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Introduction. Our purpose is to study a class of topological spaces which

is more general than the class of first countable Hausdorff spaces and less

general than the class of ^-spaces. To construct a space (X, 3) of this class,

called a mosaic space, there is employed a collection of topological spaces

{(Xa, 3„): a(EA } which cover X and which serve as "test sets" to determine

the topology 3. Since each space (Xa, 3a) is to be thought of as the prototype

of a fairly "geometrical" object such as an arc, curve, or simplex, we require

that each (Xa, 3a) be a compact metric space; in order to guarantee that each

such compact metric space be a subspace of (X, 3) the former are "patched

together" in a suitable fashion. After establishing the definition of a mosaic

space and some basic properties, we show that among the topological spaces

it is precisely the mosaic spaces which are in one-to-one correspondence with

the Kuratowski £*-spaces which have the additional feature that limits are

unique. By generalizing the mosaic concept by "patching together" functions

we find that a closed continuous image of a mosaic space is a mosaic space;

that a quasi-compact image of a mosaic space is again a mosaic space, pro-

vided limits of convergent sequences are unique in the image space; and that

every mosaic space is the quasi-compact image of a suitable locally compact

metric space.

The latter half of the paper gives necessary and sufficient conditions for

a mosaic space to be hereditary, that is, for each subspace to be a mosaic

space; for a mosaic space to be countably compact; and for the Cartesian

product of a fixed mosaic space with an arbitrary mosaic space to be again a

mosaic space. Further it is shown that a mosaic space can always be countably

compactified so as to remain a mosaic space, and necessary and sufficient

conditions are given for a mosaic space to be embedded in a compact mosaic

space. Also we give an example of a compact hereditary mosaic space which is

not a Hausdorff space. Finally, some results are obtained for function space

topologies within the mosaic context.

1. Definition and properties of mosaic spaces. There will frequently arise

topologies 3 which are defined on subsets Fof a set X rather than on X itself.

Moreover, closed sets will be of greater importance than open sets. We there-

by  adopt  for  the  expression   "EG3"  the  following  definition:  for  every
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E(ZX, £G3 if and only if £ is a 3-closed subset of the topological space

( Y, 3). The expression "R < S" will denote the fact that R is a subsequence of

the sequence S, "Sj" will denote the jth term of the sequence S, and "Sj" will

denote the point set of the sequence S. For a given topology 3, to say that a

sequence 5 converges ($(3)) to a point x means that 5 converges to x under

the usual definition of convergence according to the topology 3. By definition

a topology 3 on X is full if and only if the following statement holds: for all

EC.X, if £(£3 then there exists a sequence 5 and a point x in X such that

SjCLE, x(£E and 5 converges ($(3)) to x. Any terminology introduced with-

out explanation will be that employed by Kelley [7].

1.1. Definition. A collection {(Xa, 3„):aG4) is a mosaic of topological

spaces on a set X if and only if (i) each (Xa, 3„) is a topological space; (ii) X

= U \Xa: aQ:A }; and (iii) the following compatibility condition is satisfied:

for all £CA^ and a, b(£A, if £G3a then EC\X0(ZZb. For a mosaic of topologi-

cal spaces on X the mosaic topology 3 is defined as follows: for all EQX,

£<G3 if and only if Er\Xa^X ior all a(£-A. If each (Xa, 3„) is a compact

metric space then the topological space (X, 3) determined by the collection

{(Xa, 3a): a£4 j will be called simply a mosaic space, ior the sake of brevity.

Implicit in the definition is the first lemma.

1.2. Lemma. Let {(Xa, 3„): a(£A } be a mosaic of topological spaces on X

and let 3 be the mosaic topology. Then for all aG-4, (Xa, 3a) is a closed subspace

of (X, 3).

From (1.1) and (1.2) it is immediate that every mosaic space is a &-space.

1.3. Theorem. The topology 3 of a mosaic space is full.

Proof. Let {Xa, 3a): aG-<4 } be the mosaic of compact metric spaces which

determines the topology 3. Let ECZX and assume that £(£3. Then by defini-

tion there exists an a(£A such that Er}Xa(£3a. Since (Xa, 3a) is metric there

exists a sequence 5 and a point x in X such that Sj(ZEr\Xa, x^EC\Xa, and

S converges (3>(3„)) to x. Thus SjQE, x$£, and 5 converges ($(3)) to x by

(1.2).

1.4. Lemma. Let (X, 3) be a mosaic space determined by the mosaic of com-

pact metric spaces {(Xa, 3a): a£i }. Then a subset ECZX has a ^-accumulation

point if and only if there exists an a(E.A such that EC\Xa is infinite.

Proof. If E(~\Xa is infinite for some aG^4 then it has a 3a-accumulation

point, since (Xa, 3a) is compact metric. But (Xa, 3„) is a subspace of (X, 3)

by (1.2), therefore £ has a 3-accumulation point. Conversely, if EC\Xa is

finite for all a(£A then £ and each subset of £ is 3-closed. Therefore £ is

discrete and has no 3-accumulation point.

1.5. Lemma. In a mosaic space, if S converges ($(3)) to x then there exists a

sequence S' and an a(E.A such that S' <S and SJ U {x} (ZXa.
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Proof. If Sj is a finite set then the lemma is obvious. Alternatively, if Sj

is infinite then x is a 3-accumulation point of Sj, and by (1.4) there exists

an a(jzA such that Sjf~\Xa is infinite. From Sjf^Xa a sequence S' may be

chosen such that S'<S and Sj QXa. Since -X"0£3 by (1.2) we also have

x£;Xa.

1.6. Theorem. 7w a mosaic space, limits of $(3)-convergent sequences are

unique.

Proof. If 5 converges ("£(3)) to x and to y then by (1.5) there exists an

aG^4 and an S' <S such that SJ\j{x\CjXa. Since Xa£jZ we also have

jEI„ By (1.2) the sequence S' converges ($(3a)) to x and to y. Therefore

x=y, since (Xa, 3„) is metric.

Since obviously {x}P\Xa£3a for all a£4 and every iGv, a mosaic

space is a Ei-space and countable compactness may be characterized as fol-

lows: for all ECjX, E is 3-countably compact if and only if every infinite

subset of E has a 3-accumulation point in £. For a set X with a given class

of convergent sequences £ a subset ECjX is defined to be £-sequentially com-

pact if and only if every sequence in £ has a subsequence which £-converges

to a point in £.

1.7. Theorem. 7w a mosaic space, a subset E is 3-countably compact if

and only if it is $(3) -sequentially compact.

Proof. That <f(3)-sequential compactness implies 3-countable compact-

ness is known for general topological spaces, so we prove only the converse.

Assume that ECjX is not $(3)-sequentially compact, so that there exists a

sequence S such that SjCjE and no subsequence of S converges ($(3)) to a

point in E. If Sj has no 3-accumulation point then it trivially qualifies as the

required infinite subset of E which has no 3-accumulation point in £. Alter-

natively, if Sj has a 3-accumulation point then by (1.4) there exists an a^A

such that Sj(~\Xa is infinite. Since (Xa, 3„) is compact metric we may choose

a sequence S' such that S' -KS and S' converges ($(3a)) to some xGJa. By

(1.2) the sequence S' converges ($(3)) to x, and so x£E since S'<S. At

the same time x is the only 3a-accumulation point of SJ and -X^GS by (1.2),

implying that x is the only 3-accumulation point of Sj. The set Sj thereby

qualifies as an infinite subset of £ with no 3-accumulation point in £.

1.8. Theorem. 7w a mosaic space, every 3-countably compact subset is 3-

closed.

Proof. Assume that EG 3, so that there exists an a£^4 such that EC\Xa

$3a. Because (Xa, 3„) is a closed, compact metric subspace of (X, 3) there

exists an infinite set in EC\Xa with no 3a-accumulation point in £, and there-

by no 3-accumulation point in E. Therefore E is not countably compact.

