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1.  In this paper we will discuss the behavior of the series

CO

(1.1) JZ fir1'2 exp (ifin log w + ind),
i

CO

(1.2) JZ »-1/2(log w)-1'2 exp (iBn log n + ind)
i

which were first considered by Hardy and Littlewood [l]. Here 0 is real and

nonzero; without loss of generality we may assume 0>O. Hardy and Little-

wood have proved that the Abel means of (1.1) are unbounded almost every-

where. They have also given a functional relation connecting the series with

certain lacunary power series. Using the Law of the Iterated Logarithm and

the Central Limit Theorem for lacunary series, both of which will be stated

later, we obtain sharp estimates for the behavior of the partial sums and

Abel means of (1.1) and (1.2).

The series (1.1) and (1.2) have also been investigated by Paley [l], who

gave a different proof of the functional equation of Hardy and Littlewood.

In this paper it is somewhat more convenient to use Paley's results.

The main results of this paper are the following two theorems.

Theorem 1. If

N

(1.3) Sn(0) = JZ n-1'2 exp (*0» log n + ind),
n=l

CO

(1.4) S„(e) = JZ n-l'2p" exp (iBn log n + ind),
n=l

*

(1.5) Sn(B) = JZ w-1/2(log «)"1/2 exp (iBn log n + ind),
n-l

CO

(1.6) S*(d) = JZ »~1/2(log w)-1'^" exp (iBn log n + ind),
ji=i

then almost everywhere in 6 we have the following relations:

Presented to the Society, February 25, 1956, under the title On the Littlewood series
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I MO) I
(1.7) lim sup-!--^-= 1,

*-«    (log TV-log log log TV)1'2

I SM |
(1.8) Umjup-{-—- = 1,

(log(T^)logloglog(r^))

I Sw(0) I
(1.9) limsup-= 1,

n-a*    (log log A7 log log log log A7)1'2

I S*(fi) |
(1.10) lim sup-■-= 1.

„-l       (                    1                                          1       Y/2
(log log —- • log log log log- )
\ (1 - p) (1 - p) /

Theorem 2. Let E be a set of positive measure contained in (0, 2ir). If

Sn(0), S„(9), S]f(0) and S*(6) have the same meaning as in Theorem 1, and if

Pn(i~, v), PpH, v), Fn(£, v) and F^(^, ??) are the two dimensional distribution

functions of

Swiff) S,(fi) Swiff)

(2-1 log N)"2'    (2"1 log 1/(1 -p))1/2'    (2"1 log log N)1'2'

S*M

(2-i log log 1/(1-p))1'2

over the set E, that is, for example

,     ,      I , Swiff) Swiff) ) I
Fn(Z,v) = \<0:6GE; <R- < $; <r-—-< v>\

I I (2-1 log N)1'2 (2"1 log iV)1'2        )\

then

Fn(Z,v)/\e\->G(Z,V),
N—> oo

F,(S,V)/\E\ --+G($,v),
P-+ 1

F*n($,v)/\e\-► Gft,,),
N—> oo

Ft(S,n)/\E\ -7*G«,n),
p-» 1

where G(£, r/) w 2/se /wo dimensional Gaussian distribution.

2. In the proof of the above two theorems we will use the following theo-

rem of Paley [l ]:

Theorem A. If
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a = exp (27T0-1);        z = pe™;        z' = p'ew,

p' = p exp (-1 - 00-1);        0' = - 0 exp (-1 - 00-1)

then

JZ «~1/2(log w + 1 + 00~1)x exp (iBn log n)zn
71 = 1

(2.1)
CO

= «"-/«(2x0-,)x+1/2 JZ v\z'Y* + R
r=l

where R is a function continuous in the circle p ^ 1. Also, if p = 1,

*

JZ w"1/2(log w + 1 + 00-1)* exp (iBn log w + ind)

(2.2)     "=1
0(2x)    ' log *

= e "•/<(27r0-1)x+1/2        JZ       v\z')<" + 0(MX) + 0(1)
r=l

where p. denotes the integer next below 0(27r)_1 log N.

We also need the theorem of the Law of the Iterated Logarithm (see

M. Weiss [1]).

Theorem B. If

S(x) = JZ ckeink*
A=l

is a lacunary power series, that is nk+i/nk>q>l, with coefficients satisfying

I     I / B» \
max      Ck\   = o <->

iSKZN* ((log log BN) Ui)

where

1    N \   1/2

Bn =   < 2 I c*|2f      -* °°

///PW

Sn(x)
hm sup-= 1

(B2N log log 73*) >/2

almost everywhere. Furthermore, if

oo /    co \l/2

5r(x) = X) Cte^r"*,   5, = ( JZ ckr "*)
t=i \ *=i /
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then
Sr(x)

hm sup —-= 1
* (B2rloglog Bry2

amost everywhere.

