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BY
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1. Introduction. The differential equation in question is of the form

d2u      .
(1) -[\24>2(z) + As"1 ¥(_, X) + z-2r]w = 0

dz2

considered in a certain bounded domain R about the origin of z, under the

assumption that <f>(z) does not vanish in R and that the complex parameter

X is large in absolute value. The functions <p, ̂  are bounded and analytic

in their arguments when z(jzR and |X| >N. r is a complex constant.

Asymptotic expansions are given for the solutions of (1), and order esti-

mates are made of the remainder after w terms of the expansion. The ap-

proach is classical, based on explicit solution of a special class of equations of

type (1). Of the earlier work especial mention should be made of an article

[3] by R. E. Langer, whose results pertain to a large class of differential

equations, including certain equations of type (1). Also(2) the special case

t=— 3/16 is transformed by the substitution u(z) =xll2v(x), z = x2, into a

certain case of an equation previously studied by the author [5].

An application of the present results to Laguerre functions is described

by Kazarinoff and McKelvey in [2].

7w detail, the hypotheses under which Equation (1) is considered are:

(a) P is a simply-connected compact subset of the complex plane. The origin

is an interior point of R.

(b) 4>(z) is a nonvanishing single-valued analytic function in P(3).

(c) The transformation

$(z) =   I    <p(t)dt
J 0

is schlicht in R, and the image of R under this transformation is convex.

Received by the editors July 29, 1957.

(') This work was done during 1955-1956 at the Institute for Fluid Dynamics and Applied

Mathematics, University of Maryland.

(2) This was pointed out by the referee.

(3) The discussion and conclusions which follow remain valid if <t>(z), ̂ -(z), ^->(z), and t

depend in addition upon X, being bounded for |X| >N, and satisfying the assumptions (b)

through (e) for each fixed X. See [2].
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A LINEAR DIFFERENTIAL EQUATION 411

(d) ^(z, X) is analytic single-valued for zG-R and at X = oo. Hence, when

| X | > N it may be expanded in a termwise-differentiable series

*(z,X) = H*) + T,+iiz)/X+1

with the coefficients \P(z), ipj(z) analytic single-valued functions in i?(4).

(e) The equation is normalized (by incorporating a suitable constant factor

into X) so that <p(0) = 1 and Re ^(0) ^0(5).

2. A basic approximating equation. Let

{(«, X) = 2X*(z),

(2) m = (1 + 4T)1'2,        Re (m) ^ 0

k(\)   =   K + Ko/X + KlA2 +   "   "   "   + Kn/Xn+1, » ^  0

where

k = - ib(0)/2

and kx, Ki, ■ ■ ■ , Kn are as yet unspecified constants. Let M(%, X) be any solu-

tion of the Whittaker equation

d2M      / 1       k(X)      1 - m2\
(3) -(-—-)M = 0,

d^2       \4 £ 4£2   /

and consider the function

(4) v(z,X) =cb-"2(z)M(Z,\).

Differentiating twice with respect to z,

d2M
v"(z, X) = 4X203'2-+ (cb'^2)"M.

d£2

Since both M, d2M/d%2 can be expressed in terms of v by (3) and (4), we art

led immediately to a differential equation for v oi the form

d2v
(5) — - Q(z, \)v = 0.

dz2

We introduce the quantities

(4) It would be sufficient to require that * be expandable in a Taylor series with remainder,

and that the coefficients of the series be merely "sufficiently differentiable." In that case the

asymptotic expansion of the solutions could be carried out only to a fixed number of terms.

(5) The normalization <f>(0) = 1 is unnecessary when i/-(0) =0.
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rp(z) <t>2(z)
e(z)=AA_m'AA,

z $(z)
(5a)

/Z<p2 1\ »      Kj    Z<t>2
X(z,X) = T (— - -) + 2*1/2^-1/2)" -2E^'

\ <f>2 z / y-o   XJ     $

Because of the normalization cf>(0) =1 (assumption e), both 0(z), X(z, X) are

analytic for z(£R, and at X= oo (4). In terms of these quantities,

T\p(z) 1       t       X(z, X)
(6) Q(z,\) = \2<p2(z) + X   —- 6(z)   + -+AAA .