1.9. Corollary. 7w a mosaic space, every 3-compact subset is 3-closed.
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Given a mosaic 3TCo of compact metric spaces on a set X we have seen how

to obtain the corresponding mosaic topology 3 on X. Each compact metric

space (X0, 3o) of the mosaic 3TCo is embedded in the mosaic space (X, 3) in

which 3o is simply 3 relativized to X0. However, there is no guarantee that

every compact metric subspace of (X, 3) is a member of the originally given

mosaic 3TCo, and in fact this need not be so. Nevertheless, by means of (1.9)

we are assured that the collection of all compact metric subspaces of (X, 3)

satisfies the compatibility condition, and so forms a mosaic 91! of compact

metric spaces which in general includes the mosaic 9H0- If this enlarged mosaic

EHX is employed to obtain a new mosaic topology on X then it is easily seen

that this new topology is just 3 itself. Beginning with a mosaic 3TC0 of compact

metric spaces and iterating this procedure nothing new is obtained beyond

the mosaic 9H, which we shall call a full mosaic of compact metric spaces.

Each full mosaic of compact metric spaces corresponds to some one mosaic

topology, and conversely. The result (1.9) must be regarded as important,

as it eliminates the pathological possibility of obtaining by iteration a se-

quence of coarser and coarser mosaic topologies, alternating with a sequence

of larger and larger mosaics.

2. Mosaic spaces and £-spaces. We now turn to the construction of

mosaic spaces from sequence convergence classes, and to the resulting cor-

respondence between mosaic spaces and certain convergence classes. For a

fixed set X let 2 be the collection of all convergence classes £ with the follow-

ing properties: (i) every constant sequence in X converges (£) to the point

of which its point set is composed; (ii) for every sequence 5 and every point

x in X, if 5 converges (£) to x then every subsequence of S converges (£) to x.

Thus (X, £) for £G? is a Frechet £-space [9, Chapter II]. Given a con-

vergence class £G£. a topology *&(£) on X may be generated in the following

standard manner: for all ECZX, £G^(£) if and only if every limit of every

£-convergent sequence in £ is also in £. From each £GS we obtain its

*-extension £* by demanding for every sequence S and point x in X that S

converges (£*) to x if and only if every subsequence of 5 has a subsequence

which converges (£) to x. Let £* be the collection of all £-classes each of

which is its own *-extension; thus (X, £) for £G?* is a Kuratowski £*-space.

Finally ?„ will be the subcollection of 2 such that each £G?U has the property

that limits of £-convergent sequences are unique; ?* is defined analogously.

Given a sequence 5 and a point x in X, let a class of sets (B in XL = Sj\J {x)

be defined as follows: (i) 0G(B; (ii) for all x'CZXL, if x'^x then {x'\ G®; and

(iii) for all non-negative ra, Xn= { Sj: n<j\ VJ [x] G®. Then (B is a base of

open sets for a topology 3z, on XL; this topology is compact and second

countable, and is therefore compact metric if and only if it is Hausdorff.

Viewing S as converging to x according to some rule, we shall call 3z, the

sequence topology for the set Xl. Given a convergence class £GS> we accord-

ingly   can   construct   a   collection   of   compact,   second   countable   spaces
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{(Xi, 3r,): £G£} covering X by setting XL = Sjyj{x] tor every sequence

5 and point x in X such that 5 converges (£) to x and letting 3l be the cor-

responding sequence topology on XL.

2.1. Theorem. Let £G? awa" let {(XL, 3l) : £G£} &e the associated collec-

tion of compact, second countable spaces. Then the following statements hold:

(a) {(XL, 3z,): L€z£\ is a mosaic of compact metric spaces if and only if

£G2«;
(b) if £G8M. then ^(£) =3 awa* $(3) =£*, where 3 is the mosaic topology

derived from {Xl, 3l):£G£}-

Proof, (a). Assume that £G?«, and endow Xl = SjKJ{x\ with the se-

quence topology 3i, where 5 converges (£) to x. For xx, x2€zXL if xx^x2,

Xit^x, and x2^x then clearly xx and x2 are separated by disjoint 3z,-open sets.

If Xi =x and x2^x then there must exist an Xn of the base (B of 3z, which con-

tains Xi=x but which does not contain x2, for otherwise we could choose a

subsequence of 5 each of whose terms equals x2; this subsequence would

£-converge to both Xi and x2, contrary to the hypothesis of uniqueness of

limits. Thus {x2\ and Xn are disjoint 3z,-open sets separating xx and x2.

Since (Jj, 3i) is Hausdorff it is compact metric.

Let 5 converge (£) to x and T converge (£) to y. Endow Xl = SjVJ{x}

and XM=Tj\J\y\ with their respective sequence topologies 3l and 3m. As-

sume that ECjXl is 3i-cIosed. If Ef~\XM is finite it is trivially 3.\f-closed; if

EC\Xm is infinite it is sufficient to show that y^ECxXit in order to prove

that it is 3j/-closed. Assuming that EC\Xm is infinite let 7? be a subsequence

of Esuch that RjCjEC\Xj{, xQRj, and 7? has no constant subsequence. Then

RjCjSj, and consequently a sequence P may be constructed such that P <R

and P<.S. Therefore P converges (£) to x and to y, and so x = y by the

hypothesis that £G?u- But £ is infinite since EC\XM is infinite, and so

£G3l implies that x£jE. Hence y<EEr\XM, and the compatibility condition

holds. We conclude that {(XL, 3z,):EG£J is a mosaic of compact metric

spaces.

Conversely, assume that {(XL, 3L): LG£} is a mosaic of compact metric

spaces. If 5 converges (£) to x then it clearly converges (<i>(3r,)) to x, where

XL = Sj^j{x}. Then 5 converges ($(3)) to x by (1.2), where 3 is the mosaic

topology. Since £C$(3) we have £&u by (1.6).

(b). Assume that either one, and so both, of the conditions in (a) holds.

Since £C$(3) it can be shown [ll, Chapter XI] that **(3)C-'(£). But the

mosaic topology 3 is full by (1.3), which can be shown to be equivalent to

3 = ^$(3); thus 3C^(£). On the other hand, if ££3 then by the definition

of the mosaic topology 3 there exists an (Xj, 3t) such that Er\XL($:3L. Con-

sequently there exists a sequence T such that TjQEP\XL, T converges (£)

to x where XL = Sj\j{x], and x(£.EC\XL. Therefore EG-"(£), and we con-

clude that ^(£)C3.
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Now assume that 5 converges (£*) to x, so that by the definition of

*-extension every subsequence S' of 5 has a subsequence S" which converges

(£) to x. Then S" converges (3>(3)) to x, and so £*C"£(3)*. Since $(3) is a

convergence class derived from a topology it is its own *-extension, and so

£*Ccp(3). Conversely, assume that 5 does not converge (£*) to x, so that

there exists a subsequence S' of 5 such that no subsequence S" of S' con-

verges (£) to x. Then S' cannot converge ($(3)) to x, for otherwise by an

application of (1.5) we could find a subsequence S" of S' which converges

($(3z,)) to x for some LCZ&, which would yield contrary to hypothesis that

S" converges (£) to x. Since 5 has the subsequence S' which does not con-

verge (i>(3)) to x, it follows that 5 does not converge ($(3)) to x. Hence

$(3)C£*.

2.2. Corollary. Let £G2, then £ coincides with the convergence class

$(3) of a mosaic topology 3 if and only if £G?*-

Proof. If £=$(3) for some mosaic topology 3 on X then £GS* since it is

a convergence class derived from a topology; by (1.6) limits are unique, and

so £GS*. Conversely, assume that £GS*, then £G?u and £ = £*. By (2.1)

we find that $(3) =£, where 3 is the mosaic topology of that theorem.

Now observe that the mapping 3—»#(3) carries the collection of mosaic

topologies on a fixed set X onto the collection 2* of convergence classes, by

virtue of (1.6) (2.2), and the fact that a convergence class derived from a

topology is its own *-extension. In addition, if 3 and 3' are mosaic topologies

such that $(3)=$(3'), then ^$(3) =^$(3'), which implies that 3 = 3' by

(1.3). We conclude that the mosaic topologies on X are precisely those topologies

which are in one-to-one correspondence with the convergence classes of £„. A very

useful means is now given for determining when a topological space is a mosaic

space, by showing that the necessary conditions (1.3) and (1.6) are also

sufficient.

