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1. Introduction. There exists a large literature concerning convolution

transforms on the whole real line, but the corresponding problem for semi-

infinite intervals has received little attention. The problem is that of deter-

mining a function </> from the relation

(1) /(„) =   I    <j>(x - t)K(t)dt, 0 ^ x < oo
J o

given / and the kernel K.

If cp and K have suitable behavior at infinity the classical solution by

Laplace transforms is available. This method of solution, however, deter-

mines 4> from a knowledge of f(x) for all x in 0 :Sx < w, whereas the form of

(1) suggests that the determination of 4>(x) in an interval 0^x<a should

use the values of /(„) only in this interval. This suggestion is confirmed by a

theorem of Titchmarsh [l, p. 327] concerning the equation

(2) 0 =   f  4>(x - t)K(t)dt, 0 ^ x < a,
J o

where a is a fixed positive number. It is a consequence of his theorem that

if <p and K are locally integrable and K(x) ^0 in a neighborhood 0—x<r] of the

origin, then the only solution of (2) is 4> = 0.

The main object of this paper is to give a solution of the equation in (1)

for an interval 0 5=x <o. Clearly this solves the problem for the whole interval

0 5=x< co. There is no added difficulty in solving the more general equation

(3) /(„) =   J    <p(x - t)dk(t), 0 ^ x < a,
J o

and this is what we shall do. It is supposed that k(t) is of bounded variation

in each interval O^x^ai, 0<ai<a, and that <p is Borel measurable in

Ogx<o.

2. Assumptions. In solving (3) the following assumptions will be made

about k and 4>-
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Al.  k has positive variation near 0;

2. fe(0)=0;
3. k is real-valued.

BI. 0GC2 (0Sx<a);
2. cp(0)=cp'(0)=0.

Assumption Al is necessary since otherwise (3) does not determine cb.

A2 can be achieved by replacing k(t) with k(t) —k(0) in (3). If k is not real-

valued to begin with, (3) can be replaced by a new equation of the same

form for which the kernel is real-valued. The procedure is this: Define

fa(x) =|    k(x — t)dk(t)

and

/i(*) =   (fix- t)dk(t),
J o

where k is the complex-conjugate of k. Then

/i(x) =|    <b(x - l)dki(t), 0 S x < a,
J o

and fa is real because of A2.

Assumptions BI and B2 are satisfied by taking the precautionary meas-

ure of integrating (3) from 0 to x three times before starting.

3. A study of the kernel k. Because of Al we can choose a number b,

0<b<a/2 so that

/> 26

dk(u) ^ 0.
0

An important step in solving (3) is the determination of <£(x) in 0Sx<b,

and thus depends on a preliminary study of the Laplace transform

/. 26

e-"udk(u).
a

% is an entire function. Because of (4) it has the form

(6) k(s) = Be-''" II (l - —) «'",

where c' is a constant and the product is taken over the roots z oi k. Since k

is real the roots of i appear in conjugate-complex pairs unless they are real.

Let a denote the real zeros and j3 the complex zeros with positive imaginary

part.
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k(s) is bounded in the right half-plane and e2b,k(s) in the left. Conse-

quently the two series

^     1 .     ^ cos (arg ft
(7) 2Z tt and   £ —rv\—

«  ia\ »     \p\

converge, [2, p. 131 ]. (6) may therefore be written

m       iw.s...n(i-^)ri(i-f)(i-f).
An argument of Titchmarsh [l, p. 323], shows that because of Al and (5) c

is real and satisfies

(9) 0 S c S b.

It will be necessary to arrange the product (8) in another order, the

justification coming from the convergence of the two series (7). Define this

function of a complex variable w:

<(2[(Iw)2-(Rw)2]y'2, \lw\   ^  \Rw\,
S(w) = < i i        i        i

l-l, | F(w) |   <  \Rw\.

The roots of k are decomposed into classes AH, m = 0, 1, 2, • • • according to

the rule

2 G An if n — 1 S S(z) < n.

The following lemma is trivial.

Lemma 1. If t is real then \ 1 —it/z\ ^ 1 for real zeros z. Also

1/        *A/        *Al10 -7)0-7)1ai
if and only if \t\ ^S(z).