L    z J       z2 z

X(z, X), which is a polynomial in 1/X, may be written

x(z, x) = JZ *MA'
y-o

where every Xy(z) is analytic in P. Note that

Xo(0) = r<p'(0) - 2ko,

Xj(0) = - 2kj, j = 1, 2, ■ ■ ■ , n.

These quantities are therefore at our disposal.

We shall designate the wronskian of a pair of functions /i(z), /j(z) by

wron (fuf2; z) = fx(z)fi (z) - f{ (z)f2(z).

If Mi, M2 are two solutions of Equation (3), and vi, v2 are the corresponding

solutions of Equation (5), computation from (4) shows that

(7) wron (vi, v2;z) = 2X wron (Mi, M2; £).

Hence vx and v2 are independent provided Mi and M2 are. Since neither

differential equation has a first derivative term, neither wronskian can depend

upon the differentiation variable—both are functions of X alone.

3. A refined approximation. The expression (6) should be compared with

the coefficient of u in the given Equation (1). In general the quantities

multiplying X in these two expressions are not identical although it may hap-

pen that they are so, as for example when i/-(z)=-0. In the general case we

proceed as follows(6).

Let the functions a(z), b(z) he defined by

a(z) = cosh   I    6(t)/2<p(t)dt,
J o

b(z) = [l/z0(z)] sinh   j    6(t)/2<b(t)dl.
J o

(') Compare [3, §5].
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Both a(z), b(z) are analytic in R. Immediately from these definitions,

ai _ (3^)2 m l}

(8) 2<b2(zb)' + (cb2)'zb = ad,

2a' = zbd, for z £ R.

Let Vi(z, X), Vi(z, X) be a linearly independent pair of the functions (4),

hence independent solutions of

d2v
(5) — - Q(z, \)v = 0.

dz2

Consider the functions

z6(z)
(9) Wj(z, X) = a(z)vj(z, X) + —-- vj (z, X), j = 1, 2.

X

We show first that wx and w2 are linearly independent. Differentiating (9)

and substituting for v" from (5),

(10) wron (wi, w2; z) — D0(z, X) wron (vu v2; z),

where

zQ
a     a' + b —

X
D0(z, X) =

z6 (z6)'

X X

Expending, applying the first of relations (8),

(11) Z?o(z, X) = 1 + 1/X \(zb)'a - z6a' - 62 LxP - z26 +-—1    .

The bracketed quantity is analytic for z(E.R, X at  oo ; hence both D0(z, X)

and its reciprocal are bounded from zero uniformly for z£R, |x| >N.

The linearly independent functions Wi, w2 determine a second order linear

differential equation of which they are integrals. The computation of the

coefficients of this differential equation has been carried out [5, §3] for a(z),

zb(z), Q(z, X) arbitrary analytic functions for which D0(z, X) is not zero. The

result, which applies here when z?^0, is

(Pw       Do'   dw      T Gol
(12) -0 +-\w = 0

dz2        Do   dz       L D0"J

where
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Q            Q' Q
a" + 2(zb)' — + zb — a' + zb —

XX X
Go(z, X) =

(z6)" (z6)'
2a -\- a H-

X X

Expanding Q as in (6), 9 as in (5a) and applying the relations (8),

Ho(z, X)
(13) G0(z, X) = \6 + —-^— + Ko(z)

z

where

K0(z) = a(bz)'6 - (bz)(bz)"cb2,

2t6' t
za" -|-1- (z6A)' + z6'A    za' + 6-V zbA

#o(z, X) =

2a  H- a -|-
X X

z<£2(z)      X(z, X)
A(z,X)=lK0)-frV+-^.