2.3. Corollary. Let (X, 3) be a topological space such that 3 is full and

limits of $(3)-convergent sequences are unique. Then (X, 3) is a mosaic space.

Proof. Since $(3)G?« we may construct a mosaic of compact metric

spaces and the ensuing mosaic topology 3', in the manner of (2.1), wherein

^$(3) =3'. Since 3 is full we have 3 = ^*(3) = 3'.

By observing that a first countable space is Hausdorff if convergent se-

quences have unique limits, the following connection between mosaic spaces

and first countable Hausdorff spaces is easily demonstrated.

2.4. Corollary. Let (X, 3) be a first countable topological space, then it is

a mosaic space if and only if it is Hausdorff.

If a space (X, 3) possesses either the property that every 3-countably

compact set is 3-closed or the property that every <I>(3)-sequentially compact
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set is 3-closed, then it is easily established that limits of $(3)-convergent

sequences are unique. So either of these two properties together with the

property that the topology 3 is full characterizes a mosaic space. Any com-

bination of the following properties which does not include the conditions

of (2.3) or the two above mentioned sets of conditions need not imply that

the space in question is a mosaic space:

(i) the topology 3 is full;

(ii) limits of 4>(3)-convergent sequences are unique;

(iii) for all ECjX, E is 3-countably compact if and only if it is $(3)-

sequentially compact;

(iv)  for all ECjX, if £ is $(3)-sequentially compact then it is 3-closed;

(v)  for all ECjX, if E is 3-countably compact then it is 3-closed.

The following two examples indicate this.

2.5. Example. Let X be the union of a sequence of plane subsets X0,

Xx, ■ ■ ■ , where X0={(x, y):x = 0; 0^y<l} and Xn={(x, y):x = l/n;

0<y<l} for w = l, 2, ■ • • . Let the topology 3 on X he described by the

following base of open sets: (i) for every w = 1, 2, • • • , every point in Xn has

a neighborhood base consisting of all open subintervals of Xn which contain

the point; (ii) for a point in X0 which is not equal to (0, 0) the base is all

open subintervals of X0 which contain the point; and (iii) for the point

(0, 0) in Xo the base is all sets of the form F0WU{ Ym:m = n, n + 1, ■ ■ • )

where F0= {(x, y): x = 0; O^y <o0] for 0<t>0^l and Ym= {(x, y): x = l/m;

0<y<bm) for 0<bm^l. Then this topology 3 with its derived convergence

class $(3) satisfies properties (ii) through (v) above, but not property (i).

In fact, the full topology corresponding to the convergence class $(3) is that

with the usual base of subintervals about all points including (0, 0).

2.6. Example. Let X consist of the sequence of distinct points {xi,x2, • • • }

and yi and y2. Let an open neighborhood base for each xn he {xn}, and for y,-,

i = 1, 2, let the base consist of allsetsof theform {y,} \J {xm: m =w, n + 1, • • •}.

For this space properties (i) and (iii) above hold, but not properties (ii), (iv),

and (v).

3. Functional mosaics. We now turn to a study of mosaics which entails

functions.

3.1. Definition. Let the collection of triplets {(Ya, S„, /„): aG-4 } satisfy

the following two conditions: (i) each (F„, Sa) is a topological space; and (ii)

each fa is a function defined on Ya. Such a collection is said to be afunctional

mosaic whenever the following compatibility condition holds: for every

a, b<=A, il EGSa then fr-%(E)Eh-
Such a structure has been previously employed in the study of compact

Hausdorff varieties [4]. If each/, is one-to-one and each Ya is identified with

fa( Ya) then the functional mosaic reduces to a mosaic of topological spaces.

Whenever the collection reduces to one triplet ( F, §,/) compatibility becomes

the following: for all EC Y, if £G§ then f~xf(E) GS. In this case/is said to be
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self-compatible for the topology S. We remark that a decomposition 3D of a

topological space (Y, S) is upper semi-continuous if and only if the projection

function /: Y—>3D is self-compatible.

For any such collection \(Ya, S„, /a):aG^4), compatible or otherwise,

a topology 3 may be defined on its range set X = \}{fa(Ya): aCZA) in the

following standard manner: for all ECZX, £G3 if and only if fa~l(E)CZ&a for

all aCEA. Then 3 is the finest topology on X ior which each function /„ is

continuous. A collection of topological spaces {(Xa, 30):aG^4} covering X

is obtained as follows: for all aG^4, Xa=fa(Ya) and for all ECZXa, £G3a if

and only if fa1(E)CZSa. An expanded collection of topological spaces

} (X0, 30): bCZB} covering X is similarly obtained. Let B consist of all ordered

pairs (a, E) such that aG^4 and £GSa. For b = (a, E)CZ-B define Xb=fa(E),

and define the topology 3b on Xh by demanding, for all FCZXb, that FG3& if

and only if/i"1(F)G§a. In particular, if b = (a, Ya) for someoGi then Xb = Xa

and 3& = 3a. Another topology 3' may be defined on X by taking as a sub-base

for the closed sets the collection {/„(£) :aG^4; £G§a}. The topology 3' is

the coarsest topology on X for which each /„ is a closed function. Implicit in

the definitions introduced is the first lemma.

3.2. Lemma. For the structures defined above the following statements hold:

(a) for all ECZX, ECZ3 if and only if EC\XaCZ3afor all aCZA;
(b) for all ECZX, aCZ-A, if ECZ3a then £G3';
(c) for all ECZX, aCZA, if ECXa and £G3 then ECZ3a;
(d) for all ECX, bCZB, if EQXb and EC£3 then ECZ3b.

The first theorem gives several necessary and sufficient conditions for a

collection of triplets to be a functional mosaic.

3.3. Theorem. Let {(Ya, §„, ff): aCZA } be a collection of triplets satisfying

the conditions (i) and (ii) of (3.1). Then the following statements are equivalent:

(a) each function fa is closed and continuous for the topology 3;

(b) {(Ya, Sa, fa) '■ aCZA } is a functional mosaic;

(c) 3 is finer than 3';

(d) for all aCZA, 3 and 3' relativized to Xa coincide with 3a;

(e) each function fa is closed and continuous for the topology 3';

(i) for the covering {(Xb, 3b): bCZ-B) of X, Xhr\Xv^Zv for all b, b'EB;
(g) each function fa is self-compatible for the topology Sa, and {(Xa, 3a):

a(~A } is a mosaic of topological spaces.

Proof. (a)->(b). Let £GSa, then/a(£)G3 by (a), and so/^/(£)GV by

the continuity of/»'.

(b)—>(c). Let £G§o so that/„(£) is a typical element of the sub-base for

3'. Then f^fa(E)CZ§>a' for all a'G^4. Therefore/a(£)G3 by definition.

(c)-»(d). Let £G3a, then £G3' by (3.2.b), and so £G3 by (c), which

implies £G3a by (3.2.c).
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(d)—>(e).  It is sufficient to show that each /„ is 3'-continuous. Let £G§a'

so that/a'(£) is a typical element of the sub-base for 3'. Then fa'(E)r\fa(Ya)

=fa,(E)r\XaCj7>'.  By  (d)  the topologies  3 and  3' coincide on Xa, hence

fa1\fa'(E)<~\Xa\=faxfa'(E)CjiS>cL by the 3-continuity of /„. Hence each/, is

3'-continuous.

(e)—>(a). It is sufficient to show that each fa is 3-closed. Let £GS0, then

/«.(£) G 3' by definition, and so fj%(E) &a' by (e). Thus/„(E)G 3 by defini-

tion, and each/, is 3-closed.

