. 'T'

>v U.

\^       Zp(A"/A*p+1)

C*p.o

(4) Indices, attached to the homomorphisms X, p of SI, and to /3of S2, indicating the groups

on which they operate have not been included, since these groups will be clear from the context

in which X, n and 0 occur subsequently.

(6) Cf. the cohomology analogues, briefly indicated by Serre, of the arguments of [9, §§2, 7],

in respect of the groups R*=A*/A*1, and Sj = jE*»-°.
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where CxPi" is the subgroup formed of homogeneous elements of degree p in

6?".
53. Thirdly, the assumption that 7Ti(73) operates trivially on II*(F, K)

implies that C°(B; H*(F; K))=Z°(B; H*(F; K))=H*(F; K). Thus for all
x<=H*(F; K), c£**x is a ctf-cocycle in Et° = II*(A*/A*1), i.e., a\*c6**x = 0. In

consequence, given x^II*(F; K) and hence c6**x£77*(^4*/-<4*1)> the element

y(ECx° such that ufiy=<p**x can in fact be chosen so that a*yG^4*2C^4*1,

where d is the coboundary operator in E.

54. Finally, the choice of a ring for coefficients enables one to define

multiplicative structures in Ex* and C*(B; II*(F; K)) such that qb** and ip**

are multiplicative isomorphisms. The further assumption that Hq(F; K) is

free and of finite type for all q>0 implies that C*(B; H*(F; K)) can be

identified with C*(B; K)®K H*(F; K); in which case the product of

b®x£Cp(B;K)®K II"(F; K) and b'®x'£&'(B; K) ®II*'(F; K) is of course
given by

(b ® x)(b' ® x') = (-l)""'(bb' ® xx'),

where bb' and xx' are the usual cup products of b and b', and x and x', re-

spectively, in C*(B; K) and H*(F; K), respectively.

It should be noted that if x^Cjv-q and yECA,q', then p8(xVJy)

= ufi(x)\Jpfi(y), where u, 8 are as defined in SI, S2 above(4), and x\Jy

GC1p+p''?+a', denotes the cup product, in C*(E; K), of x and y.

Consider now the method of Hirsch [7] in this context. As above, identify

C(B, H*(F; K)) with 6>(73; K)®KII*(F; K), and in addition identify
C°(B; K) ®K H*(F; K) with II*(F; K). Since II*(F; K) is assumed free, one

can define a homomorphism

u: H*(F, K) -+ Ci"0 -^ C*(E; K),

which jireserves degrees and makes commutative the diagram

Cx*a

u  /

/ Z*(A*/A*1)

C(B; K) ®K H*(F; K)->H*(A*/A*1)
4>**

Moreover, as noted in S3 above, u may be so chosen that dw(x)£^4*2, where

d denotes the coboundary operator in E.

Recall from SI and S2 that i*: C*(E; K)^C*(F;K)=C»(B; C*(F; K)) is
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induced by the injection i: F ->£, and that X: C(B; Z*(F; K))

-+C°(B;H*(F; K)), (or equivalently X: Z*(F, K)-*H*(F, K)), is the natural

homomorphism mapping cocycles to cohomology classes. In these terms we

have the following lemma concerning u.

Lemma 1. The homomorphism u is a monomorphism with left inverse Xi*.

Certainly a is a monomorphism, for cp** has an inverse \p**, so that for

all xG-ff*(F; K), \p**pBu(x) =x. But as was seen above, in S2,

xp*0 = i*:Cx*o->Z*(F;K),

so that

x = yp**pf3u(x)

= \iP*Bu(x) = Xi*u(x),

as required.

This then is the first step in the Hirsch method, namely to define a mono-

morphism u: II*(F; K)-*C*(E; K) such that du(x) <^A *2 for all x^H*(F; K),

and such that the composite homomorphism

u i*
H*(F; K) -> C*(E; K) -> C*(F; K)

maps a cohomology class x into a representative cocycle of x.

The second step in the method is to extend u: H*(F; K)-^C*(E; K) to a

homomorphism

u: Cp(B; K) ®x H*(F; K) -> C*(E; K),

for all p=^0. This is accomplished by setting

u(b ® x) = p*b\J u(x),

for all 6GC*(F; K) and all x^H*(F; K), where as usual p*: C*(B; K)

—>C*(£; K) is induced by the projection p-.E—^B, and U denotes the cup

product in C*(E; K). Notice u preserves the (total) degrees.

Again with the same notation as in S2, namely 8: Cx»->Z*(A*"/A*p+l),

p: Z*(A*p/A*p+l)—>II*(A*p/A*p+l), we have the following lemma concerning

u, and demonstrating the properties of u which are carried over to u by the

extension.

Lemma 2. The homomorphism u is such that

u(C»(B; K) ®k H*(F; K)) C Cf'

and moreover the following diagram is commutative;
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Cx*p

/       Z*(A*"/A*p+i)

Cp(B; K) ®K H*(F; K)->H*(A*P/A*p+X).
cb**

Of course it follows immediately from the second part of this lemma, since

cp** has inverse t^**, that u, like u, is a monomorphism with left inverse \p**p8.