$(z) X

Evidently K0(z) and i?o(z, X) are analytic for zG-F, X at oo.

The transformation

Xj = WjDb~112, j = 1, 2,

normalizes Equation (12) to the form

(14) (a) -J - 5(z, X)x = 0
dz2

where

Go        3rZ7o"l2        1    Di'
(h)S=Q +-+—-

Do        4 L A) J 2     Do

Because of specific expressions (11) and (13) for Do and Go, S(z, X) has the

form

xb(z)       t       Q(z, X)
(15) S(z, X) = XV2 + X -^- + — +-

z z2 z

where fl(z, X) is analytic for z£R, X at oo. Expression (15) is, of course, to be

compared with the coefficient of u in the given Equation (1).
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We write

00

"0, A) = JZ -y(«)A'> I A |   > TV,
y-o

in which every w,(z) is analytic in P. The constant Km with m=0, 1, 2, ■ ■ • ,

or w comes into the expression for £2(0, X) wherever AT(0, X) does, hence only

in the quantities Q and G0 written explicitly in (14b). Moreover, when X, X'

occur in Go they are invariably multiplied by quantities of the order 1/X or

smaller. Consequently nm occurs linearly in —w(0), but is absent from every

-v(0) for which/<m. Hence the values of wo(0), -i(0), • • • , _v,(0) are at our

disposal.

The solutions x(z, X) of Equation (14) may of course be expressed directly

in terms of the solutions of the basic approximating Equation (5):

(16) xj(z, X) = Po-1/2(z, X) la(z)vj(z, A) + "-— vj (z, A)J, /= 1, 2.

From (10),

(17) wron [xx, x2; z] = wron [vx, v2; z\.

4. The related differential equation. By a process similar to that of the

preceding section, we shall next transform equation (14) to obtain one in

which the coefficient differs from that of the given Equation (1) by a quan-

tity of the order 1/Xn+1. Let a0(z), r)0(z), /?0(z) be defined by

ao — 1,

(18a) i?o = po — _o,

/So = [l/z*(-)] f  [r,o(s)/2s<p(s)]ds
J o

w0(0), until now unspecified, is chosen equal to \po(0). Hence i7o(z) vanishes

at the origin and /30(z) is defined and analytic throughout R.

Let ax(z), t](z), f3x(z) he defined by

_!=  0,

(18b) r,i = (px - _0 - Wo - z(2pp0' - P'pj),

px = [l/*t>(z)] f   [Vl(s)/2stp(s)]ds.
J 0

Choosing _i(0) so that 771(2) vanishes at the origin, /3i(z) is defined and

analytic throughout 7?.

In this fashion a sequence of functions is defined. At the vth stage, and in

terms of previously determined quantities, let av(z), 77,(2), (5,(z) be defined by
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«,= -—{       (i/3»-2)" + X (tfW-2 ~ w„-,--2)fr   dj,
2 «/ 0   l_ y=o J

V

V> = 2~L Ww — c>y-j)cxj — \pPv-i — z(2\Ll3Li + iA'/3,_i)

(18c)
v—i

— 2r/3„_2 — za,   — 2\i [vf-i-iPj + z(2wr-j-2i3j + wLj-iPj)],
y-o

ft = [l/zcb(z)] f   [r,y(s)/2scb(s)]ds.
J 0

w»(0) is to be chosen so that rj,(z) vanishes at the origin. Hence av(z), r)r(z),

I3,(z) are all analytic in R.

The sequence is terminated with the stage v=n. At this stage, all the

quantities k0, kx, ■ ■ ■ , k„ have been determined. We write

A(z, \) = 2Z «jG0A', B(z, X) = I) ft(z)/X>'
y-o y=i

(19) 5
A     A' + zB —

X2
Di(z, X) =

z5 (zB)'
-    A + A_^L
X2 X2

By inspection, Z?i(z, X) is analytic for zGF, X= 00. Further, Dx(z, X) differs

from unity by a quantity of order 1/X2 (since a0 = l, «i=0); hence both Dx

and its reciprocal are bounded from zero when |X| >N.