(c)—>(f). By definition Xh and Xv are 3'-closed, and therefore 3-closed by

(c). Hence .XVYXVG3, and so Xbr\Xb.G3b> by (3.2.d).
(f)—>(c). Let £ be an element of the sub-base for 3', then E = Xh for some

&G73. Hence Er\Xa€JX tor all afjA by (f), implying EG3 by (3.2.a).
(b)—>(g). If (b) holds then obviously each function /„ is self-compatible.

Now (b) is equivalent to (f), so if £G3„ thenE=Xb for o = (a,/0_1(£)) and

Xa.=Xv for b' = (a', F„-). Hence EC\Xa. =Xbr\Xb,fj3v = 3a'.

(g)—>(b). If EG§a then/a(E)G3a since/o is assumed to be self-compatible.

Then/0(£)nXa-G3^, and so fA\fa(E)r\Xa']=fj'1fa(E)&a..
If the collection of triplets is specialized to one triplet the following corol-

lary is immediate.

3.4. Corollary. Let f be a function from the topological space (Y, S) onto

the set X. Then the following conditions are equivalent:

(a) the function f is self-compatible for the topology S;

(b) for the topologies 3 and 3' defined above, 3 = 3';

(c) the collection of triplets {(E, SB, /«): £G§}, where $B is 5> relativized to

the S-closed set £ and fB is f restricted to £, is a functional mosaic.

Heretofore in constructing a mosaic space we have used a mosaic of com-

pact metric spaces. The next theorem shows that there is considerable free-

dom in the construction of such a space, for either a mosaic of topological spaces

or a functional mosaic may be employed, in which the topological spaces

of the mosaic are metric, first countable Hausdorff, etc., or ultimately merely

mosaic spaces.

3.5. Theorem. Let {(Ya, S„, fj): afj.A } be a functional mosaic, for which

each (Ya, §>j) is a mosaic space. Let 3 be the finest topology on the range set

X = \J {/„( Yj): aC£A } for which each function /„ is continuous. Then (X, 3) is a

mosaic space.

Proof. For each aG^4 let {(Yap, Sap): pGEa} be a mosaic of compact

metric spaces on Ya which determines the topology Sa. For each aC£A, pfj.Pa,

let Xap =fa( Yap) and define the topology 3op on Xap by demanding, for all

FCjXap, that EG3op if and only if frl(F) £S„. Since each Yap is an S„-closed

subset of Ya it follows that \(Xrr, l.:p): aCjA; PEP,.} is a subcollectinn of

the covering {(Xb, Sj): bCjB] which has been previously introduced. From
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condition (f) of (3.3) it follows that {(Xap, 3ap): aCZA; pCEPa} is a mosaic of

topological spaces on X. Since each /„ is self-compatible for the topology S0

it follows that (Xap, 3ap) is the closed, continuous image of the compact metric

space (Yap, $>ap) under fap, where fap is/„ restricted to Yap. Therefore each

(Xap, 3ap) is a compact metric space.

From the mosaic of compact metric spaces \(Xap, 3ap): aCZA; pC£Pa}

there is obtained the associated mosaic topology 30 in the usual way: for all

ECZX, £G30 if and only if EC\XapCZ3aP for all aG^4, pCZPa. The proof is

completed by showing that 30 = 3. Now £G3 if and only if fa~l(E)CE§>a for all

aCZA. Since for each fixed aG^4 the mosaic of compact metric spaces

{(Yap, Sap): pCZPa] determines the topology S„ on Ya it follows that £G3 is

equivalent to/a-1(F)'^F0p=/a"p1(£nZ<Jp)GSaj, for all aCZA, pGF„. But a sub-

set F of Xap is 3ap-closed if and only if f~p (F)CESap. Therefore £G3 if and

only if £F\XapG3„j, for all aCZA, pCZPa, and so 3o = 3.

By specializing to one triplet (Y, S, /) and observing that then the condi-

tions of the above theorem are that / be closed and continuous for the topol-

ogy 3 on/(F), the following corollary results.

3.6. Corollary. Let f be a closed, continuous function from the mosaic

space (Y, S) onto the topological space (X, 3). Then (X, 3) is a mosaic space.

By relaxing the properties of / from closed and continuous to quasi-

compact, namely £G3 if and only if/_1(£)GS, and adding a "separation"

property to the topology of the range space we again get the mosaic property

to carry over.

3.7. Theorem. Let f be a quasi-compact function from the mosaic space

(Y, S) onto the topological space (X, 3) for which it is assumed that $(3)-

convergent sequences have unique limits. Then (X, 3) is a mosaic space.

Proof. By (2.3) it is sufficient to show that the topology 3 is full. Assume

that ECZX is not 3-closed, then/_1(£)G§ since / is quasi-compact. Since S

is full by (1.3) there exists a sequence S such that SjCZf~l(E) and 5 converges

($(S)) to ydf~l(E). By the continuity of/ the sequence fS converges ($>(3))

to/(y); in addition fSjCZE and f(y)C£E. We conclude that 3 is full.

Next, a useful converse to the above theorem is given.

3.8. Theorem. Every mosaic space is the quasi-compact image of a suitable

locally compact metric space.

Proof. Let (X, 3) be a mosaic space whose topology is determined by the

mosaic of compact metric spaces {(Xa, 3a): aCZA }. Let M= {(a, x): aCEA ;

xCEXa}, observe that M = U { Ma; aCEA } where the Ma-sets are disjoint copies

of the AT„-sets. Define/: M-*X by demanding that/(a, x)=x for all (a, x) CE M.

Provide Af with a topology such that / restricted to Ma is a homeomorphism

onto Xa, ior all aCEA, and each set Ma is both open and closed in the topology.
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Then it is easily seen that M is a locally compact metric space, and that/ is

quasi-compact. (Compare this with Cohen's result for ^-spaces [3, Theorem

1.8].)
3.9. Example. Recently Stone has shown [10, Theorem 3'] that if

/: M—*X is a quasi-compact function from the locally compact, metric space

M onto the first countable, paracompact, Hausdorff space X then X is

locally compact and metric, provided the frontier of each set of the form

f~l(x) is separable, and then raises the question as to whether the frontier

hypothesis is superfluous. We now indicate that this is not the case. Let X

be any space which is first countable, paracompact, and Hausdorff, but which

is not metric. By (2.4) it is a mosaic space, and so by (3.8) it is the quasi-

compact image of a locally compact, metric space.

4. Hereditary mosaic spaces. A metric space, for example, has the heredi-

tary property that each subspace is a metric space. By analogy the question

arises as to whether a mosaic space is hereditary in the sense that each sub-

space is a mosaic space, for which the answer is in general negative. The

following material centers around this consideration.

4.1. Theorem. If Y is a 3-open or 3-closed subset of a mosaic space (X, 3)

with the relative topology S then (Y, S) is a mosaic space.

Proof. Since <!>(3)-convergent sequences have unique limits by (1.6) it

easily follows that <S>(S)-convergent sequences have unique limits. By (2.3)

the proof is complete once it is shown that S is full.

Assume that FG3, and for £CF assume that £G*"I)(S). Let 5 be a

sequence such that SjCZE and 5 converges ($(3)) to x. Since FG3 and

£C Y we have xCE Y, and so 5 converges ($(S)) to x. But it can be shown

that <$(§) =$^r<I,(S), and so 5 converges $^F$(S) to x, implying that xCEE

since £G^*(S). Thus £G^$(3), and so £G3 by (1.3). We conclude that
£GS, and so S is full.

Alternatively, assume that Y is 3-open and for £CF assume that £ is

^f$(S)-open. Let 5 be a sequence which converges ($(3)) to xCEE. Since Y

is 3-open the sequence 5 is eventually in Y, and so it converges (<£(§)) to x.

By the assumption that £ is ^r$(S)-open the sequence 5 is eventually in £.

Therefore £ is \M?(3)-open, and so 3-open by (1.3). We conclude that £ is

S-open, and so S is full.

Next, we give an example of a mosaic space in which not every subspace

is a mosaic space.