The first part of the lemma is an immediate consequence of the definition

of u, for if bGCp(B; K), xGH*(F; K), as we have seen above, in S2, p*b^Clp,

and m(x)GCj*°. Thus p*b*Utt(x)E.Cxp. The second part follows equally

simply from the facts previously noted. Thus, recalling the multiplicative

properties of pB, given in S4,

cb**(b ® x) = <p**((b ® 1)(1 ® x))

= cp**(b ® 1) VJ cb**(l ® x)

= (pBp*b) U (pf3u(x))

= pf3(p*b W u(x))

= pBu(b ® x).

We can now state and verify the assertion of the Hirsch method in the

precise form suggested by H. Cartan (6).

(i) The monomorphism u can be chosen, as above, satisfying pBu=<p** (or

equivalently \i*u = l) so that for all x^Hq(F, K)

du(x) £ u {   £    C*(B; K) ®x Hq+l-'(F; K)\ .

(ii)  Moreover with this choice of u, the image

u\C*(B; K) ®K H*(F; K)} C C*(E; K)

(6) See the review of [7] by H. Cartan (Math. Rev. vol. 16 (1955) p. 1142). There is an

error in the statement of the properties of d as given in the Reviewers Note, there. It is only

H"(F; K) identified with C"(B; K) ® H"{F; K) which is mapped by d into C*{B; K)
® 2~Lm<q Hm(F; K). The present reconstruction of the proof of the Hirsch result was produced

in an attempt to prove the assertion of Professor Cartan, and I am grateful to him for sending

me a manuscript correcting his review and reconstructing the Hirsch method in the context of

C.S.S. complexes and fibrations in the sense of Kan. The proof given here seems to agree in

general outline with that of Professor Cartan.
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is a graded sub-K-module of C*(E; K) which is stable under the coboundary

operator d in C*(E; K).

(iii) Inconsequence, carrying back to C*(B;K) ®KH*(F;K) the coboundary

operator d of C*(E; K), there is obtained the graded cohomology K-module of

C*(B; K)®k H*(F; K) which is isomorphic with the graded cohomology K-

module H*(E; K).

The fact that part (i) of the assertion implies part (ii), and hence part

(iii), is straightforward; indeed more will be seen to be true. For let

b®x(jj.Cp(B; K) ®K Hq(F; K) where, as is implied by part (i) of the assertion,

du(x) =     JZ     JZ P*b\ U u(xl),
2firS9+l    i=l

for some bl®xr<ECr(B; K)®H"+1-r(F; K). Then

du(b ®x) = d(p*b U «(_))

= dp*b U u(x) + (-iyp*b KJ _«(_)

= p*dBb \J u(x) + (-!)»    JZ     JZp*bV p*bl\J u(xl)
2arS4+l    •—1

= p*dBb U w(x) + (-1)"    JZ     JZ P*(bbl) W u(xl)
2srS9+l    t-1

= U \dBb ® X + (-1)"     JZ      JZ bbl ® x\ .
( 2srsa+l    ,=1 )

Thus incase&_)x_|c>(_5; K)®H"(F; K),

du(b ® x) G ui    JZ   C*+1(B; K) ®K H'+o-^F; K)\ ,
Kpsrsp+q J

so that the stability under d, not only of u { C*(B; K) ®K H*(F; K)}, which

proves part (ii) of the assertion, but also of

ui   JZ    0(B;K)®KH>(F;K)\,

follows. Therefore, using Lemma 2, the coboundary operator d of C*(E, K)

can be carried back to C*(B; K) ®K H*(F; K) and, in particular, u becomes

a cochain mapping of C*(B; K)®KH*(F; K) into C*(E; K). Hence by a

familiar argument(7), using the filtration

Fiic*(B;K) ®kJZH°(F;K)\  =    £   C'(B; K) ®K H°(F; K),

C) Cf., e.g. the Hint of Example 7, p. 74 l3l.
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(which is preserved by u), the five lemma, and a descending induction on i,

one proves that u not only induces an isomorphism between H*(C*(B; K)

®kH*(F; K)) and H*(E; K), as required for part (iii) of the assertion,

but also between H'(Fi{C*(B; K)®K £,a, H'(F; K))) and Hr(A**) for all

rSi+j- Moreover, of course, to prove this last fact, u need only be assumed

to satisfy part (i) of the assertion on £93,- H"(F, K).