Proceeding in a manner analogous to §3, one may show(7) that the func-

tions

(20) yy(z, X) = 77f1'2(z, X) [a(z, X)xy(z, X) + f^^l x> (Zj x)l        j = 1,2

for which

(21) wron [yi, y2; z] = wron [xi, x2; z],

determine a linear differential equation of the form

d2y      T *(z, X)       r       6(z, X)l
(22) -f -   XVW + x ---+ - - -±~ y = 0

dz2      L z z2        Xn+1z

(') Apart from notational differences the computation is formally identical with [3, §6],

which is meaningful here since, with the adjustments of u>j(0) explained above, all quantities in-

volved are well defined. That the error term in (22) has a simple (rather than double) pole at

z=0 is evident on making the substitutions A, B/~K, Dx, S ior a, b, D0, Q in (12), (14) and ex-

panding 5 as in (15).
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where 6(z, X) is analytic for zG7?, X= oo.

By combining the expressions (4), (9), and (16), we may express a pair of

solutions of the related equation directly in terms of the corresponding solu-

tions of the Whittaker equation in the form

(23) yi(z, A) = E(z, X)_f,-fo A) + „-_?(_, A) |j - M&, A) J

where the functions E(z, X), F(z, X) are analytic for zGT?, X= oo.

Differentiating (23) by z and substituting for d2Mj/d£2 from the Whittaker

equation, we obtain y,(z, X) in the form

(24) yj (z, X) = £*(£, A)M3(£, A)/? + AF*(z, X)_/_{_fy({, A)

with £*, F* analytic for zGT?, X= oo.

Finally, from (7), (17), and (21),

(25) wron [yi, y2; z] = 2A wron [Mi, M2;%].

5. Solutions of the related equation. The standard (8) Whittake/function

3R*(X) ,m/2(£) has for | X | > TV, | £ | g AT, where Tli" is a large (fixed) positive num-

ber, the structure

3_*cx) ,_/i(0 = £m+1'20(l),

___________ =e_-l/20(1).
_£

it is the solution of (3) which vanishes to the highest order at the origin. Since

r                                      !              Z1 + m \
wron [I^i(X),m/2,9Il*(X),m/2;^J = 1/r (-k(\)\,

therefore the standard function Wkw.mii^) provides a second (independent)

solution of the Whittaker equation for the range

Re (tn) ^ 0,

Re (k(\)) ^ €,        0 < e < 1/2

to which the parameters are restricted when |X| >TV, by the normalization

of §1. We have, respectively, for m = 0, m = l, or otherwise, that

FP_W._/i(0 = £1/2[ln£0(l) + 0(1)], 0(1), or rm+1/20(l),

dWk(h),mi2(^) r -i In f
-'A-AA = ri/2[ln {.0(1) + 0(1)])      _A_ + 0(1)> or tm-i,20{l)

of T( — k)

when |X|>TV, |$| £j_\

(8) Notation and formulae quoted in this section are from Buchholz [l ]. The symbol 0(1)

designates always a function which is analytic as well as bounded; the symbol 0(X) means

X0(1), and so on.
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Whittaker functions of particularly simple structure for large £ are the

functions

Wtk(x>,m,i(Ze-**i)

where a = ( — 1)", and v is any integer. When £ falls in the range

S,: | {|   > M;       (v- 3/2)ir + ex S arg £ S (v + 3/2)* - ex.

with ex a small fixed positive number, then both W^^x) ,m/2(^e~',ri) and the

£ derivative of this function are of the structure ^"ke~''il20(l). The JF-func-

tions corresponding to consecutive integers are independent, with wronskian

given by the formula

wron [lF,*,m/2(Se-"0, W-*../t(&-W:1)*9; £] = ae^k".