4.2. Example. Let X be the subset of the plane consisting of the union

of arcs, AT = U{Ar„:ra = 0, 1, 2, • • • }, where XQ={(x, y):0^jc^l; y = 0}

and for « = 1, 2, • • • , X„= j (x, y): x = l/n; O^y^l}. Take this collection

of arcs \Xn: re = 0, 1,2,--- } with their usual metric topologies as a mosaic

of compact metric spaces on X and generate accordingly the associated mosaic

topology 3. Then the point (0, 0) is a 3-accumulation point of the set Y
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= U{ F„: w = l, 2, • • • } where Yn={(x, y):x = l/n; 0<y^l}, but no se-

quence in Fconverges ($(3)) to (0, 0). Consequently the set F'= {(0. 0)} WF

with its relative topology S is not a mosaic space, since {(0, 0)} is not S-open

but is open for the full-refinement SM^S).

Clearly in any mosaic space the class of mosaic subspaces is partially

ordered by set inclusion. Nevertheless, no decent lattice properties need ob-

tain, as this example demonstrates. Y and {(0, 0)} are mosaic subspaces

but their union Y' is not a mosaic subspace. Let Z' = 0{Zn: w = l, 3, • • • }

WF' and Z" = U{Z„:w = 2, 4, • • • JUF', where Zn={(x, y):l/(n + l)<x

<l/w; y = 0} for w = l, 2, • ■ • . Then Z' and Z" are mosaic subspaces but

ZT\Z" = Y' is not a mosaic subspace. Let Z= {(x, y): 0 < x _j 1; y = 0 }. Then

Z is a mosaic subspace but X — Z= Y' is not a mosaic subspace.

Pursuing the counterexample further, we now indicate that (X, 3) is the

image of the half-line [0, «) with the usual metric topology under a quasi-

compact function that is defined as follows: (i) f(x) = (x, 0) for O^x^l;

(ii) f(x) = (1/n, x-3w + 2) for 3w-2 ^x^3w-l; (iii) /(„) = (l/w, 3w-x) for

3w-l^x^3w; and (iv) f(x) = ([4w + l -x]/[n2+n], 0) for 3w^x^3w + l.

In order to prove that/ is quasi-compact we must show that/ is continuous

and that for all ECjX if EG3 then/_1(£) is not closed for the metric topology

on [0, qo). But continuity is obvious, and if £G3 then there exists an arc

Xn of the mosaic such that EC\Xn is not closed for this arc's topology. Then

clearly f~l(E) is not closed for the metric topology of [0, <»).

The situation under which this subspace difficulty disappears is expressed

by the next theorem.

4.3. Theorem. Let (X, 3) be a mosaic space, then it is hereditary if and

only if the following statement holds: for every set £ and point x in X if x is a

3-accumulation point of E then there exists a sequence S such that SjCjE and S

converges ($(3)) to x.

Proof. Assume that there exists a set £ and a point x in X such that

x is a 3-accumulation point of £ but no sequence in £ converges (4>(3)) to x.

On the set EKJ {x\ let S be the relative topology, then 5 converges ("!?(§)) to

y if and only if it converges (3>(3)) to y, for all 5 and y in £W{x}. Now the

set {x} is not S-open as x is an S-accumulation point of E, but it is open in

the full-refinement ^r_'(S) of S since the only sequences which <£(S)-converge

to x are those which are eventually in {x}. We conclude that S is not full,

and so (E\j{x}, S) is not a mosaic space by (1.3).

Conversely, assume for every set £ and point x in X that if x is a 3-

accumulation point of £ then there exists a sequence 5 such that SjCjE and

S converges ($(3)) to x. Let (F, S) be a subspace of (X, 3). Since uniqueness

of limits carries over for the convergent sequences of a relative topology it is

sufficient to show that S is full in order to complete the proof by (2.3). For

£CF assume that £G^"J'(S).  Let  £ be the  3-closure of £, then clearly
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ECZEC\Y. Now suppose that there exists an xCE(EC\Y)—E. Since x is a

3-accumulation point of £ there exists by hypothesis a sequence 5 such that

SjCZE and S converges ($(3)) to x. Since xCE Y, ECZ Y it follows that 5 con-

verges (<£(S)) to x. Since £G^"1,(S) we have xCEE. Therefore a contradiction

is reached, which implies that EC\YCZE. We conclude that £GS, and so S

is full.
Under a restriction the hereditary property carries over for a functional

mosaic, as the subsequent theorem shows.

4.4. Theorem. Let {(Yn, Sn, /„): ra = 1, • • • , N} be a finite functional

mosaic, for which each (Yn, S„) is an hereditary mosaic space. Let 3 be the finest

topology on X = (j{fn(Yn): w = l, • • • , N} which makes each function fn con-

tinuous. Then (X, 3) is an hereditary mosaic space.

Proof. By (3.5) it suffices to prove the hereditary property. We may as-

sume that the sets Yn are pairwise disjoint. Let F = U{ F„: w = l, • ■ • , N]

and define a topology S on Y by demanding that each F„ be open and closed

in S, and that S relativized to Yn be Sn. Define /: Y—>X by f(y) =/„(y) for

yG Yn. Then (Y, S) is an hereditary mosaic space and/is a closed, continuous

function onto X. Thus the proof reduces to showing that the hereditary prop-

erty carries over under a closed, continuous function.

For £ and x in X assume that x is a 3-accumulation point of £. For/_1(£)

and/_1(x) in Yassume for every yCEf~l(x) that there exists a set F„C Fsuch

that F„GS, f'1(E)CFy and yC£Fy. Then F=\~){Fy:y€f-1(x)} is S-closed,
f~l(E)CZF, and/_1(x)nF = 0. Therefore/(F) G3 since / is a closed function,

ECZf(F), and xCEf(F). But this contradicts the assumption that x is a 3-

accumulation point of £, and so there exists a yCEf~x(x) such that for all

GCZY, if GGS and/_1(£)CG then yCEG. Thus y is an S-accumulation point

of f~l(E), and since (Y, S) is hereditary by (4.3) there exists a sequence 5

such that SjCZf~1(E) and S converges ($(§)) to y. Since/ is continuous the

sequence fS converges ($(3)) to f(y)=x. In addition, fSjCZE. By (4.3) the

space (X, 3) is hereditary.

Since the example of (4.2) furnishes a nonhereditary mosaic space which

is the quasi-compact image of an hereditary mosaic space it is in general not

possible to carry over the hereditary property under a quasi-compact func-

tion. At the same time (4.2) yields a counterexample to the generalization of

(4.4) to infinite functional mosaics, for the countable collection of functions

{/„: ra = 1, 2, • • • }, where each/n is/of (4.2) restricted to the closed interval

[ra — 1, ra], provides an infinite functional mosaic for which each domain space

is an hereditary mosaic space, yet the range space is not hereditary.

5. Maximal mosaics. Let Ibea fixed set and let 9JJ be the collection of

all mosaics of compact metric spaces on X; the collection 50c is clearly par-

tially ordered by set inclusion. Let 9? be a chain of mosaic? in Ti. Since the

element 31' = U { 91: 31G 9J} satisfies the compatibility condition it is a mosaic
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of compact metric spaces which is an upper bound for the chain of mosaics

9L By Zorn's lemma we conclude that there exists a maximal mosaic in 2U.

Now let 3TC be such a maximal mosaic, and let 311/ be its full-extension, namely

the mosaic of all compact metric subspaces of the mosaic space generated by

3TI. Since 3TC is maximal and 3TCC3TC/ we have 311 = 3TC/. Therefore every

maximal mosaic is full. Let 2U he the collection of convergence classes previ-

ously defined, and partially ordered it by set inclusion. By reasoning analo-

gous to the above there are maximal elements in 8„.

By observing according to (1.8) that in a mosaic space every countably

compact set is closed we obtain the following result, whose easy proof will be

omitted.

5.1. Lemma. Let (X, 3) be a mosic space and let $ be a topology on X which

is.properly finer than 3. Then (X, S) is not countably compact.

5.2. Theorem. Let (X, 3) be a mosaic space, 3TC its full mosaic of compact

metric subspaces, and $(3) its derived convergence class. Then the following

statements are equivalent:

(a) the topology 3 is countably compact;

(b) the full mosaic 9TC is maximal in SJc;

(c) the convergence class $(3) is maximal in ?„.

