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1. Introduction. The finite groups generated by reflections (g.g.r.) of real

Euclidean space of n dimensions (£") have been classified by Coxeter [4].

He has noticed a number of properties common to these groups, but has been

able to prove them only by verification in the individual cases. Our prime

purpose here is to give general proofs of some of these results (1.1 to 1.4 be-

low).

If © is a finite g.g.r. on En, the reflecting hyperplanes (r.h.) all pass

through one point, which may be taken as the origin 0, and partition E"

into a number of chambers each of which is a fundamental region of ®;

further © is generated by the reflections in the walls of any one of these

chambers. The group © is irreducible in the usual algebraic sense if and only

if there are n linearly independent r.h. and there is no partition of the r.h.

into two nonempty sets which are orthogonal to each other [7, p. 403]. In

this case each chamber is a simplicial cone with vertex at 0 [3, p. 254; 4,

p. 590].
This leads us to the first result of Coxeter [4, p. 610]:

1.1. Theorem. If © is a finite irreducible g.g.r. on En and if h is the order

of the product of the reflections in the walls of one of the fundamental chambers,

then the number of reflecting hyperplanes is nh/2.

Associated with each simple Lie algebra (or Lie group) of rank n over the

complex field there is a finite irreducible g.g.r. © on £" and a set of vectors

(roots) normal to the corresponding r.h. [l; 13]. There then exists a funda-

mental set of roots and a so-called dominant root relative to this set (definitions

in §§6 and 8).

Then Coxeter's second observation [6, p. 234] is this:

1.2. Theorem. If ax, a2, ■ ■ ■ , an is a fundamental set of roots for a simple

Lie algebra of rank n, and if ^y'a, is the dominant root, then the number of

reflecting hyperplanes of the corresponding group © (or one-half the number of

roots) is w(l + X)yO/2.

From 1.2 (see [6, p. 212]) one immediately gets:

1.3. Theorem. The dimension of the Lie algebra (or Lie group) isn(2+ X^O-

As Coxeter [6, p. 212] has remarked, this is an interesting analogue to

the formula of Weyl for the order of ©, namely, g=f-n\ T\y>, with /—1 de-

noting the number of y's equal to 1.
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The proof of 1.2 (and hence also of 1.3) is rather short and is independent

of 1.1. If 1.1 and 1.2 are combined, the result is the formula [6, p. 234]:

1.4. Theorem. JZy' = h — 1.

Following the proof of 1.1, 1.2 and some related results concerning root

systems and Petrie polygons, in the last section there is set forth another

curious property of root systems which the author has recently discovered

but has been unable to prove by general methods.

The abbreviations g.g.r. and r.h. introduced above are used throughout

the paper.

2. Preliminary lemmas. Recall that a tree is a finite connected graph with

no circuits and that an end node is one linked to at most one other node.

2.1. Lemma. A tree has an end node.

2.2. Lemma. If each circuit of a graph has even length, then the nodes can

be placed in two classes so that each link joins two nodes belonging to distinct

classes.

2.3. Lemma. Let px, p2, ■ ■ ■ , pn be the nodes of a tree T. Then any circular

arrangement of the numbers 1, 2, • • • , w caw be obtained from any given one

by a sequence of moves each of which consists of the interchange of a pair ij

which satisfy the condition that i and j are adjacent on the circle and pi and pj

are not directly linked on T.

Proof. See [10, pp. 49, 151 ] for proofs of the first two results. Since 2.3

(cf. [4, p. 602]) is clearly true for « = 1 or 2, we assume w^3 and proceed by

induction. By 2.1 there is a node pn joined to exactly one other node of T.

If pi and pj are nodes other than pn, at least one of them, say pi, is not linked

to pn. Thus if the numbers inj occur in this order on the circle, and if pi and pj

are not linked, the following moves can be made: inj—^nij—^nji; here i and j

have been interchanged in the circular arrangement restricted to 1, 2, ■ • • ,

w —1. Thus by the inductive hypothesis applied to T — pn one can transform

the numbers 1, 2, • • • , w —1 into any given arrangement, and one can then

move the number w around the circle to its required position.