We remark finally that when arg £ is unrestricted and |£| >M, the function

917i-,m/2(£), together with its derivative, is of the structure £~*e1/2£0(l)

+£V-1/2£0(1). The same is true of the functions W.k,m/i(^e~'Ti).

The solutions of the related equation which correspond by (23) to the

Whittaker functions

9TC*(X),m/2(£), IFrt(X),m/2(£e-'"r0

are denoted by

y*(z, X),        y,(z, X).

When |£| SM, the function y*(z, X) has the structure

y*(z,\) = ¥m+1)l20(l),

(26) dy*(z,\)

dz

since when X is fixed, £ is of the order of z near z = 0. Therefore y* is the solution

of largei exponent of the related equation. The (independent) function yo(z, X)

has the structure, for m=0, m^O respectively

yo(z,X) = £1'2[ln£-0(l) + 0(1)], £-+1'20(l);

(27) d^o^X) = ?_i/2[in f o(x) + o(x)L       rm_1/20(x)j
dz

when |£| gJlf.
Finally, when £G2„ then

y.(z,\) = r*<^-°«'20(l),

(28) dy,(2, X)
k = £'*(^e-°«'20(X),

dz
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and when | arg §| <7r/2, | £| > M, then

y*(z,A) = rkMeil20(l),

dy*(z, X)
(29) = r*(x)e{/20(A).

dz

From Equation (25),

wron [y*, y0] = 2X/r f-k j;        wron [y„ y,±J = 2A<re±rf'ri

so that either wronskian is 0(A), and its reciprocal is 0(1/X).

6. Estimates of the solutions. Let y(z, X) be any solution of the related

equation, and z0(X) a point of R. Consider the integral equation(9)

. .        . .   ,   C * y(z)y(Q - y(z)y(t) &(t)
(30) w(z) = y(z) +        ——-=—-— u(t)dt

J «0    An+1 wron [y, y\       t

in which y(z, X) is a second independent solution of the related equation, and

the integration is along a sectionally smooth contour in R. It is familiar(9)

that a solution w(z) of (30) is also a solution of the given Equation (1). Here

w(z) depends upon y(z) and z0, not at all upon the choice of y, which may there-

fore be taken as different functions along different portions of the contour.

Differentiating (30) leads to an expression for u'(z):

(31) w'(2) = y'(z) +        ——--F-u(t)dt.
J z0     An+1 wron [y, yj t

Higher derivatives may be obtained directly from the differential equation.

Estimates of various functions w(2) will be based upon the

Lemma. If, for z and t in a simply-connected region R*(\), the functions

f(z, X) and K(z, t, X) are analytic in z and in t and, with Y(z, X) o specific path

from ZoG72* to z, exists and approaches 0 uniformly as\—»oo , then when \ X| > TV

the integral equation

g(z, A) = f(z, A) +  f  Tf (2,1, \)g(t, \)dt

has in R*(\) a solution g(z, X), and, provided \f(z, X) | is bounded,

g(z, X) = f(z, X) + 0(||7-11) uniformly in X.

To prove the lemma we have only to consider the Neumann expansion

g=f+Kf+K2f ■ ■ ■ . Since \Knf\ ^||_-||"-1/|, therefore the expansion con-

(») Compare e.g. [4]. For concise notation, the dependence upon X of certain functions has

been suppressed.
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verges when |X| >N, defining g. The quantity g— /is dominated by the series

(||F:||+||F:||2+ • • -)|/|, and hence is 0(\\k\\).

The lemma usually cannot be applied directly to (30), but the latter

expression will always be rewritten in such form that the lemma does apply.

7. The solution of higher index at the origin. Let y(z), y(z) in (30) be

respectively the functions y*(z), yo(z) defined in §5. We restrict attention to

values of z, X such that | £(z, X) | S M and integrate from z0 = 0 along a curve

arg £ = constant.

Supposing for the present that m^O, let the functions Y(z), Y(z), U(z) be

defined by
y(z) = £<'"+1"2F(z),

y(z) = £(-m+1)/2f(z),

u(z) = £tm+1)'2f/(z).