Proof. (a)«-»(b). Assume that (X, 3) is not countably compact. Since

(X, 3) is a Ei-space there exists a countable subset F which has no 3-ac-

cumulation point. Then by (1.4) the set YC\X0 consists of at most a finite

number of points, for every (X0, 3o)G3U. By arbitrarily endowing F with

a compact metric topology S there is obtained a space ( Y, S) which is compati-

ble with every (X0, 3o)G3TC, and for which (F, S)GSmI- Therefore 3TC is not

maximal.

Conversely, assume that the full mosaic 3TC is not maximal so that there

exists a compact metric space (F, S) which is compatible with every element

of 311, but for which (F, S)G9TC. so that (Y, S) is not a subspace of (A", 3).

By compatibility, for all ECF, if EGS then EG3. Therefore 3Y is properly

finer than S, where 3y is 3 relativized to Y. By (5.1) the space (F, 3r) is not

countably compact, implying that Fis not 3-countably compact. Since FG3

we conclude that (X, 3) is not countably compact.

(a)«-»(c). By (1.7) it is sufficient to show that $(3) is sequentially com-

pact if and only if (c) holds. Observe that $(3)G?« by (1.6). Assume that

$(3) is sequentially compact and let £ be a convergence class such that

<£(3)C£G?u- Now let the sequence S converge (£) to x, and let S' <S so

that S' converges (£) to x. Since $(3) is sequentially compact there exists a

sequence S" such that S" <S' and S" converges (<i>(3)) to some y. Since

3>(3) C£ we have that S'.' converges (£) to y. On the other hand, S" converges

(£) to x since S" <S' <S, and so x = y by £G?«- Since every subsequence
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of S has a subsequence which converges ($(3)) to x we conclude that 5

converges (*(3)*) to x. But 3>(3) =S>(3)*, and so £C*(3). Therefore *(3) is

maximal in 2U.

Conversely, assume that $(3) is not sequentially compact so that there

exists a sequence 5 such that every subsequence converges ($(3)) to no point

in X. To this sequence and its subsequences arbitrarily assign a limit xCEX.

Let £ be the convergence class consisting of the $(3)-elements to which have

been added the subsequences of 5 with the limit x. Then £CE2U, and in addi-

tion it is properly larger than $(3). Therefore $(3) is not maximal in ?„.

We now turn to the compactification problem. Let (X, 3) be any topologi-

cal space; to X add the point x' and on X' =X\J\x') define a topology 3' by

demanding for all ECZX' that £ is 3'-open if and only if either £ is 3-open

or X' — E is 3-closed and 3-countably compact. Then (X', 3') is a countably

compact topological space, (X, 3) is an open subspace, and (X', 3') is Haus-

dorff only if (X, 3) is Hausdorff and locally countably compact. The justifi-

cation of these statements will be omitted, as it is analogous to that of results

for the Alexandroff compactification [7, Chapter 5].

5.3. Theorem. Let (X, 3) be a topological space and let (X1', 3') be its one

point countable compactification. Then (X', 3') is a mosaic space if and only if

(X, 3) is a mosaic space.

Proof. Assume that (X', 3') is a mosaic space. Since (X, 3) is an open sub-

space it follows from (4.1) that it is a mosaic space. Conversely, assume that

(X, 3) is a mosaic space. Let 5 converge ($(3')) to x and to y. If x, yCEX then

x=y by (1.6) and the fact that (X, 3) is an open subspace. li y=x' and xCEX

then SjVj{x} is 3-closed and 3-countably compact. Thus X'— (SjKj{x}) is

a 3'-open set containing y, and the<£(3')-convergence of 5 to y is denied. We

conclude that limits of <I>(3')-convergent sequences are unique. By (2.3) the

proof is completed once it is shown that 3' is full.

Let ECZX' be a set which is not 3'-closed. If x'SE then X' — E is not

3-open, which implies by (1.3) that there is a sequence S ior which SjCZE

— \x'\ and 5 converges ($(3)) to xCEX'—E. Therefore SjCZE and 5 con-

verges ($(3')) to xC£E. Alternatively, if ECZX then £ is not 3-countably

compact by (1.8), and so there exists a countable set FCZE such that F has

no 3-accumulation point in £. If F has any 3-accumulation point yCEE, then

clearly £ is not 3-closed and we can again find a sequence 5 in £ which con-

verges ($(3)), and so also converges ($(3')), to a point xC£E. If F has no

3-accumulation point let S be a sequence such that Sj = Sk if and only ii j = k

and Sj = F. Then S converges ($(3')) to x'&E, for if G is a 3'-open set con-

taining x' then X' — G is 3-countably compact, which implies that all but a

finite number of terms of S are in G. We conclude that 3' is full.

The next result yields information on the embedding of mosaic spaces

in compact mosaic spaces.
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5.4. Corollary. Let (X, 3) be a mosaic space and let (X1', 3') be its one

point countable compactification, then the following statements are equivalent:

(a) the space (X1', 3') is compact;

(h) there exists a compact mosaic space (Y, S) such that (X, 3) is a subspace;

(c) for every ECjX, if £ is 3-countably compact then it is 3-compact.

Proof. The implication (a)—>(b) is obvious. By (1.8) the implication

(b)—>(c) follows easily. If (c) holds then the definition of 3' becomes the

following: £ is 3'-open if and only if £ is 3-open or X' — E is 3-closed and

3-compact. But this is just the definition of the Alexandroff one point com-

pactification of a space, and so (a) follows.

That there exists a mosaic space for which the conditions of (5.4) do not

hold is given by the following standard example.

5.5. Example. Let X he the set of all countable ordinal numbers, endowed

with the order topology. This space is Hausdorff, first countable, and count-

ably compact, but not compact [7, Chapter 5]. Since it is Hausdorff and

first countable it is a mosaic space by (2.4).

By definition a subset £ of a topological space (X, 3) is conditionally

countably compact if and only if every infinite subset of £ has a 3-accumula-

tion point. It is, of course, desirable for every such set to have countably

compact closure. The next theorem shows that the embedding of mosaic

spaces in hereditary countably compact mosaic spaces is related to this prop-

erty.

5.6. Theorem. Let (X, 3) be a mosaic space and let (X', 3') be its one point

countable compactification. Then the following statements are equivalent:

(a) the space (X', 3') is an hereditary mosaic space;

(b) there exists an hereditary, countably compact mosaic space (Y, S) such

that (X, 3) is a subspace;

(c) the space (X, 3) is hereditary, and every conditionally countably compact

subset has countably compact closure.

Proof. The implication (a)—>(b) is obvious. Now let (b) hold. Then clearly

(X, 3) is hereditary. Let ECjX he 3-conditionally countably compact, and

let E' and E" he respectively the 3-closure and the S-closure of E. In order

to prove that E' is 3-countably compact it is sufficient to show that E" CjE',

since (F, S) is countably compact. Let xGE", then by (4.3) there exists a

sequence 5 such that SjCjE and 5 converges ("!>(§)) to x since (F, S) is heredi-

tary. If Sj is finite then obviously xCjECjE'. If Sj is infinite then it has a

3-accumulation point. We can thereby construct a sequence S' such that

S' <S and S' converges (<1>(3)) to some yCjX. Then S' converges (_•(§)) to x

since S' <S, and S' converges (<£(S)) to y since (X, 3) is a subspace of (Y, S).

By (1.6) we have x=y. Since Sj CE it follows that yE.E', and we conclude

that £"C£'- Therefore (b)->(c).
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To show that (c)—*(a) holds it is sufficient to prove that if x' is a 3'-

accumulation point of ECjX', then there is a sequence 5 in £ which converges

(*(3')) to x'. If x'GE this is obvious. Alternatively if £C^" then EC\G^0

for every 3'-open set G which contains x'. This implies that £ is contained in

no 3-countably compact set, and so the 3-closure of E is not countably com-

pact. By (c) it follows that E is not conditionally countably compact, and so

there exists a countable set ECE with no 3-accumulation point. Let S be

a sequence such that Sj = Sk if and only iij = k and Sj = F. Then S converges

($(3')) to x', and we conclude that (c)—»(a).