As is customary, we associate with each spherical (w— l)-simplex (or each

simplicial cone in E") a graph by choosing a node for each wall of the simplex

(or cone) and linking two nodes if and only if the corresponding walls are not

orthogonal. One can also associate a graph with a symmetric wXw matrix

(a,j) by introducing w nodes pi, • • • , pn and linking pi and pj if and only if

a^O.

2.4. Lemma. Let F be a spherical (n-l)-simplex on a sphere of radius 1.

Assume that the interior dihedral angles of F are nonobtuse and that the graph
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corresponding to F is connected.  Then the spherical distance between any two

points of F is less than ir/2.

This result can easily be proved by the methods used by Cartan [3,

p. 253] to establish similar results.

2.5. Lemma. If (a,-/) is a symmetric matrix containing only non-negative

real entries and if the corresponding graph is connected, then (aif) has a character-

istic value which is positive, strictly larger than all other characteristic values, and

such that the corresponding characteristic vector can be chosen to have only positive

entries.

This is a special case of a theorem of Frobenius [9, p. 471].

3. Spherical simplexes. Throughout this section the following conven-

tions and assumptions are made. Let F denote a spherical simplex on the unit

sphere in En such that the corresponding graph is connected and has only

even circuits. By 2.2 the walls of F can be so labeled that

3.1. Wx, W2, • • • , W, are mutually orthogonal as also are Ws+X, • ■ • , W„.

Set EW = Wi-Wi.W. and E^ = WS+X.Wn, these being "op-

posite edges" of F. In the space E" in which F is embedded let ex, e2, ■ • • , e„

be inwardly directed unit normals to IFi, W2, ■ • ■ , Wn, and let e1, e2, • • • , e"

be the dual basis, so that («,-, «') = b{, where (■, •) denotes the inner product

of En. Let G = (g^) = ((e,-, ef)), so that G~l = (gi!) = ((e\ e1')). Corresponding to

each characteristic value x of 1— G we introduce a characteristic vector

(lx, l2, • • • , ln) and the notations

* = Z iA r = £ iA p = b + t,c = */(*, ay2, r = -t/(t, fy2, P = -P/(p, Py2.
1 8+1

3.2. Lemma. If the assumptions of the preceding paragraph are made, then

(1) corresponding to the characteristic value x = 0 of 1—G the point a is orthog-

onal to the edge Em, and r is orthogonal to Ew; (2) corresponding to each xt^O

the spherical line joining a and t cuts the edges £(1) awd £(2) orthogonally, has

p as one of its mid-points, and is of length cos-1 x; (3) the largest characteristic

value x is positive and has multiplicity 1, the corresponding l's may be taken as

positive, so that one of the open segments ar is completely interior to F, and the

length ar = cos-1 x in this case is the absolutely minimum distance between £(1>

and £<2».

Proof. Because of 3.1 the matrix G can be written in partitioned form

with the l's denoting identity matrices and A' the transpose of A. Let
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\c   d)

he the corresponding form of G_1 • Then G~1-G=l implies

3.3 BA + C = 0,       C'+DA' = 0.

Let lu) and lm he the column vectors with co-ordinates lx, l2, ■ ■ ■ , ls and

h+i, ■ ■ • , L respectively. Then since (lx, h, • • • , L) and x are corresponding

characteristic vector and value of 1— G, we have

3.4 xl^ + Ai™ = 0,        A'l™ + xl<» = 0.

Because of 3.3 these equations yield:

3.5 „B/c» - C/<2) = 0,       C'l™ - xDl™ = 0.

If x = 0, the equation C'/(1)=0 in co-ordinate form reads

0 = JZ g% = («*, JZ IjA = («*, f), t = s + 1, • • • , w,
j-i \     y-i      /

so that a (or cr) is orthogonal to 7i(2>; similarly t is orthogonal to 7s(1). Next

suppose x ^ 0. Now 3.5 yields WBl™ = WDl™, or £ 5_i _WV*
= XI __?+i g*'Wj, or (a, tr) = (f, f). Thus p is one of the mid-points of or.

We can normalize the l's so that

(a, a) = (f, f) = 1, ct = cr, f = r.

Then the equations 3.5 say that the vectors xa — r and a — xt are respectively

orthogonal to E(1) and Em. Thus the line ar cuts £(1) and 7i(2) orthogonally.