(8) may now be rearranged as

k(s) = Be~" fi If (l - -) 6 - -Y
y=o zeAj \ z / \ z /

An empty product is interpreted as unity and the prime ' in the inner prod-

uct means that only a single factor is written when 2 is real. (This can occur

only for 7 = 0.) For a fixed/ the order of interior factors does not matter and

we regard them as fixed once and for all, say by absolute value. For a fixed j

the zeros z belonging to Aj will be denoted generally by Zi, z2, ■ ■ ■ , thus

avoiding the use of a double subscript. The last formula is conveniently

broken up into
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si(s) = n(i--)(i--Y
(io) -~A    2A    z)

00

k(s) = Be— II &(*)•
y-o

Lemma 2. If \t\ ^/ then  \gk(it)\ ^1, £ = 0,  1, • • • , /. If \t\ £j then
\gk(it)\Sl,k=j+l,j + 2,

Proof. If |/| ^/ then for all k^j we have \t\ ^j^k so that \t\ ^S(z) for

2 in Ak- By Lemma 1 each factor in the product composing gk is at least 1 in

absolute value.

For the second part suppose |/| £j and k^j+1. Then |/| ^j — k — 1 so

that \t\ ^S(z) for zG^4*. Now apply Lemma 1 again.

Using (10) and Lemma 2 it is not difficult to see that

Hit) r, „       i     ,     , ,
(11) t ^ max [ | *(„) | ,  |P|].

n gm
0

In fact by Lemma 2 the left side for t fixed will (as a function of k) first de-

crease then increase. It is consequently less than or equal to the larger of the

values for k = 0 and k= oo.

4. The main lemma. With each zero z of k we associate a function hz(x)

on 0^x< oo as follows

\ z\2 I    ez<-x~i)e'idt, z imaginary,
hz(x) = | .7 o

— zg2*, z reo/.

These have the respective Laplace transforms

1 1

1 — s/z   1 — s/z

and

1

1- s/z'

valid for Rs > Rz.

We use l*m to denote the convolution

l(t)m(x — t)dl =   I   m(t)l(x — t)dt
o Jo

of two functions / and m, andll* to denote the convolution product of several
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functions. Wherever we use such a product it will be obviously associative.

Now define by induction) (3)

m

Ho(x) =  lim /(*)*    II*   faM,
(12) ""*" ■'=1:"e"°

Hk(x) =   lim Hk-i(x)*     II*   *.«(*),
»-»» i=V,Zi€Ak

whenever the defining expressions have meaning. Our object in this section

is to prove the

Main lemma. The functions Hk(x) exist for 0^x^26 and

(13) lim  Hk(x) = Bcj>(x - c), c S x S 2b,

where c and B are defined by (8).

We begin by considering the new integral equation

(13a) fi(x) =  f <*>i(x - t)dfa(t), 0 g x < oo,
J o

where

cb(x), 0 ^ x g 2J,

cbi(x) =    eC2, 0 S x S 3b,

.0 x ^ 36;
and

. , a        (Hx), 0 ^ x g 26,
ki(x) =  <

\k(2b),       x ^ 2b.

By comparison with (3)

.,,        (fix), 0gxg26,
(14) /l(x) =   1   n > «

I. 0, x ^ 5o.

Taking Laplace transforms on both sides of the new integral equation we

have

(15) his) = Us)Hs),

where &(s) is defined by (5) and/i, #i by

/. 66 n 26e~'ufx(u)du   and     I     e-,ucbx(u)du
0 •/ 0

(3) In (12) and similar products we take H* to have no effect on the other factor if the

corresponding Aj is empty.
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respectively. Laplace transforms in general will be denoted by the roof sym-

bol A
In view of assumptions BI and B2 we know that

(16) *(«*) = 0(l/t2), \t\ -»~>.

Since k(it) is bounded (15) yields

(17) fm = o(i/f), \t\ -»<_.

The Main Lemma will be a consequence of the next one. First define the

functions Lk(x) just as the functions Hk(x) aredefined in (12),but replacing f by

/,. Then by (14)

(18) Lk(x) = Hk(x), 0 ^ x ^ 2b.