Because of (26) and (27) it is evident that Y(z), Y(z) are bounded functions

of z and X when | £ | S M.

Equation (30) may be rewritten in terms of the above functions as

r ' Y(z) Y(t) - Y(z) Y(t)U(t, z)
(32) U(z) = Y(z) + W-V      i C('>X) U®dl

J Zo X\wron [y, y\

where

m, *) = [mniz)]m
and

l»eM).
X<

We consider the expression

("\Y(z)Y(t)-Y(z)Y(t)U(l,z)
(33)-;—-:-C(/,X)-|d/|.

J z„ I X" wron [y, y\

Since on the contour £(/)/£(z) is positive and j£ 1, therefore Tl(t, z) is bounded.

Also £(<) is of the order Xt near t = 0, so C(t, X) is likewise bounded. It follows

that the expression (33) is 0(£/Xn+2). Hence, by the lemma, the integral

equation (32) has a solution U(z) and U(z) = F(z)+0(£/X"+2). From this

follows

Theorem 1. When m 9^0, there is a solution of the given differential equation,

we designate it by u*(z), such that when |£| SM, |X| >N,

(34a) «*(z) = y*(z) + £(m+3"20(l/X"+2),

and (computing from (31))

(34b) ui (z) = yi (z) + £<™+1>/20(l/Xn+1).
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Evidently u(z) is distinguished as the solution of higher index at the origin.

When w = 0/the computations must be somewhat modified. Supposing

first that |£| ^7<1 for some fixed number y, we define Y(z) by

y(z) = e12 In I- Y(z)

and Y(z), U(z) as before. Both Y(z), Y(z) are bounded when |f| ^7. Once

again (30) is rewritten in the form (32) where now

n(/, z) = In f(z)/ln Z(t)

and

£(/)©(/)
C(t,\)=lni(t)J~rL-

\t

Hence (33) is now of the order 0(£ In £/X"+1) and

u(z) = y(z) + e'2\nZO(l/\"+2).

Second, when 7<|£(z)| ^M, there is a single point Zi on the contour such

that |£(zi)| =7. We write (30) in its original form and consider separately

the integration from 0 to Zi and the integration from zi to z. Since we have

already an estimate of u(t) over the former range, we may compute directly

that the corresponding integral is of the order 0(1/Xn+2). If now this term is

incorporated into the function f(z, X) of the lemma, one may conclude that

w*(z) = y^(z) + 0(1/X"+2).

Combining this with the previous expression we have proved

Theorem 2. When m=0, the given equation possesses a solution, designated

w*(z), such that when \%\ ^M, |x| >M

(35a) w*(z) = y*(z) + S3'2[ln £-0(l/X"+2) + 0(1/X»+2)]

and, from (31),

(35b) uj (z) = yj (z) + ^'2[ln £-0(l/\"+1) + 0(l/\^)].

8. Solutions of simple structure when | £| is large. We now restrict atten-

tion to values of z, X for which £ GS, (§5). In the expression (30) let z0(X) be

a point at which Re(cr£) assumes its maximum value in 2,. The integration,

as viewed in the image region 2„ is taken along a straight line, or when

necessary, along a pair of straight lines joined by an arc of |f| = M, it being

required that Re(o£) be monotone decreasing on the linear part of such a

path from z0(X) to z. The role of y(z) is taken by the function yv(z). The role

of y(z) is taken by y,+i(z) on a portion of the contour for which arg £>j>ir,

and by y,_i(z) when arg £<vir. We define Y(z), Y(z), U(z) by
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y(z) = ¥he-°t'2Y(z),

y(z) = t"ke"il2Y(z),

u(z) = ^ke-^'2U(z).