Another application of 3.5 yields cos err = l<-iyClm =xlw'Blw =x. Finally sup-

pose that x is the largest characteristic value of 1 — G. Since F has no obtuse

dihedral angles, the entries of 1 — G are non-negative; since the graph of 7^ is

connected, so also is the graph of 1—G. Hence 2.5 implies that x is positive

and of multiplicity 1, and that the Z's can be chosen all positive. It is easily

seen that the problem of finding the minimum distance from a point cr

= JZ[ he* of E(1) to a point t= JZl+i IA of Em, because of the restriction

(a, <r)=(r, t) = 1, gives Lagrange equations which lead to 3.5. Thus the

minimum distance cos-1 x corresponds to the largest value of x, and 3.2 is

proved.

From 3.2 we easily deduce:

3.6. Lemma. 7w addition to the assumptions made in 3.1, let Rx, 7?2, • • ■ , Rn

denote the reflections in the walls Wx, W2, • ■ ■ , Wn, and set S = RXR2 • ■ ■ 7?„,

T = Rs+i ■ • ■ Rn and R = ST (operations performed from right to left). Then R

is a product of translations along the lines ar of 3.2 through distances of 2crr

= 2 cos-1 x corresponding to nonzero values of x together with the central inver-

sion in the space spanned by the a's and t's corresponding to x = 0.



1959] FINITE REFLECTION GROUPS 497

Proof. By 3.1, S leaves each point of £(2) fixed and maps each point

orthogonal to £(2) on its antipode. Hence if x is a nonzero characteristic value

of 1—G and if L — ar is the corresponding spherical line given by 3.2, the

restriction of S to L is equal to the reflection in r; similarly F effects the

reflection in <r and R = ST the translation of length 2<rr along L. The case

x=0 is treated similarly.

In regard to the results above, it is to be noted that Coxeter [5; 8, p. 766],

by a somewhat different method and under the more restrictive assumption

that the graph of F is a tree, proved that the characteristic values oi 1—G

give the lengths of the basic translations of which R is a product according to

3.6. The present development, which also gives a geometric interpretation to

the characteristic vectors of 1—G, was inspired by a remark of Coxeter [6,

p. 233].
4. Finite irreducible g.g.r. Assume that © is a finite irreducible g.g.r.

leaving 0 fixed, that F is a fundamental chamber, and that F also denotes the

corresponding spherical simplex on the unit sphere with center at 0. Then the

graph of F is a tree [6, p. 195]; and, since reflections in orthogonal hyper-

planes are commutative, 2.3 implies the following result due to Coxeter [4,

p. 602]:
4.1. The products of the reflections in the n walls of a fundamental chamber

of a finite irreducible g.g.r. taken in the various orders are all conjugate.

Since also the dihedral angles of F are submultiples of ir, the various

notations, assumptions (in particular 3.1), and conclusions of §3 are applica-

ble and will be used henceforth to refer to this specific situation.

It is now easy to prove the first main result stated in §1:

4.2. Theorem. If the product of the reflections in the walls of F has order h,

then the number of reflecting hyperplanes is nh/2.

Proof. Let L=ar be the line corresponding to the largest characteristic

value of 1 —67 as given by 3.2, and let i? = SFbe the product of the reflections

in the walls of F as in 3.6. Let § be the restriction to L of the group generated

by 5 and F; that is, § is the group generated by reflections in the points a

and t of L. Then R also has order h in §: if Rh leaves L fixed pointwise, it

leaves fixed points interior to F by 3.2, and so is the identity in ©. Thus §

has order 2h. Since § contains the reflections in a and in r, and since the open

segment ar is interior to F, it follows that err is a fundamental region for §.

Hence ar=ir/h and there are h transforms of each of the points a and r

alternating around L. Clearly L meets r.h. at these points only; it meets

n — s r.h. at each transform of a and s r.h. at each transform of r; however,

each hyperplane is met twice at antipodes. Hence the number of r.h. is

nh/2, and 4.2 is proved.

In the following corollaries, the same assumptions as in 4.2 are made.



498 ROBERT STEINBERG [June

4.3. Corollary. The minimum distance between 72(1) and Em is ir/h; all

other extreme distances between £(1) and Em are integral multiples of ir/h. One

of the characteristics values of R is exp (2-wi/h); all other characteristics values

are integral powers of it.