Finally, to the proof of part (i) of the assertion! It will be by induction on

the dimension 5 of H"(F; K). Certainly, in case s = 0, u can be defined on

H°(F; K) so as to satisfy the assertion. Suppose therefore that u: H°(F; K)

—*C*(E; K) has been chosen to satisfy part (i) of the assertion for all sSj-

We require to define u on each basis element of Hi+l(F; K). Let x be such a

basis element, and let u(x) be chosen (as it may be, by S3 above) so that

du(x)€E.A*2, and such that, as in Lemma 1, \i*u(x)=x. Consider du(x). It

is a cocycle of dimension/ + 2, in A*2. Thus it defines a cohomology class in

H'+2(A*2). But, as we have seen, since u satisfies the first part of the Hirsch

assertion on £«syff*(F; K), u induces an isomorphism

Hi+2( £ C(B; K) ®K H>+2-'(F; K)) « W+\A*2).

Thus

du(x) = u(y) + dz,

for some y£ £r£2 C(B; K)®K Hi+2~'(F; K), and z<=A*2 of degree q + 1. If

we now alter u on H'+l(F; K) to «', say, where u'(x) = u(x) —z, then u' not

only satisfies the same conditions as u in that du'(x)^A*2 and \i*u'(x) =x,

but also fully satisfies part (i) of the Hirsch assertion. Thus taking u' in

place of u on H9+1(F; K), the assertion is proved.

Note 2.1. Professor H. Cartan has pointed out(8) that the Hirsch result

holds even if the basis of Hq(F; K) is not finite for all q^O, on condition

that one replaces C*(B; K) ®K H*(F; K) by Horn (C*(B), H*(F; K)), where

C*(B) denotes the singular chains of the base. The arguments used above can

be adapted to prove the result under these more general conditions. In two

places the argument needs some expansion. Firstly in the extension of u to

u, the straightforward cup product definition u(b®x)=p*bVJu(x) has to be

replaced by a homomorphism u:Hom (C*(B), H*(F; K))^>C*(E; K) de-

fined  by  composing  the  homomorphisms(9)   u': Horn (C*(F),   H*(F;  K))

(8) Math. Rev. vol. 16 (1955) p. 1142.

(9) In order that u so defined shall induce precisely the homomorphism <f>* of Serre, as is

required, it appears necessary also to include a "twisting" homomorphism C*(£) ®C*(£)

—>C*(JS) <S> C*(E), given by ex ®er-*( — l)p"e2 ®e,. This is avoided above in choosing the factoriza-

tion (6®x) = (6®l)(l®x), in C*(B; K)t8>H*(.F; K), rather than (6®x)= ±(1®x)(6®1). This

last factorization is effectively forced upon one in the general case if Serre's (j>* is required.
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-^Hom (C*(73), C*(E; K)), (induced by w), p*: Horn (C*(B), C*(E; K))
-^Hom (C*(E), C*(E; K)), (induced by p: E—>B), and the usual (cohomol-

ogy) transpose of the chain mapping C*(£)->C*(£) X C*(£)-^C*(£) ® C»(£)

which defines the cup-products. Secondly, this more complicated definition

of u requires that slightly more care is taken in proving that part (i) of the

Hirsch assertion implies parts (ii) and (iii). The argument given above is re-

placed by one involving the new definition of u in terms of the homomor-

phisms which compose it, and a commutative diagram, involving the groups

and homomorphisms involved, seems the standard, and simplest, way of cop-

ing with the extra labor involved in proving (i) implies (ii).

Professor Cartan has also pointed out to me privately(6), that the Hirsch

result is equally well proved in the category of C.S.S. complexes for fibrations

of such complexes in the sense of Kan (cf. J. C. Moore, Mimeographed Lec-

ture Notes, Princeton, 1956). Here it seems convenient, right from the start,

to define the homomorphism analogous to the Serre homomorphism of the

E0 term of the homology spectral sequence, i.e. (p=Eo-^>C*(B)®C*(F), in

terms of the diagonal mapping, E—>EXE, and the projection, E—>73, and

injection of the fibration. Thus in this case the fact that when w is extended

to u it induces the homomorphism analogous to c6*: Horn (C*(B), H*(F; K))

—>E*, in the cohomology spectral sequences, is immediate.

Note 2.2. Professor E. L. Brown has also pointed out to me that the

homology analogue of the Hirsch result is also true, i.e. that, assuming

77*(E; K) to have a homogeneous 7£-basis, one can find a homomorphism

p.: C*(E; K)-+H*(F'; K) which can be extended to a homomorphism y: C*(E; K)

—> C*(B; K) ®kH*(F; K) inducing a graded isomorphism 77*(E, K)

~77*(C*(75; K) ®k H*(F; K)), (and hence an isomorphism in cohomology,

H*(C*(B; K) ®K H*(F; K)) = H*(C*(B; H*(F; K))) *> H*(E; K)).

This also appears to be true in the category of C.S.S. complexes, for Kan

fibrations.

3. The Hirsch coboundary operator and cohomological operations. Proof

of the main result. As stated in the introduction, the aim of this section is to

interpret the Hirsch coboundary formula, given in the last section, in terms

of the theory of cohomological operations, in case the fibre F of the fibre

space (E, B, F) is of type X.(ir, n).