The following example gives an hereditary mosaic space which does not

satisfy the conditions of (5.6).

5.7. Example. Let X he the plane set {(x, y):0^x^l; O^yjSl}, and

define a topology 3 by the following system of local bases: for each (w, v)Cj.X0

= {(x, y): 0^x5=11; y = 0J a local base consists of all sets of the form

{(w, v)}\J(E — Xj), where £ is a neighborhood of (w, v) in the usual metric

topology; for each (u, v)C£X — X0 a local base consists of the usual metric

neighborhoods. Then (X, 3) is a first countable, Hausdorff space and is there-

fore an hereditary mosaic space. The set X — X0 is conditionally countably

compact but its closure, which is X, is not countably compact as X0 is an

infinite discrete set.

6. Separation properties. As previously noted, every mosaic space is a

Ei-space. In general this cannot be strengthened, for we next construct a

compact hereditary mosaic space which is not Hausdorff.

6.1. Example. Let X he the union of a countable number of distinct

arcs Xn, which pairwise intersect in a single common end point Xo only. Let

this collection of arcs, each of which has the usual topology, determine the

mosaic topology 3 on X. Then each point x€£X such that X5^x0 has the usual

metric local base. A local base at x0 consists of all sets of the form

Uj Yn: w = l, 2, • • • }, where each Yn is a nondegenerate subinterval of Xu

which contains x0. Then the mosaic space (X, 3) has the following properties:

(i) it is hereditary and every conditionally countably compact subset has

countably compact closure; (ii) every countably compact subset is compact;

(iii) the space is not locally countably compact at x0. Now let (X1', 3') he the

one point countable compactification of (X, 3). By (i) and (5.6) this space is

an hereditary mosaic space; by (ii) and (5.4) it is compact; and by (iii) and

a remark just preceding (5.3) it is not Hausdorff.

In addition, we remark that according to (5.1) this example provides a

compact, nonHausdorff space for which each properly finer space is not

countably compact, and thereby not compact. This answers affirmatively a

question which has been raised by Vaidyanathaswamy [ll, Preface].

7. Cartesian products. If two mosaic spaces (X, 3) and (F, S) are first

countable then clearly their Cartesian product (XXY, 3XS) is a mosaic

space. If the situation is made less stringent then the product need not be a
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mosaic space, for a result due to Dowker [5, page 563] shows that the product

of the hereditary mosaic space (X, 3) of (6.1) and the analogous hereditary

mosaic space obtained by using a collection of arcs of the power of the con-

tinuum is not a mosaic space. Since obviously uniqueness of limits of con-

vergent sequences carries over to the product of two mosaic spaces the diffi-

culty lies in the fact that 3XS may fail to be full. This leads to the mosaic

space (XX Y, *$(3XS)), obtained by refining 3XS. We remark that this

finer topology can be described as follows: let {(Xa, 3a): aCEA } be any mosaic

of compact metric spaces on X which determines the topology 3, and let

{(Yb, Sb): bCEB) be any mosaic of compact metric spaces determining S on

Y, then the mosaic of compact metric spaces {(XaX Yb, 3„XS6): aG^4 ; bCEB }

on XX Y determines the topology ^f$(3XS). This is the so-called weak prod-

uct topology; see Cohen [2] for related material.

Given a fixed mosaic space, if the demand is made that its Cartesian

product with any mosaic space be again a mosaic space, then necessary and

sufficient conditions can be found. To this end there is exploited the fact that

a mosaic space is the quasi-compact image of a suitable locally compact metric

space; we proceed with a lemma which is a slight modification of a result due

to Whitehead [12, Lemma 4].

7.1. Lemma. Letf: P—*X be a quasi-compact function from the topological

space (P, 3TC) onto the topological space (X, 3), and let (Y, S) be a topological

space. Then the function /Xi: FX F->IX Y, defined by (fXi)(p, y) = (f(p), y)
for all (p, y)CEPX Y, is quasi-compact for the Cartesian product topologies on

PX Y and XX Y, provided either one of the following two conditions holds:

(a) the space ( Y, S) is locally compact and regular;

(b) the space (Y, S) is a locally countably compact, regular mosaic space and

(P, 3U) is first countable.

Proof. If (a) is assumed then the lemma is a special case of Whitehead's

result. To prove the lemma for (b) we use the Whitehead method with a

suitable modification. Let £ be an open subset of PX Y which is saturated

with respect to fXi, namely (fXi)~1(fXi)(E) =£, and let (x0, yo)CE(fXi)(E).

Then it is sufficient to show that there are open sets UCZP and VCZ Y such

that U is saturated with respect to / and (x0, yo)CEf(U)X VCZ(fXi)(E). Let
poGF'W and let ({po} X F)H£= {po} X F0. Then F0 is an open subset of

Y for which y0CE F0. By (b) there is an open subset VCZ Y such that yoG F

and V, the closure of V, is a countably compact subset of F0. Let U be the

set of all points pCEP such that {p} XVCZE. Then p0G U and UXVCZE,
hence (x0, yo)Ef(U)XV=(fXi)(UXV)Q(fXi)(E). Since it can be shown

that U is saturated with respect to/ the lemma follows once it is shown that

U is open.

Now let pCEU, then \p] XVCZE. Let {£,-: i = l, 2, • • • } be a local base

of open sets at p in the first countable space (P, 9TC). Assume for every i that
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E.-XFCjIE, then there exists a sequence 5 in PX Fsuch that -SVC (EX Y)—E,

Sp converges ($(311)) to p and SjC V, where Sj=(Sf, Sj) tor all jCjJ. Since

V is countably compact, by (1.7) we can extract a subsequence E of S such

that TY converges ($(S)) to some yG V. Consequently T converges in the

product topology to (p, y)E {p} XVCjE. But E is in the closed set (PX Y)

—E and so cannot have any limit in E. By this contradiction there exists

an Fi such that FiX VCjE. Hence EjC U, and we conclude that U is open.

7.2. Theorem. Let (X, 3) be a fixed mosaic space, then its Cartesian product

with each mosaic space (Y, S) is a mosaic space if and only if (X, 3) is locally

countably compact and regular.

Proof. Let (X, 3) he a locally countably compact, regular mosaic space,

and let (Y, S) be an arbitrary mosaic space. By (3.8) there exist locally com-

pact metric spaces (P, 3H) and (Q, 31) such that/: P—*X and g: Q—*Y, where

/ and g are quasi-compact and onto. Now define fXg: PXQ—*XX Y by

(/Xg)(p, q) = (f(p), g(q)) tor all (p, q)<EPXQ. Since limits of sequences in

XX Y which converge according to the product topology are clearly unique

it follows from (3.7) and the fact that the product of two metric spaces is

obviously a mosaic space that JX F with the product topology is a mosaic

space, once it is shown that fXg is quasi-compact.

Now write fXg = (iXg)(fXi) where fXi: PXQ^XXQ and iXg:
XXQ—>XXFare defined in the obvious way. By hypothesis (a) of (7.1) as

applied to (Q, 31) the function fXi is quasi-compact; by hypothesis (b) of

(7.1) as applied to (Q, 31) as the first countable space and (X, 3) as the locally

countably compact, regular mosaic space the function iXg is quasi-compact.

Therefore fXg is quasi-compact, since it is the composition of two quasi-

compact functions.

Conversely, assume that (X, 3) is not locally countably compact. Let

(X', 3') be its one point countable compactification, which is a mosaic space

by (5.3). By a remark just preceding (5.3) this latter space is not Hausdorff;

indeed, if x' is the point added to X in order to obtain X', then there is an

XoGX such that for every pair of 3'-open sets Ei and £2 if x0G£i and x'C£E2

then EiO£2 5^0. Let XXX' he endowed with the product topology and define

D'CjXXX' by D'= {(x, x):xG-^}- Then (x0, x') is an accumulation point

of D' in the product topology, but (x0, x') G7?', and so D' is not closed. On

the other hand, every sequence in D' which converges according to the

product topology has its limit in D'. Since the product topology is not full we

conclude that XXX' is not a mosaic space.