Because of what has already been said, this is clear (cf. [6, p. 233]).

4.4. Corollary. If h is odd, then s = n — s and Wi, • • • , W, are mapped

onto Ws+i, ■ • • , Wn by an element of ®.

Proof. Indeed in this case i^C1-1)/2 maps r onto —a and the hyperplanes

meeting at r onto those meeting at —a (or at a).

4.5. Corollary. If ® contains the central inversion I, then h is even and
I = Rh'2.

Proof. If it exists, 7 maps F onto — F. ll h is odd, the transformation

U = R<-h~l)l2S maps cr and t onto — r and —cr respectively and hence F onto

— F since the segment ar has points interior to F; clearly U?*I. If h is even,

one sees similarly that Rh'2 maps F on — F and hence is the central inversion

if it exists.

This result also has been verified by Coxeter [4, p. 606]. By 4.1 it remains

valid if 7?i, 7?2, • • • , 7?„ are multiplied in an arbitrary order to give R.

4.6. Corollary. Assume again the order 3.1 for the walls of F. Define

Wk = Wj and Rk=Rj if k =j (mod w). Then the r.h. are

4.7 R1R2 ■ ■ ■ Rk-iWk

and the reflections of @ are

4.8 7?i7?2 ■ • • Rk-iRkRk-i • • • Ri

for k = 1, 2, ■ • • , nh/2.

Proof. If lSBs, then RXR2 • • ■ Rk-iWk=Wk, so that the first 5 hyper-

planes of 4.7 are those met by the line L of 4.2 at the point t. Similarly one

sees that the r.h. of 4.7 are listed in the order in which they are met in a trip

along L for a point interior to F to its antipode in — F. Clearly 4.8 is the

reflection in 4.7.
5. Petrie polygons. Here we assume w^3 and consider the spherical

honeycomb C in which the unit sphere is cut by the r.h. This consists of a

number of spherical (w — l)-simplexes bounded by simplexes of lower orders.

In this case the following definition of a Petrie polygon (p.p.) exists (cf.

[6, p. 223]): any w consecutive vertices of a p.p. belong to one simplex of C,

but no w + 1 consecutive vertices do.

It easily follows that any w consecutive vertices of a p.p. are distinct,

that any ordered set of w vertices of a simplex of C determines a unique

p.p., that w —1 ordered vertices of a simplex of C determine two p.p., and
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that, if e1, e2, • • • , e"+1 are n + l consecutive vertices of a p.p., then e"+1 is

the reflection of e1 in the hyperplane determined by e2, e3, • • • , e".

5.1. Theorem. Let Wx, W2, • • ■ , Wn be the walls of F taken in an arbitrary

order, and let e1,*^2, ■ • ■ , e" be the respectively opposite vertices. Set Rk = Rj and

ek = e' if k=j (mod n). Let P be the Petrie polygon of which e1, e2, • • • , e" are

the first n vertices. Then (1) the vertices of P in order are given by Bk = RxR2 ■ ■ ■

Rk-Xek, k = l, 2, ■ ■ ■ , nh; (2) the vertices of P are distinct; (3) the nh (n — 2)-

simplexes determined by sets of n — 1 consecutive vertices of P lie 2 in each of the

nh/2 r.h.

Proof. Since Rjek = ek if / ^ k (mod n), we see that Bk = ek for 1 S k S n. Also

(B>, B'+l, ■ ■ ■ , B>+n~1)=RxR2 ■ ■ ■ Rj-X(e\ • • • , e^""1), so that these n con-

secutive B's are the vertices of the simplex i?ii?2 • • • Rj~xF. But B'+n can not

be a vertex of this simplex since i?ii?2 • • • Rj-XF^RXR2 ■ ■ ■ RjF. Hence (1)

is proved.

Next (2) and (3) are proved under the assumption that the IF's are

ordered as in 3.1. If k^j (mod n), the points Bk and B> are distinct since they

are transforms of distinct points of F. Thus if Bk=8>, we can normalize so

that 1 SjSn, k=j+rn, QSr<h; then RrB'=Bk=B>. If 8> lies on the line L of
4.2, then r = 0 and k=j since R effects a translation of order h along L. If

B> does not lie on L, then either B'a or Bh is orthogonal to L; say the first is

and set a' =Rra. Then B'a' is also orthogonal to L. But B'a' = B'a <ir/2 by 2.4.