I require first to recall the notion of transgression and of transgressive

elements in a fibre space. There are of course several equivalent definitions

of these notions in a fibre space (E, B, F) in the sense of Serre. One of the most

useful states that xGHs~1(F; K) is transgressive if there exists a cochain

c£l7,-1(E; K), (the transgression cochain), such that i*c is a representative

cocycle of x and such that dc = p*z lor some z(ECs(73; K), where as usual

i*: 6>-'(E; K)^>C'-y(F; K) and p*: C'(B; K)^CS(E; K) are induced respec-

tively by the injection and projection mappings i: F-+E, p: E—>B associated
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with £. Alternatively the transgression may be defined as the differential

dB: £*0's_1—>£**'° of the cohomology spectral sequence associated with £; or

by means of the homomorphisms

6 p*
H'-^F; K) -» H*(E; F; K) <- H°(B; K),

where 5 here denotes the usual coboundary operator associated with the pair

(£, F), and p* is induced by p: E—>B. In the former case an element

x^He~'(F; K) =E*°-'~1 is transgressive if it is a cocycle for all the differen-

tials di, di, ■ • • , ds_x; in the latter case the transgression maps a subgroup of

HS~1(F; K) homomorphically onto a factor group of HS(B; K), i.e. for

x^H"~i(F; K) to be transgressive, there must exist zQ.Ha(B; K) such that

bx = p^z, where z is of course called the transgression of x.

Since II"(ir, n; K)=0 for 0<s<n, it follows that when the fibre F in the

fibre space (£, B, F) is of type X,(ir, n) any element of Hn(F; K) is transgres-

sive, and the transgression homomorphism r* maps Hn(F; K) into IIn+l(B; K).

In particular the fundamental cohomology class, bn, of F (i.e. the element

of Hn(ir, n; ir) which corresponds to the identity automorphism under the

isomorphism Hn(ir, n; 7r)«Hom (ir, ir)) is transgressive. The characteristic

cohomology class kn+1(E.Hn+1(B; ir) oi the fibre space is defined by kn+l

= -r*bn.

In the reverse direction to the transgression, i.e. mapping homomorphi-

cally a subgroup of HS(B; K) onto a factor group of Ha~l(F; K) by means of

the homomorphisms

8 pi
H'-^F; K) -» H°(E, F; K) <- H'(B; K),

we have the cohomology suspension a*.

If E is contractible, 5 is an isomorphism and a* = b~ip^: H"(B; K)

—>//s~1(£; K), so that under this circumstance an element x^.IIs~1(F; K) is

transgressive if and only if x(E.a*Hs(B; K). This will be true of course in the

case when £ is the space of paths in B with fixed initial point. If in this case

the fibre space is further specialized by taking B to be a space of type

K(ir, n + l), so that F (being the space of loops on B) is of type 3i.(ir, n), then

as is well known, the suspension cr* is an isomorphism in dimensions <2n, i.e.

a*: H-+1(t, n + 1; K) « H'(ir, n; K) 0 < s < 2n.

Thus in this case all the elements of H'(ir, n; K) for s<2n are transgressive;

indeed in these dimensions the transgression homomorphism t*: Hs(ir, n; K)

—+Hs+1(ir, n + l; K) is the inverse of the suspension homomorphism a*:

H>+l(ir, n + l; K)->H°(ir, n; K).

In order to make use of these facts in the case which is of interest here,

i.e. when B is arbitrary and F is of the type 3C(t, n), we require the notions
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of cohomological operations. I next recall the formulation of this theory as

given by H. Cartan [2]. Notice that the formulation given by Cartan in [2]

is based on a simplicial and not cubical foundation. Inasmuch as I have used

cubical cohomology theory in (E, B, F), in what follows I make implicit use

of the Eilenberg-MacLane theorem(10) on the equivalence of the singular

simplicial and singular cubical cohomology theories.

The cohomological operations, then, are in a one-one correspondence with

the elements of Hq(ir, n; K), g^O. Given x£779(7r, w; K) and any topological

space X, there is an operation corresponding to x which is a linear mapping

r(i):_»(I;T)-»_«(Ij_).

If bn is the fundamental cohomology class in Hn(ir, w; ir) then taking X to

be a space of type 3Z(ir, n), T(x) defines a linear mapping

T(x): 77"(x, w; tt) -> H"(t, w; K)

such that x=T(x)bn.

The operations T(x) are also defined in relative cohomology. Thus if Y is

a subspace of X, there is a linear mapping

T(x):H»(X, Y;*)^H«(X, Y;K)

associated with each x£Hq(ir, n; K).

That the theory of cohomological operations enables one to make use of

the ideas of transgression noted above, and indeed to determine transgressive

elements in a fibre space with fibre of type X(ir, w), is clear in the light of the

proof of the following lemma.

Lemma. If xGHq(ir, n; K) is transgressive in the fibre space of paths on a

space of type X(ir, w + 1), then it is also transgressive in any fibre space with

fibre of type X(ir, n).