3. In this section we will prove (1.7) and (1.8) of Theorem 1.

If we take X = 0, Equation (2.1) becomes

N (J(2t)_1 log N

(3.1) X) w~1/2 exP UP* log n + in°) = eTi/4(27r/J-1)1/2       X)       e"'a' + 0(1).
n=l *=1

The left side of the above equation is (1.3) while the right side is the TVth

partial sum of the lacunary power series

00

(3.2) X)eir°"
?=i

plus   a   bounded   term,   where   N' = f3(2ir)~l log N.   We   see   that   B\>

= (3(2ir)~1 log N, and hence by Theorem B

/3(2i)_1 log N

2Z        eiB'a"
»-i

hm sup-= 1
(/3(2tt)-1 log A log log log N)112

almost everywhere in 6', and hence by (3.1),

I Swiff) |
hm sup-= 1

(log A7-log log log TV)1'2

almost everywhere in 6.

We now turn to the proof of (1.8). For X = 0, p fixed, the left side of (2.1)

is simply Sp(9). However, the right side of (2.1) is not an Abel mean of the

series (3.2), because when p is constant p' is not. Therefore, in order to apply

Theorem B to the right side of (2.1) we must replace p' by p. That is, we write

CO

Sp(ff) = e'^Oft1)1'2 X eu'*p"

(3.3)
00

+ e'i'4(27rft1)1/2   X) e"'»V - p<") + R.
►=i

Now we estimate the "error" term

CO

(3.4) F=   £e«'«V"-P*0   •
j--i

Letting p' =p + b, where 5 is of course a function of p and 9, we obtain
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P = 8JZ a'(p + 5)""-1 ̂  A8/(l - (p + 8))
>—i

__<_--
1 - pa

where a=exp ( — 1— 6fiA- Since a is positive and bounded away from zero,

it follows that
pa — p       1 — a

lim-= - •
1 — pa a

Thus P is a bounded function of p, 6. Applying Theorem B to the series

JZ"=i ei6'a" for which

732 = JZ P2<" ~-log-= 0(2t)-» log-,
i log a 1 — p 1 — p

we obtain
00

JZ «"'"p°'
v=l

(3.5) lim sup-= 1
F ((21T)"1 log 1/(1 - p) log log log 1/(1 - p))1'2

almost everywhere in 6'.

Equations (3.3) and (3.5), together with the boundedness of P give us

I Sp(8) |
lim sup-= 1

(log 1/(1 - P) log log log 1/(1 -p))1'2.

almost everywhere in 9.

4.  In this section we consider equations (1.9) and (1.10). Using (2.2) for

X= —1/2 and noting that

^ S(2x)"1log*

(4.1) 73*-  = JZ        v-1 ~ log log N.
*=i

Where N' =@(2ir)~l log N, we obtain, in exactly the same manner as for (1.7),

w

JZ w~1/2(log w + 1 + 00-1)1'2 exp (iBn log n + ind)

(4.2) limsup-^1-= 1.
(log log AMoglogloglog A01/2

Using (2.1) for X= —1/2 and noting that

(4.3) 73*2= Z"-y"~loglog(--)
v=l \1   —   p/

we obtain
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*

JZ w-1'2(log n + 1 + dfir1)-1'2 exp (ifin log n)zn

(4.4) lim sup-= 1
F ((log log (1/(1 - P)) log log log log (1/(1 - p)))1'2

almost everywhere in 6.

Now in order to obtain (1.9) and (1.10) from (4.2) and (4.4) we substitute

(log w)_1/2 for (log w + 1+0/3-1)-1'2 and justify that the remainder is small. We

will use the following theorem of Hardy and Littlewood (see Zygmund [l]).

Theorem. The Nth partial sum of the series

JZ exp (ifin log w + ind)
n=l

is 0(N1'2) uniformly in 6.

We write

*

JZ w~1/2(log w)_1/2 exp (iBn log w + ind)
n-l

*

(4.5) = JZ «~1/2(log w + 1 + 00-1)-1'2 exp (ifin log n + ind)
n=l

*

+ JZ w-1'2((log w)-1'2 - (log w + 1 + dB-A1'2) exp (iBn log n + ind).
n—1

Applying Abel's transformation to the second sum on the right in the above

equation we obtain,

*—i

JZ { w-^Klog w)"1'2 - (log w + a)'1'2]
71 — 1

- (n + lJ-^Klog (n + l))"1'2 - (log (n+1) + a)-"2]}5„(0)

+  | 5*(0)/v"-1/2[(logATr1/2 - (log N + a)-1'2] |

where  a = l+6fi~l  and   Stl(6) = JZl-i exP (iffl log k+ikO).  For  some  value

0_?7_il, (4.6) is equal to

— JZ (» + 7)-3/2[0og (n + y))-3'2 - (log (n + y) + a)-3'2]Sn(d)
2   n=l

+   ~JZ(» + 7)"3/2[(log (n + 7)-1/2 - (log (w + y) + a)-1'2^) I
2    n-l

+ | AT-1/2[(log A^)-1'2 - (log N + a)~ll2]SN(d) |.
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Upon replacing Sn(8) by 0(n112) we see that (4.7) is less than

N-l

C X »_1[(log n)~3'2 +  | (log (n + y))"1'2 - (log (n + y) + a)"1'21 ].
n=l

A'-l

SCi2Z «_1(log w)-3'2.
n=l

Since X"-i n~\log n)~3l2< oo , we have

* N
(4.8)       SN(9) = ]X«-1/2(Iogw+ l+ft1e)-1/2exp(i/3»log«+m0) + O(l)

n=l

and from Equations (4.2) and (4.4) we obtain (1.9) and (1.10).