Hence a=a' =Rrcr from which we conclude r = 0 and k=j as before. Since

e*+1, e*+2, ■ ■ • , ek+n~l lie on the wall IF* of F, it follows on application of

RxR2 • • • Rk-i that Bk+l, • • • , Bk+n~l lie on the hyperplane RXR2 ■ ■ ■ Rk-XWk.

Then a slight modification of 4.6 yields (3).

The first step in removing the restriction on the order of the IF's is to

modify the order adopted in the previous paragraph by a simple cyclic per-

mutation thus: set W{ =W2, W2 =Wz, ■ • • , Wf =WX and define cor-

responding R', e' and B'. Then Bk'=R{R2' ■ ■ ■ R'k_xek' = R2R3 ■ ■ • Rkek+l

= R\Bk ior each k, so that (2) and (3) are still valid for the new order. Next

suppose that we have an order for which (2) and (3) hold and that two con-

secutive IF's, say IFi and IF2, are orthogonal so that Rx and R2 commute.

Adopting the new order W{ = W2, WI = Wi, WI = W3, ■ ■ • , Wf = Wn, one

sees that/3''=/3''+1 and/F+1'=/Fifj =1 (mod n)while B'' =B> if jjkl, 2 (modw).

The hyperplanes determined by sets of n — 1 consecutive B's are permuted in

a similar manner. Thus (2) and (3) hold for the new order of the IF's, and,

because of 2.3, for an arbitrary order.

This result and the following corollary are suggested by Coxeter [6,

p. 231 ], but with a general proof only in the case n = 3.

5.2. Corollary. Let g be the order of ®. Then the number of (n — 2)-

simplexes in each hyperplane of the honeycomb C is g/h.
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Proof. There are w!/2 p.p. which contain the vertices of a given simplex,

say F, as w consecutive vertices. Since each p.p. determines nh simplexes by

its sets of w consecutive vertices, the number of p.p. is g- (n — 1) \/2h. By 5.1

each p.p. leads to nh (w —2)-simplexes which lie in pairs in the nh/2 hyper-

planes. Since each (n — 2)-simplex is counted (n —1)\ times in this enumera-

tion, the number of (w —2)-simplexes in each hyperplane is

(g-(n - l)\/2h)2/(n - 1)! or g/h.

Coxeter has shown that the symmetry group ® of each regular polytope

II in E" is an irreducible group generated by reflections in the hyperplanes of

symmetry of II and that every p.p. of LI (for definition, see [4, p. 605]) can

be obtained by taking every wth vertex of a p.p. of the spherical honeycomb

corresponding to @ [4, p. 605]. Hence by 4.2 we have:

5.3. Corollary to 4.2. If a Petrie polygon of a regular polytope H in En

has h vertices, then the number of hyperplanes of symmetry of H is nh/2.

6. Roots. We leave the spherical honeycomb and introduce two nonzero

normal vectors for each r.h. in such a way that each element of ® permutes

the resulting nh vectors. These vectors will be called roots. Thus if p is a root,

so is —p. The w roots lying along the inwardly directed normals to a fixed

fundamental chamber F are called fundamental roots. Since no r.h. has points

interior to F, every root p is a linear combination of fundamental roots in

which all coefficients are non-negative or all are nonpositive; in the first

(second) case p is called positive (negative) and we write p>0 (p<0). From the

equation for the reflection 7? in the hyperplane orthogonal to p,

6.1 Rri = v — 2p(i?, p)/(p, p),

we get the following result, important for our purposes [ll, p. 19-01]:

6.2. Lemma. The reflection in the hyperplane orthogonal to a fundamental

root a maps a upon —a and permutes the remaining positive roots.

For roots a somewhat sharper analogue of 4.6 exists.

6.3. Theorem. Let the fundamental roots be ordered similarly to 3.1 so that

ai, ai, • ■ • , a, are mutually orthogonal as also are as+x, ■ • • , ctn. Let Rj be

the reflection in the wall Wj orthogonal to a,. Let <Xk=a.j and Rk = Rj if

k=j (mod w), and then let pk = RiR2 ■ ■ ■ Rk-Xak, k = l, 2, • ■ ■ . Then (1) the

positive roots are the p's given by k = l, 2, • • • , nh/2; (2) the negative roots are

given by k = nh/2 + l, ■ ■ ■ , nh.