The lemma adds a further point to the likeness of the fibre space of paths

on a space of type X(ir, w + 1) to a universal classifying space for fibre spaces

with fibre of type 3C(7r, w). The elements of Hq(ir, n; K) which are transgres-

sive in the space of paths may be said to be "universally transgressive."

The proof of the lemma is straightforward. If x£779(ir, w; K) is trans-

gressive in the space of paths on a space of type 3Z(w, w + 1), then x=cr*y

for some yG775+1(x, w + 1; K). Associated with x and y are cohomological

operations T(x) and T(y) respectively. It follows immediately from the results

of H. Cartan(u), that for any fibre space (E, 73, F), there is a commutative

diagram

(I0) See [6].

(") See [2],
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8 p*
H"(F; T) -> Hn+\E, F; tt) A H"+1(B; t)

T(x) 1 T(y) i T(y) I

Hq(F; K) -+ Hq+\E, F; K) <- H^B; K).
8 pt

Now if F is of type 3Z(ir, n), x<GHq(F; K) =77«(-r, n; K) is of the form T(x)bn.

Moreover — 8b" = p^kn+l, where kn+1 is the characteristic class of E. Thus

8x = 8T(x)bn = T(y)Sb" = - T(y)p*k»+l = pk(-T(y)kn+1),

i.e. x is transgressive in (E, 73, F).

We are now in a position to deduce from the Hirsch assertion of the last

section the main result, which for convenience I restate.

Theorem. 7w case 0<m<2n, the coboundary operator

d: C*(B; K) ®K Hq(w, n; K) ->     JZ    C*+\B; K) ®K H"+^r(w, n; K),
PSrgp+q

of the Theorem of Hirsch, can be defined by setting

d(b ® 1) = dBb ® 1,

d(b ® x) = dBb ® x - (-l)"(b U T(y)kn+1) ® 1,

for all b<G.Cp(B; K), and all basis elements x£77''(7r, w; K), where p+q = m,

cr*y = x, 1 denotes the unit element in H*(ir, n, K), and T(y)kn+1 denotes a

representative cocycle of T(y)kn+l.

By definition

u: C*(B; K) ®K H\F; K) -> C*(E; K)

coincides with

p*: C*(B; K) -* C*(E; K).

Suppose therefore that a basis element xG77?(E; K) is transgressive, with

transgression zG.Hq+1(B; K). Given any cocycle z in the cohomology class z,

there may be chosen a cochain c in C"(E; K) such that dc = p*z and such that

i*c is a representative cocycle of x. In this case therefore, in the Hirsch method

we may choose w(x)=c, whence du(x) = u(z), and the requirements of the

method are easily seen to be satisfied. Moreover, carrying back the cobound-

ary operator cf: C*(E;K)-*C*(E;K) to C*(73; K)®K H*(F; K), evidently(l2)

(12) In terms of the transgression, the coboundary operator d is, then, the same on the basis

elements x as that of A. Borel [l, Chapter VI, §24]. However because of the nonanticom-

mutativity of C*(E; K), even if H*(ir, n; K) is an anticommutative algebra with transgressive

generators, it is not sufficient to define 3 on these generators alone, if d is required in dimensions

>2n —1. One cannot in fart, in general, choose u(xy) = u(x)u(y) if x and y are generators of

H*{ir, n;K).



518 W. H. COCKCROFT [June

d(l ® x) = z ® 1.

Now in case the fibre F of (£, B, F) is of type X(ir, n) we have seen that all

the basis elements of II*(ir, n; K) are transgressive in (£, B, F) up to dimen-

sion 2» —1, the transgression of x(E.Hq(ir, n; K) being — T(y)kn+1, where

cr*y = x. So in this case we may choose for z any cocycle — T(y)kn+1 in the

class — T(y)kn+l. This concludes the proof of the more difficult part of the

theorem. The fact that

d(b ® 1) = dBb ® 1,

for all b = C*(B; K) is of course trivial and follows immediately from the

fact noted above that u coincides with p* on 6®1.

The reader may note moreover that in calculating the groups

Hm(C*(B; K)®k II*(ir, n; K)), ior mS2n — l, only the coboundary operator

in Hq(ir, n; K) for dimensions qS2n — 1, is required. For denoting by d, as

usual, the Hirsch coboundary operator in C*(B; K) ®K H*(ir, n; K), we have

d{Cp(B;K)®KHq(w,n;K)} Q     £    C'+l(B; K) ®K Hp+q~r(ir, n; K)
P£r£p+q

so that no coboundaries under d arise in dimensions Sm from terms of

CP(B; K)®KHq(ir, n; K) with p+q>m. Thus the knowledge of d given by

the main result certainly enables one to compute the cohomology groups of £

in dimensions 0Sm<2n.