5. We now turn to the proof of Theorem 2. We will use the following

theorem of Salem and Zygmund ([l] and [2]).

Theorem C. If

CO

(5.1) 2Zckeinte
k—l

is a lacunary power series satisfying

/ 1      " ,   \1/2     CN

CN = (-2Z\ckn    ; — -0
\ 2  k=i / Lat

and E is a set of positive measure contained in (0, 2w), then

F»& *)     r(t   s        F>it> n)      ru   .
—j-—|->G(£,-n);        -rr,->G(£,j;)

| £| | £|

wAere Fat(^, ??) and Fp(|, 77) are the two dimensional distribution functions re-

spectively of
N co

H ckeink X) ckpnkeinte

k=X ifc-1
-   and   -

C^ Cp

and G(£, rj) is the two dimensional Gaussian distribution.

We note that it is sufficient to prove Theorem 2 in the case where E is

an interval. The proof will be an immediate consequence of (2.1) and the

following lemma.

Lemma. Let PN(9) be a sequence of functions defined on the unit circle and

lctQN(9')=PN(9) where

6' = g(0)

is a one-one mapping of the class C'.
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Suppose furthermore, that for any interval E' on the 6' circle, the two dimen-

sional distribution function of Qn(Q'), where 6' is restricted to E', converges to

the Gaussian. Then if E is the image of E', under g~1(6') =f(6'), the two dimen-

sional distribution function of Pn(0), where 8 is restricted to E, converges to the

Gaussian.

If U' is any measurable subset of the 6' circle and U its image in the 0

circle then

I V | = f f'(d')dd'.
J U'

Hence if we divide the interval E' into k subintervals 72/ so small that/'(0')

varies by less than 5 over each Ei, we will have for any measurable subset

Ui of Ei,

(5.2) | Ui\ (1 - 8) g/'(<?/) \Ui\   g  | Ui\ (1 + 8),

where 0/ is the left hand end point of Ei and Et and Ui are, of course, the

images of Ei and Ui. We write

EiAi, n) = {(>'■■(>' e Ei, <R(e*(0')) < s, 4(o*(0')) < ij}

and note that if JS,-,* is the image of E'fN, then

Ei,N(i, v) = {e:d G Ei, (R(P*(0)) < k, S(PN(0)) < v}-

We write

EN(k, v) = {e:d e E, <R(PN(9)) < £, 8(PN(d)) < V}

and note that

I £*tt, n)\  = __- I 7-..*tt, v) I •
t-i

Now the conclusion of the lemma is simply that

I 7s*(£, ?/) I
(5-3) AAAAA^G{lv)_

I E\

From (5.2) it follows that

(5-4) 1^4 (1 - e) <  l-^4 * -T^T1 (1 + <)
\ E-\ \ F' \   ~   \ F-\

where e is such that ((l+5)/(l-S))(l -e) gl; ((1 -S)/(l +S))(1 +e) ^ 1.

Hence, using
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i       i        ^    &*.*? ,     i i
\Ew\    _ ,--i _     *    | Ej,N|   \Ej\

\E\ \E\ ' h   \Ei\      \E\  '

we have

(5.5)       (1_4I*lit^]4-a + 4^L-
| £ | \~x   | El |     | E | | £ |

By the hypotheses of the lemma,

.... ..      f |£U(^_  |£,-| 122, |(5.6) hm   X -r—71-TVT = G^' ^ ^ T7T = Gtt>*)-
jv-xo ,-=i        I £/ I I £| | £|

Since e can be made as small as we please, (5.5) together with (5.6) gives us

(5.3).
Now we apply our lemma to the equation

Z^ w-"2 exp (ifin log n + ind)
Pw(9) = X -■

„ti (2-1 log V)1'2

0(2*)-1 log W

e'i/4(27rft1)1/2        JI        eie'a"

=- + 0(1)
(2-1 log V)1'2

= Qn(6')

which comes directly from (2.2). Since by the theorem of Salem and Zygmund

quoted above, 1/|£'| times the distribution function of

/S(2ir)_1 log W

e^/^Trft1)1'2        X)        «i9'a'
>—i

(2-1 log TV)1'2

for 8' restricted to £' tends to the Gaussian so does 1/| £' | times the distribu-

tion function of Qw(6'). By the lemma just proved we have FN(£, v)/\E\

—*£(£> v) which is the first conclusion of Theorem 2.

The remaining conclusions of Theorem 2 are proved in the same manner

as the first except that the special considerations that were used in §4 for each

type of series or sum must be employed.

It should be mentioned that Paley developed functional relationships for

more general series than just (1.1) and (1.2). The lacunary series on the right

then have, however, both coefficients and exponents which are functions of

9. The methods of this paper are not immediately applicable to these series,

but we hope to return to the problem on another occasion.
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