Proof. Suppose that 1 gLkgtnh/2. Then if 1 gj<&, it follows by 4.6 that

PkJ* +Pj, so that Rj-iRj-2 ■ ■ ■ R\Pk^ ±a,. Thus by 6.2 the roots 7?y_i7?y_2 • • •

RiPk and R,Rj-i ■ ■ ■ RiPk have the same sign. Taking j=l, 2, • • • , k — 1, we

see that pk has the same sign as Rk-i • • • Rxpk=ctk and hence is positive. Sup-
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pose next that nh/2<k^nh. Since 7?i7?2 ■ • ■ Rnh = l, it now follows that

pk= —RnhRnh-i • • • Rk+iotk; applying (1) to the case in which the as and 7?'s

are relabeled so as to appear in reverse order, we get (2).

There exists the result that all roots are given by pk, k = 1, 2, • • • , nh,

tor an arbitrary initial ordering of the fundamental roots. However 4.2 is

valid for all initial orderings if and only if ® contains the central inversion.

These statements can be proved by modifications of the methods already

introduced.

By a simple computation using the definition of the p's and 6.1, one can

also prove the recursion formula

i-l

6.4 pk = ak + JZ akjpj,        akj = — 2(ak, _,-)/(«/, ay).
y-i

6.5. Corollary. Suppose that the fundamental roots are partitioned under

the action of ® into transitive sets of' nx, n2. • • • , wr elements. Then the set of all

roots is partitioned into transitive sets of nji, n2h, ■ ■ ■ , nrh elements.

Proof. This is clear from 6.2.

6.6. Corollary. If h is even, the set of all roots can be partitioned into h

fundamental sets, each consisting of the roots which lie along the inwardly

directed normals to the walls of a fundamental chamber.

Proof. RXR2 ■ • • 7?s(ai, a2, • ■ • , _„) = (—pi, —p2, • • • , — p., p,+i, • • • , Pn)

is a fundamental set. By 6.3 one can apply 1,7?, ■ • • , i?'1'2-1 in turn to this

set to get h/2 fundamental sets of which the union contains exactly one of p

and — p for each root p. Hence one gets the required result by adjoining to the

sets already obtained their negatives.

Consulting the known list of values of h [4, p. 618], one sees that h is

odd only if © = 2f«_i, the symmetry group of the regular (fe —1)-simplex.

Representing ® by the permutations of the h vertices of the simplex, one

sees that the question left open by 6.6 can be phrased as follows:

6.7. If h is odd, is it possible to order the numbers 1,2, ■ • • , h in h ways so

that the resulting h (ft —1) ordered consecutive pairs are distinct?

If ft = 3 or 5, the answer is no, but the general question seems to be open.

7. Traces. Here we prove two lemmas to be used in the proof of 1.2.

Recall that «i, a2, ■ ■ ■ , a„ denote the fundamental roots relative to a

fixed fundamental chamber F. It u= JZxx'ctj is an arbitrary vector, we set

JZxj = tr p., the trace of p.

7.1. Lemma. If u is an arbitrary vector, then tr pt= JZ(p, p)/(p, p), the sum

being on the positive roots p.

Proof. Set r\= JZp/(p, p)- The reflection in the hyperplane orthogonal to

a fundamental root a maps tj onto i] — 2a(-q, a)/(a, a) by 6.1. By 6.2 this last
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vector is equal to t] — 2a/(a, a). Hence (-n, a) = 1 =tr a, for each fundamental

a. It follows by linearity that for an arbitrary p. we have tr p = (rj, p.), that

is 7.1. The argument used here occurs in [ll, p. 19-01] in a similar context.

7.2. Lemma. If p is an arbitrary vector, and if k is the number of r.h. in ®,

then
X (m, p)V(m, m)(p, p) = k/n.
P>0

Proof. <2(p) = X(m. p)V(p. p) and (p, p.) are quadratic forms in p which

are invariant under ®. Since ® is algebraically irreducible over the reals,

Q(p) = c(p, p) for some real c. Letting p run through an orthonormal basis of

£", one gets c = k/n, as required.