Note 3.1. In view of the facts observed in Note 2.1 above, it is possible

to extend the above arguments to include the case when ir is not finitely

generated, so that H*(F; K) =H*(ir, n; K) need not be of finite type in each

dimension. The assignment x —* — T(y)kn+1, for all basis elements

x£.r7*(7r, n; K), (where as usual x = a*y), together with the cup product in

B, yields a homomorphism

dF: Hom(Cp(73), H"(ir, n; K)) -» B.om(Cp+q+x(B), H°(ir, n; K))

for all 0<p+g<2«. The Hirsch coboundary operator d in the dimension

range 0<m<2n is then determined by setting

d = dB + dF:    £   Hom(Cp(F), H"(ir, n; K))
p+q=m

->     £     Hom(Cp(F), Hq(r, n; K)).
p+q^m+l

4. Application of results. In this section results of [4] are reobtained by

use of the main result. The method generalizes a group construction of

Eilenberg-MacLane.

As before, let (£, B, F) be a fibre space with fibre F of type X(w, n) and

characteristic class kn+1(£Hn+1(B; ir). The usual assumptions, enabling the

Hirsch method to be applied, will be made. Thus tti(JB) will operate trivially
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on the cohomology of the fibre F and coefficients will be taken in a commuta-

tive ring K; the A'-module H*(F; K) =H*(ir, n; K) will be assumed to have

a homogeneous 7£-basis, finite in each dimension.

Consider the computation by means of the main result of §3, of the group

Hn(C*(B; K) ®K H*(tt, w; K)), which is of course isomorphic with the group

77"(E; K). The "cochain" group of C*(73; K)®KH*(ir, n; K), in dimension

w — 1, is (since Hq(ir, n; K)=0, 0<q<n),

C"-1(73; K) ®K H°(ir, n; K) = C-^B; K).

The Hirsch coboundary operator in this dimension reduces simply to the

coboundary operator of 73, i.e. dB: C"_,(73; K)—>C"(B; K). In dimension w,

the cochain group of C*(73; K)®k H*(ir, n; K) is

C(B; K) ®K H°(ir, n; K) + C«(B;K) ®KH"(w, n; K) = Cn(B;K) + Hn(ir,n; K).

Since IIn(ir, n; K) can be identified with Horn (ir, K), this cochain group can

be rewritten as

Cn(B;K) + Kom(ir,K).

To compute the Hirsch coboundary operator in this group we require the

cohomological operations associated with Hn+l(ir, w + 1; K). These are the

homomorphisms

p*: Hn+1(B; ir) -» 77"+1(73; K)

induced by the homomorphisms p£Hom (ir, K). Indeed, after identifying

Hn+1(ir, n + 1; K) with Horn (ir, K), (so that the suspension isomorphism

Hn+1(ir, w + 1; K) «77"(7r, w; K) becomes the identity mapping), the operation

associated with p£Hom (ir, K)=Hn+l(ir, n + 1; K) is precisely the homo-

morphism p*:7Jn+1(73; ir)—>Hn+l(B; K) induced by p. Thus if the cocycle

pkn+1 is chosen as a representative cocycle of the cohomology class p*kn+1,

the Hirsch coboundary operator is defined in dimension w by setting(13)

d(b, p) = dBb - pk"+1 G C"+1(B; K),

tor all pairs (b, p) in the direct sum

C(B; K) + Hom(7r, K).

Thus the cocycles in dimension w, under d, are the pairs

(b, p) G C"(B; K) + Hom(7r, K),

such that dBb=pkn+l, and the coboundaries are the elements of the group

dBC"~l(B; K). The resulting cohomology group is thus precisely analogous

to the group En(k, G) constructed by Eilenberg-MacLane [8, Theorem II]. In

(") It should be noted of course that p need not be a basis element of Horn {tt, K) in this

definition. The choice of cocycle pkn+1 in p*kn+l for any p, is equivalent to choosing pkn+1 in

p*kn+l for all basis elements p.
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fact, if B is a space of type K(ir', m), n>m>l, so that £ is a space with two

nonvanishing homotopy groups, ir, ir', the group Hn(C*(B; K) ®kH*(it, n;K))

is exactly the Eilenberg-MacLane group En(kn+l, K) associated with £.

One   readily  verifies   that  Hn(B,   K)   is  a  subgroup  of

H"(C*(B; K) ®K H*(ir, n; K))

and that the correspondence (b, p)—*p yields an epimorphism

H"(C*(B; K) ®K H*(ir, n; K)) -> Hom(x, K),

with kernel H"(B; K). Thus we have the result of [4], that there exists an

exact sequence

(*) 0 -* Hn(B; K) -> H"(E; K) -> Hom(x, K) -» 0,

which is of course to be expected in view of the analogy with the Eilenberg-

MacLane result, [8, Theorem II].

The above construction has been given under the conditions usually im-

posed here. Evidently, in view of Note 3.1, it could perfectly well be carried

through under the less stringent conditions of Note 2.1. For certainly

Hom(C„_i(F), H°(ir, ra; K)) = C»-\B; K),
and

Ytom(Ca(B),H"(ir,n;K)) + Hom(C„(F), H°(w, n; K)) = Hom(x,F) + C(B;K)

are the required cochain groups of Horn (C*(B), H*(ir, n; K)) in dimensions

ra —1 and ra respectively, for any coefficients K, and the Hirsch coboundary

operator d may be expressed in precisely the same terms as in the construc-

tion above.