Evidently both Y(z), Y(z) are bounded when £G2„. In terms of the newly

defined functions, the expression (30) may again be put in the form (32)

where now
Vi(t)Vk

U(t,z) =    —       e-'[«'HWl,
U(z)J
©(*, X)

C(t,\) =-^-L-
At

Pl(t, z) is bounded uniformly on the class of contours being considered. Hence

the expression (33) is 0(ln X/X"+2) and we have the

Theorem 3. There is a solution uv(z) of the given differential equation such

that when £G2„ |x| >N, then

(36a) u,(z) = yv(z) + £'*e-"*/20(ln X/X"+2),

(36b) ui (z) = yi (z) + £rte-"«/20(ln X/X"+1).

9. A second solution when | £| SM. We now investigate the structure of

the solution «o(z), defined above, when z, X are such that |£| SM. The func-

tions y, y in (30) are taken to be respectively yo and y*. The integration con-

tour is composed of a segment of a curve arg £ = constant, from the point Zo

(defined in §8 above) to a point Zi on | £| = M, and of a spiral into the region

|£| SM, fromzi to the point z. (We shall assume that arg z varies boundedly

so that the spiral is of bounded length.)

Suppose first that m^O. We must consider separately the integration from

z0 to Zi and the integration from Zi to z. With (30) written in its original form,

the former integral involves only known functions, and is of the structure

r\                                                                                                    A(t)ke-Ht)l20(l)
I    [£(z)(-m+1)/2£(0"*el("/2O(l) + £(z)<m+1>/2£(/)*<r«<'>/20(l)] —-—-—-dt

£(z)(-m+l>/2    r.z dt

= ^—-        0(1) + f»W«0»<r»'>O(l)  - •
X"+2      J Zo t

In this expression, both £m(z) and ^2k(t)e~iw are bounded: the former because

|£(z)| SM, and the latter because Re£(<)>0. Hence the integral shown is

O(lnX), and (30) becomes

u(z) = y(z) + tm+ir'0(\n X/X"+2)

(37) r'y(z)y(t) -y(z)y(t) @(t)
+  I    ~a~T,-r^—Ii-u(l)dt.

J Zl    Xn+1 wron [y, y\       I
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The lemma is now applied to Equation (37); the details are almost identical

with those described in §7. It is found that

w(z) = y(z) + rm+1/20(l/X"+I).

When m = 0, the procedure just outlined must be somewhat modified,

but no special difficulties arise. The results are described as

Theorem 4. When \%\ ̂ M, |X| >TV, awd when m^O, then

(a) «„(*) = yo(z) + {<—h>/«0(1A"+1),

(b) wo' (z) = yi (z) + £<■—«'*0(1A").

When, on the other hand, m=0, then

w0(z) = y0(z) + p/»[ln £-0(l/Xn+1) + 0(1/X»+1)],

w0' (z) = y0' (z) + r1/2[ln £0(1/X») + 0(1/A«)].

10. The structure of w* when | £ | is large. This proceeds such as in §9. The

integration contour from the origin to a point Z for which |£| > M is chosen

to be a curve arg £ = constant. The point on this curve for which |£| =M is

designated by Zi. On the portion of the curve between 0 and Zx the functions

y, y are taken to be y0 and y*. All quantities involved in this integral have

been previously estimated so that the integral itself is found to be (for m^Q)

of the order

£*e-{/20(i/x»+i) + £-*ef/20(l/Xn+1).

The computations are similar to §7.

Now let us assume that

t(v - 1/2) g arg £ ^ t(v + 1/2).

On the portion of the contour between Zi and Z the role of y is assigned to

y, and that of y to y,+i if arg ^>vir or to y,_i if arg £<vir. Proceeding as in §8,

we may now estimate w*. The following result is valid regardless of the value

of arg £ or of m.

Theorem 5. When |£| ^M and |X| >TV then

w*(z) = y*(z) + ^e-£'20(l/A«+1) + £V20(1/A"+1)

owa"

w*'(z) = yj(z) + ee-"20(l/\n) + ^e£'20(l/A").
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