Secondly define

/„(*) =  lim    f  (     ft*   h,,(x- l))dki(l),
m->«    J o    \ i=i;2iGA0 /

m

h(x) =  lim h-i(x)*     II*   hti(x).

Lemma 3. The limits defining h(x) exist for k = 0, 1, • • ■ boundedly in

0gx< oo ; the h(x) vanish for x^2b and their Laplace transforms are

(19) U(s) = k(s) I Tlgi(s),
I j-0

where gj is defined as in (10). Moreover the functions Lk(x) exist for k=0, 1, ■ ■ • ,

0 ^ x < oo and equal the absolutely convergent integrals

1   C"     -      ,
(20) Lk(x) = —        eiu<pi(it)lk(it)dt.

2x J_„o

This will be proved in the next section. Before doing so we show how it is

used in proving the Main Lemma. By combining (18), (19) and (20) we have

i c °° a (it)
Hk(x) = —        eiu$m —-dt, 0 S x ^ 26.

II gm
y=o

By virtue of (11) and (16) we may let &—>oo under the integral. (10) tells us

then that for x>c

1   r    „
lim Hk(x) = — I     eiix4>i(it)Be-cUdt = B<px(x - c).
*-.» 2tt J-n
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Since cpx and cp agree on QSxS2b, this establishes (13).

5. Proof of Lemma 3. The assertion about lk(x) will be proved by induc-

tion on k. We start with k = 0. Define for m ^1

C(x)=  fZ(      fi*  hZi(x-t))dki(t).
•7 0    \ i=l-,ri€Aa /

Taking Laplace transforms we obtain

(2D t:\s) = ki(s){ fp (i--i)(i--i)r1.
v. ^iujsXo \        Zi/ \        Zi/)

By the complex inversion formula for Laplace transforms

1    /*d+iM

h   ix) = —: I e<4(s){ ■ ■ ■ }~1ds
2iri J d-i<a

if d>Rzx, Rzi, ■ • ■ , Rzm. By Cauchy's theorem we may move the line of

integration to d = 0 since the integrand is entire and sufficiently small at

+ ioo. Hence

iT\x) = ̂  J* V*(«<) { fr (i - 7) (* - j)} 1(iL

By Lemma 1 limm,M lom)ix) exists boundedly as m—+<».

To prove that l0(x) vanishes outside (0, 26) it is enough to prove it for

each l0m\x). We prove it by induction noting that

lo   (x) =  j    hZl(x — t)dkx(t),
J o

l0m (x) = /»"     (x)*hZm(x).

Consider first l(o\x). If zx is real we have

/"V*) = «i f  e^-'^'dkx(t),
J o

= zie*n I    e~tZidki(t).
J o

Now if x Si 26 the last integral is

/. 26

e-'»dk(t)
o

since fa(x) and k(x) agree on (0, 26). But this vanishes since it is k(zx) and

Zi is a zero of k(s). li Zi is not real we note that
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K(x) = (-zxez^)*(-zxe~™)

so that a similar argument applies. Remember that z,- is also a zero of k(s).

Now suppose, to continue this induction that /o"_1)(x) vanishes for xg:26.

We have

h   (x) =   I    hZn(x — t)l0       (l)dt.
J o

lfx^2b

,(">).    . C       ,       , . ,(m-1)
h   (x) = hZm(x - t)h      (t)dt.

J 0

The argument used for m = l still holds provided zm and zm are zeros of

?o"-1)(5). Since they are zeros of k(s), this follows from (21) with m replaced

by m — 1.
To complete the case £=0 we must establish (19), i.e. that

Us) = Hs)/go(s).

We know that

/i 26

e    lo   (u)du,
o

since lQm) vanishes outside (0, 2b). By bounded convergence

(»)     C ib

lim lo    (s)\        e~,ulo(u)du = Us)-
m-*«> J   o

Now compare (21).