Eilenberg-MacLane note, in their construction of their group En(k, G),

that the associated exact sequence, analogous to the sequence (*) above, is

independent of the choice of cocycle k in the characteristic class k. This may

also be verified for the exact sequence (*) associated with the group

IIn(C*(B; K)®K II*(ir, n; K)) or more generally for the sequence associated

with //"(Horn (C*(B), H*(ir, ra; K)). The required argument is the same as

that of Eilenberg-MacLane. However, it is possible to prove that the exact

sequence is independent of the choice of cocycle in the characteristic class,

by an alternative and more general method which may be of interest. I

shall end this section by indicating this method.

First, then, it is evident that the groups Hn+l(C*(B; K)®K H*(ir, ra; K)),

ior »>1, and Hn+2(C*(B; K)®KH*(ir, re; K)), for «>2, can, in theory be

made explicit by the above methods. One requires, of course, the cohomo-

logical operations associated respectively with the groups H"+,(ir, ra; K) and

Hn+2(ir, n + 2; K), i.e. the "Bochstein coboundary operators" associated with

elements of Ext Abel (ir, K), and the "Steenrod Squares" associated with the

group of trace functions from ir to K.
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In these terms results corresponding to Theorems 2 and 3 of [4] can be

reobtained. The required arguments are analogous to, and generalize, the

arguments giving rise to the exact sequence (*) in the case of

H"(C*(B;K) ®KH*(ir,n;K)),

considered above. Thus for example in dimension (w + 1), w>l, the relevant

cochain group is

Cn+1(B; K) + Cl(B; K) ®K Hom(7r, K) + Ext Abel(ir, K),

and if 8e: Hn+1(B; ir)->Hn+2(B; K) is the "Bochstein coboundary operator"

corresponding to the extension 0£Ext Abel (ir, K), and 8ekn+x any cocycle in

8ekn+1, then the Hirsch coboundary operator may be defined in dimension

(w + 1) by setting

d(b"+\ bl ® p, <p) = (dBb"+1 + (-l)"+1p^re+1 W 61 - 8ik»+1, dBbx ® p, 0, 0)

tor all triples (bn+1, bx®p, 4>), where bn+1ECn+1(B; K), ¥<ECl(B; K),

pGHom (ir, K), and c/> is any basis element of the TT-module Ext Abel (ir, K).

Taking 77'(73; K)=0 as in [4], it may be verified that the resulting

cohomology group, Hn+1(C*(B; K)®K H*(ir, n; K)), has associated with it

the exact sequence

(**)   0 -» $n+1(B;K) -> Hn+1(C*(B; K) ®K H*(tt, n; K)) -> Ext Abel*(x, K) -> 0

where Ext Abel*(ir, K) is the subgroup of Ext Abel (ir, K) which consists of

those extensions 6 such that 8ekn+1=0, and ^)n+1(73; K) denotes the factor

group of Hn+1(B; K) by the subgroup of elements of the form p*kn+1, for all

pEHom (tt, K).

This last verification may be carried out relatively easily; but in higher

dimensions the calculation of these group extension properties enjoyed by

Hn+r(C*(B; K)®kH*(it, n; K)), (even for example the composition series

property in dimension (w + 3) corresponding to Theorem 3 of [4]), proves

more tractable using standard spectral sequence methods. It is moreover

these methods which prove that the various group extensions and composi-

tion series given for the groups IIn+r(C*(B; K) ®K H*(ir, n; A')) are inde-

pendent of the various choices of cocycles in the classes T(y)kn+1.

In fact these various group extension, and, more generally, composition

series, properties enjoyed by II*(C*(B; K)®K II*(ir, n; K)) in this context

follow immediately from an examination of the termination of the spectral

sequence associated with C*(B; K)®K H*(ir, n; K), subject to the differen-

tial d of the Hirsch method, and filtered as in §2 by setting

Fi(C*(B\ K) ®K H*(ir, n; K)) = JZ C'(B; K) ®K H*(t, n; K).
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This sequence terminates, of course, in the graded group associated with the

cohomology group H*(C*(B; K)®KH*(ir, n; K)) suitably filtered, and the

required examination of this group is entirely analogous to that carried out

in [4] on the spectral sequence associated with (£, B, F), in its relationship

to H*(E, K). I shall not repeat these arguments.

Thus, as is usual when spectral sequences are employed, the various group

extension   and   composition   series   properties   enjoyed   by

H*(C*(B;K) ®KH*(ir,n;K))

in dimensions < 2ra are precisely summed up in the statement that the termina-

tion of the spectral sequence associated with C*(B; K)®kH"*(w, re; K) is the

graded group associated with H*(C*(B; K)®K H*(w, ra; K)) suitably filtered.