Alternatively, assume that (X, 3) is not regular, so that there exists a

point Xo and a closed set F such that XoGT7 and for every pair of open sets

£i and £2 if x0G£i and FCjE2 then EiC\E2^0. In X define an equivalence

relation such that the equivalence classes are E and all sets of the form {x},

where x GE. Let (X", 3") be the ensuing quotient space; since the projection
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function from X onto the quotient space is closed and continuous it follows

from (3.6) that (X", 3") is a mosaic space. Endow XXX" with the product

topology, and define D" = {(x, {x}): x&F) Kj\ (x, F): xCEF]. Then D" is not

closed in the product topology, as (x0, F) is an accumulation point of D"

which is not contained in D". In contradistinction, every convergent sequence

in D" has its limit in D". We conclude that the product topology is not full,

and so XXX" is not a mosaic space.

8. Function spaces. Let (F, 9TC) and (Z, 31) be £*-spaces, and let ZY be

the class of sequentially continuous functions defined on Y and taking values

in Z. On ZY a convergence class 3C may be defined as follows: a sequence R in

ZY converges (X) to fCEZY if and only if for every sequence 5 and point y in

F if 5 converges (9TC) to y then the sequence T defined by Tj = Rj(Sf) for all

jCEJ converges (31) to/(y) in Z. This is the concept of continuous convergence

for which Kuratowskl [8] has proved the following facts: (i) (ZY, X) is an

£*-space; (ii) for any £*-space (X, £) and any function h: XX Y—>Z, h is

sequentially continuous for the product convergence class £ X9TC and 31 if and

only if h*:X—>ZY is sequentially continuous for £ and X, where h*(x)(y)

= h(x, y) for all xCEX, yCEY; (iii) the function w:ZYXY^Z defined by
w(/> y) =/(y) is sequentially continuous for 3CX9TC and 31. In general con-

tinuous convergence involving sequences is not equivalent to continuous

convergence involving more sophisticated convergence objects, such as

directed sets [l].

In contrast, let (X, (R), (Y, S) and (Z, 3) be mosaic spaces with their cor-

responding £*-spaces (X, *(<Jt)), (F, $(S)), and (Z, $(3)). The fact that S is

a full topology guarantees that any function /: Y—>>Z is continuous for the

topologies S and 3 if and only if it is sequentially continuous for the conver-

gence classes 3>(S) and i>(3); we may thereby identify the class of topologi-

cally continuous functions with the class of sequentially continuous functions.

From $(S) and $(3) there is obtained the continuous convergence class X

on the class of continuous functions ZY. Since the uniqueness of <I?(3)-limits

easily implies that JC-limits are unique, it follows that (ZY, X) is an £u-space;

this yields the corresponding mosaic space (ZY, 3m), where 3m = <^(X). As

previously observed, the Cartesian product of two mosaic spaces need not

be a mosaic space, but if this product is replaced with the weak product then

Kuratowski's results for £*-spaces have exact analogs for mosaic spaces:

(i') (ZY, 3m) is a mosaic space; (ii') for any mosaic space (X, (R) and any func-

tion h: XX Y—*Z, the function h is continuous for the topologies SM?((RXS)

= ■#(<£■(&) X<I)(S)) and 3 if and only if h*: X—>Zr is continuous for the topol-

ogies (R and 3m; (iii') the function co: ZYX Y-^Z is continuous for ^$(3mX§>)

= ,$r(3CX$(S)) and 3. In particular, if (Y, S) is locally countably compact and

regular then by (7.2) weak products coincide with Cartesian products and

3m is thereby entirely adequate as a function space topology in the sense

that the continuity of h is equivalent to the continuity of h* for mosaic spaces,



1959] MOSAICS OF COMPACT METRIC SPACES 545

without recourse to weak products. We now relate this material to the com-

pact-open topology.

8.1. Lemma. Let (Y, S) be a mosaic space and let (Z, 3) be a topological

space. On the class ZY of continuous functions from Y to Z let 3co be the compact-

open topology and let X. be the continuous convergence class derived from the

convergence classes $(S) and $(3). Then $(3co) = X.

Proof. Assume that R does not converge ($(3co)) to ff£ZY. By the defini-

tion of the compact-open topology this is equivalent to the existence of a

subsequence R' of R, a set C which is S-compact, and a set £ which is 3-open

such that/(C) CE and Rj (C)<tE for all jG-7. By (1.7) and the fact that C
is S-compact we can extract a subsequence R" of R' and a sequence 5 in F

such that 7?/'(5,-)G£ tor all jCjJ and 5 converges (<£(§)) to some yC±C. Since

f(y)CjE the sequence R" does not converge (X) to/, and so R does not con-

verge (X) to/. Conversely, if R converges (Q(3co)) to / then it is known in

general [7, page 241 ] that it converges (X) to /.

The following theorem is a generalization of a result due to Fox [6,

Theorem 2].

8.2. Theorem. Let (XXY, (R XS) be a mosaic space. Then the function

h: XX Y-+Z, for any topological space (Z, 3), is continuous if and only if the

corresponding function h*: X-+ZY is continuous, where ZY is endowed with the

compact-open topology.

Proof. In general the continuity of h implies the continuity of h* [6,

Lemma l]. Conversely, assume that h* is continuous. Since (X, (R) is obvi-

ously homeomorphic to any closed subspace of XX Y of the form XX \y},

yfjY, it follows from (4.1) that it is a mosaic space, with the convergence

class $(ff{). Now h* is sequentially continuous for the convergence classes

4>((R) and $(3Co)- By (8.1) we have $(3co) = 3C, and so by (ii) above h is

sequentially continuous for the convergence classes $(61) X$(S) =$((RXS)

and $(3). Since (RXS is a full topology by the mosaic hypothesis, h is continu-

ous for the topologies (RXS and 3.

8.3. Corollary. Let Y be a locally countably compact, regular mosaic space,

X an arbitrary mosaic space, and Z an arbitrary topological space. Then the

continuity of k*: X-^ZY, for Zr endowed with the compact-open topology, im-

plies the continuity of h:XXY—>Z. Conversely, if Y fails to be either locally

countably compact or regular, then there exists a mosaic space X, a topological

space Z which is also a mosaic space, and a function h such that h*: X-+ZY

is continuous but h: XX Y^>Z is not continuous.

Proof. The first half of the corollary follows immediately from (7.2) and

(8.2). Conversely, assume as one possibility that Y is not locally countably

compact. Let X he the space X' of (7.2) and let Z he X' XY endowed with
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the weak topology which is in this case properly finer than the Cartesian

product topology. Choose h: X'X Y—+Z to be the identity function, which is

clearly not continuous. On the other hand, to show that h*: X'—>ZY is con-

tinuous, where h*(x)(y) = (x, y), it is sufficient to prove that if S converges

in the topology on X' to x then h*S is eventually in every sub-basic open set

containing h*(x), as the topology on X' is full. By the definition of the com-

pact-open topology in terms of sub-basic open sets and the fact that h is

the identity function this is equivalent to showing that if 5 converges in the

topology of X' to x and (x, C)CZE, where C is a compact subset of Y and £

is an open set of the weak product topology, then eventually (Sj, C) CZE.

Assume to the contrary that there is a subsequence S' of 5 such that for

each term we have (Sj, C)C\LE. Since C is compact by (1.7) we may select a

sequence F in (X'X Y)—E which converges in the Cartesian product topol-

ogy, and so also in the weak product topology, to (x, y), where yCEC. Since

necessarily (x, y)CEE the desired contradiction is reached, because £ being

open in the weak product topology requires that T be eventually in £.

Alternatively, if Fis not regular let X be the space X" of (7.2) and repeat

the argument just given.

The author wishes to thank the referee for suggestions which improved

a number of the proofs.
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