To continue the induction on k suppose the assertions of the lemma hold for

k — 1. Then defining

,   . rn

(22) I? (x) = h-x(x)*     II     hZi(x)
i-= l;z,eit

we know that

lim Z*_i(x) = h-i(x) boundedly,

that

/. 26

e-'Hk-i(u)du,
o

and that
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Hs)
(24) l-i(s) =   tiW       •

II gi(s)
y-o

According to (22) we have

tXs)=h-i(s)\     ft'    (l--)^--1)}"1-
I i-V.ZiEAk \ Zi/   \ Zi/ )

We now complete the proof as for k=0 with the following changes. At the

stage where Cauchy's theorem is used to move the line of investigation use

the boundedness of tk-i(s) in O^Rs^d. This follows from (23). To prove the

bounded existence of limm<00 ltm)(x) use Lemma 2 in place of Lemma 1. To

prove the vanishing of 4"°(x) outside of (0, 2b) we employ an induction as

before, noting that by (24) the elements of Ak are zeros of lk-i(s). The details

are left to the reader.

It remains to prove the assertion of Lemma 3 concerning Lk(x). By (13a)

and the associative property of convolution it follows from the definition of

Lk(x) (see the sentence preceding (18)) that

Lo(x) = lim <pi * lo   (x),
m—*°o

so that by Lemma 3

Po(x) = <pi*lo(x).

By induction

(25) Lk(x) = <bi * lk(x),

for suppose

Lk-i(x) = 4>i*lk-i(x).

Then

Lk(x) =  lim Lk-i(x) *     H     hZi(x)
m-»~ i=l-,zi&Ak

m

= lim <t>i(x) *h-i(x) *     H     hZi(x)
m-"" i-l-,ZiEAk

=  lim <t>i(z) * h   (x)

= 4>i(x) *k(x),

by Lemma 3 again. This completes the inductive proof of (25). By (25)
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Lk(s) = $x(s)lk(s),

1 /» d+ioo

Lk(x) = —; \ e'*$x(s)lk(s)ds
2n J d—ix

for d>0 and now (20) follows since the line of integration can be moved

once again to d = 0.

6. Recapitulation. In view of the mass of details let us restate where

matters stand. We begin with (3) as given.

Theorem 1. Let b be a number such that 0 <6<a/2 and such that (4)

holds. Define k by (5) awd c as in (8). Arrange the roots of k into the classes An

described in §3. Define hz(x) as in §4 and Hk(x) as in (12). Then (3) has the

solution

1
(26) lim — Hk(x + c) = 4>(x), 0 S x S 6.

i-»oo   B

(26) is a restatement of (13) and (9). The solution is valid in the (pos-

sibly) larger interval 0SxS2b — c, but this fact will not be useful for our

ultimate goal which is a solution valid in 0Sx<a. This is described in the

following section.

Note that (26) uses the values of f(x) in at most the interval 0^x^26.

This is due to the definition of H0(x) in (12).

7. The solution completed. It is now our object to show how the integral

equation in (3) can be solved in any interval OSxSa — r], 0<rj<a, by a finite

number of repetitions of the procedure described in Theorem 1. Choose 6 so

small that (4) holds, and that two of the successive numbers 6, 26, 36, • • • fall

into the interval a — i)Sx<a, say

(27) a - -n S Nb}< (N + 1)6 < a.

li N=l Theorem 1 accomplishes the solution so suppose N>1.

We shall show how to use the procedure of Theorem 1 to find <b(x) in an

interval 0^x^(« + l)6, given the solution in 0^x^«6, ISnSN— 1. Since

cp is given in QSxSb by Theorem 1, an iV-fold repetition of the procedure

gives the solution in OSxSNb and this includes the prescribed interval

OSxSa — v.

Define

/, nb
<b(l)dk(x - t).

o

(3) takes the form

f»(x) = - |    <b(t)dk(x - t),
J nb
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valid if wo^x<o. Replace x by x+nb. Then

/» x+nb

fn(x + nb) = -  I        <p(t)dk(x + nb - t),
J nb

valid if 0^x<o — nb. Changing variables we find that

fn(x + nb) =  I   <p(s + nb - t)dk(t)
■7 o

valid in 0^x<a — nb, hence, by (27) in 0^x^26. This final integral equation

is of the same type as the original, so that the method of Theorem 1 applied

with/„(x+w6) in place of f(x) yields <p(x+nb) in O^x^p, and hence cp(x) in

nb^x^(n + l)b. Since cp(x) is known in Ogx^wo, this completes the pro-

gram.
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