Now the arguments employed in §2 imply that the monomorphism

u = C*(B; K) ®K H*(t, n, K) -> C*(E; K)

induces an isomorphism of the spectral sequences associated with C*(B; K)

®KlI*(ir, re; K), and with (E, B, F). Thus since different choices of the cocycles

T(y)kn+l in the cohomology classes T(y)kn+1 cannot alter the spectral se-

quence associated with (£, B, F), we have the following general result which,

of course, contains the fact that the sequence (*) is independent of the choice

of the cocycle kn+l in the class kn+1, and that the sequence (**) is independ-

ent of the choice of bekn+l in 56/c"+l.

The termination of the spectral sequence associated with C*(B; K)

®k H*(ir, re; K),    i.e.    the   graded   group   associated   with

H*(C*(B; K) ®K H*(ir, n; K))

suitably filtered, as independent of the choice of cocycles T(y)kn+1 in the cohomol-

ogy classes T(y)kn+l occurring in the definition of the Hirsch coboundary oper-

ator in C*(B; K)®KH*(ir, n;K).

As usual, if necessary, C*(B; K)®k H*(ir, ra; K) can be replaced by

Horn (C*(B), II*(ir, ra; K)) in the result. The argument is unaltered.

5. Comparison of the Hirsch method with the spectral sequence method.

It would seem worthwhile to end by comparing, briefly, the value of the

Hirsch method with that of the method of spectral sequences, in connection

with the practical problem of computing the cohomology of fibre spaces

(£, B, F) with fibre of type K(ir, ra).

As a matter of practice the coefficients which appear to be of interest, in

respect of spaces of type 3C(7r, w), are the integers Z and the fields Zp, oi

integers modulo a prime p. Since the groups IIm(ir, ra; Z) will always have tor-

sion for infinitely many values of m, one is left only with fields of coefficients

in any practical application of the Hirsch method to fibre spaces with fibre

of type X(ir, n).
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Thus the problem reduces to calculating the ranks of vector spaces

Hm(E; Zp). In practice then, there seems little to choose between the method

of Hirsch as presented here and that of spectral sequences(14). For in comput-

ing the rank of Hm(C*(B; Zp)®ZpII*(ir, ra; Zp)), as constructed in §3 above,

for 0<?ra<2ra, the most reasonable practical way to proceed seems to be to

consider, as in §4 above, the spectral sequence associated with C*(B; ZP)

®zpH*(ir, ra; Zp), (with Hirsch coboundary operator d), and to compute

the Ex terms of this spectral sequence. For, since a field of coefficients is

taken, all group extensions are trivial, and

Rank {Hm(C*(B; Zp) ®Zp H*(ir, ra; Z,))} =   £   Rank {E™}.
r4-*=n»

But, again as noted in §4, the spectral sequence associated with (£, B, F)

is isomorphic at the £M stage with the sequence associated with C*(B; Zp)

®z„ H*(ir, ra; Zp). Thus one could equally well start with (£, B, F) and pro-

ceed directly to the examination of its spectral sequence.

In any such examination of course, one requires at least a complete knowl-

edge of the transgression. This is given here, for the results of H. Cartan [2]

show that, at least when ir is finitely generated, one can take as a system of

generators of the algebra H*(ir, re; Zp) suitably iterated Steenrod powers of

the fundamental class of H*(ir, n; Zp) and of the "Bochstein coboundary"

of the fundamental class. The Steenrod and Bochstein operations commute

with the transgression, so that the transgression is expressible in terms of

the iterated Steenrod powers of the characteristic class of the fibre space and

of its "Bochstein coboundary." The procedure would generalize that em-

ployed in [4] where only the lower dimensional operations in H*(tr, re; K)

appeared, but would employ precisely the same spectral sequence arguments.

The difficulties met in either spectral sequence are essentially those

of computing the coboundary operators of the spectral sequence on the "base

terms" EP,°, and of computing the rank of a subgroup, of the "fibre term"

£2", which is generated by elements corresponding to cohomology operations

which annihilate the characteristic class of the fibre space.

On the other hand, as noted in §4, the Hirsch method does have the ad-

vantage, over the methods of [4], that it leads to fairly simple generalizations,

at least in dimensions re + 1, ra + 2,of the Eilenberg-MacLane group E"(k, G).

These generalizations are definable in a purely algebraic manner and may

(H) (Added August 22, 1958) This is, of course, not to say that there is no convenient

method of, for example, combining the two methods to the advantage of the Hirsch method.

Thus Professor Hirsch has recently pointed out to me that by choosing a suitable filtration of the

group H*{F; K) one can in certain circumstances (including the case when Fis of type X(tt, n))

make the computations involved in the use of his method very much more rapidly and con-

veniently, by spectral sequence methods.



524 W. H. COCKCROFT

prove of interest in connection with suitable algebraic w-types, just as, of

course, E2(k, G) is of interest in connection with the algebraic 3-type of a

two dimensional complex(16). I hope to consider these groups elsewhere, in

this connection.
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