8. Crystallographic restriction, dominant root. Assume that ® is an in-

finite irreducible discrete g.g.r. on £", that 0 is a "special point" which lies

on one member of each family of parallel r.h. of @, and that ® is the subgroup

of ® leaving 0 fixed (see [4]).

8.1. Lemma. Under the assumptions of the preceding paragraph, the roots

corresponding to ® can be so chosen that 2(p, a)/(a, a) is an integer for each pair

of roots p, cr.

Proof. Because ® is irreducible, it easily follows that each r.h. through 0

has other r.h. parallel to it. Now choose each root p to be equal in length to

the distance between consecutive r.h. orthogonal to p. Let p and a be any two

roots. The point 2p is a transform of 0 by ® and so lies on a r.h. orthogonal to

a. Since the distance of this r.h. from 0 is 2(p, a)/(a, a)112, we conclude that

the latter number is an integral multiple of the length (cr, a)112 of cr, as desired

[7, p. 404].
Henceforth we impose these crystallographic restrictions on ® and the root

system. It is in this case that there exists a corresponding Lie group which is

closely related through its algebraic and topological properties with @, © and

the root system [l; 2; 3; 13].

From 6.1, 6.3 and 8.1, it follows that each root has integral coefficients

in terms of the fundamental roots. One can also easily conclude from 8.1 the

following fact:

8.2. Lemma, i/ p and a are two roots such that p9^ +a and (p, p) S (a, a),

then 2 (a, p)/(a, a) =0, 1 or —1.

Cartan [3, p. 256] has proved the existence of a dominant root p = 2~Ly'ai

with the property that, if p= 2~lx'ai ls anv rooti tnen y' = x' f°r all j. It fol-

lows that p is in F, or, equivalently, that (p, ay) ^0 for each fundamental root

aj, since otherwise one could increase a coefficient of p by reflection in some

wall of F.

8.3. Lemma. If p is the dominant root and p is any root, then (p, p) S (p. p)-
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Proof. Since there is an element of © mapping p onto a root in F of the

same length, we may assume that p is in F. Since p—p has only non-negative

coefficients, and p and p are in F, it follows that (p—p, p) ^0 and (p, p— p) ^0.

Thus (p, p) 2i (p, p) ^ (p, p), with equality only if p=p.

The stage is now set for the proof of the second main theorem.

8.4. Theorem. If p is the dominant root, then the number of r.h. is k

= »(l+trp)/2.

Proof. If p>0, then (p, p) ^0, and then 8.2 and 8.3 imply that 2(p, p)/(p,p)

= 0 or 1 if pr^p. Hence using 7.1 and 7.2 and noting that the range of summa-

tion below is the set of positive roots, we have

trp = £ (p, p)/(P, o) = X (2(m, 9)/ip, p))((p, P)/2(P, p))

= X (20*, p)/(p, p))2((p, p)/2(p, p)) - 1

= 2 X ip, p)2/(p, p)(p, p) - 1 = 2k/n - 1.

A similar computation also explains an analogous formula encountered

by Coxeter in his work on extreme quadratic forms [7, p. 413].

9. Trace distribution. Following is another easily verified property of root

systems which the author has not been able to explain in general terms. By

4.3 the characteristic values of R are of the form exp (2-irimj/h) with 1

= mxSntiS ■ • ■ Smn=h—1. The numbers ra3- have been called the ex-

ponents of ©, and enter into many questions concerning ®; for example, the

numbers w, + l are the degrees of a basic set of invariants for ©, and, if © is

crystallographically restricted, then the Poincare polynomial of the cor-

responding Lie group is U(l +t2m'+l) (see [12] for other properties). Under

this restriction one can also prove by verification the following curious fact.

9.1. Let the number of positive roots of trace 1, 2, • • • , h—1 be px, p2, • ■ ■ ,

ph-i, respectively. Then px^p2^ • • • g^Ph-X and the partition conjugate to that

determined by the p's consists of the m's, the exponents of ©.

For example, if © = ©4 (in the usual notation), then the roots of trace

1, 2, 3, 4, 5 occur with multiplicities of 4, 3, 3, 1, 1, respectively. The partition

of 12 conjugate to the last list of numbers consists of the numbers 1, 3, 3, 5,

the exponents of 3)4.
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