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1. Introduction. A semigroup is said to be simple ii it has no proper two-

sided ideals. Let 5 be a semigroup and let £ and (ft be the equivalences:

£ = {(a, b): a, b E S and Sa W a = Sb W b};

<R = {(a, b): a, b E S and aS \J a = bS U b}.

Denote by o the operation of composition, so that if A EX X Y and B C YXZ

then A oB=[(x,z): (x, y) EA and (y, z)EB for some y}. Then the minimal

equivalence on S containing both £ and (R is £> — £ o (R=(Ro£ (J- A. Green

[l]). A semigroup is said to be 'Si-simple if it consists of a single ©-class. A

©-simple semigroup is necessarily simple, a completely simple semigroup is

©-simple, but in general a simple semigroup is not ©-simple (see [l] and also

§2 below). A semigroup is said to be regular if aEaSa for each a in S. If 5 is

D-simple then, as shown by D. D. Miller and A. H. Clifford [2], 5 is regular

if and only if S contains an idempotent. In particular, therefore, a ©-simple

semigroup with an identity is necessarily regular. A regular simple semigroup

is not necessarily ©-simple (see §2).

A recent result of R. H. Bruck [3, II, Theorem 8.3, p. 48] shows that any

semigroup S can be embedded in a simple semigroup T, say, with identity.

I show below that the simple semigroup T constructed by Bruck is ©-simple

if and only if S both has an identity and is D-simple. The main result of this

paper is the following theorem: any semigroup can be enbedded in a (necessarily

regular) 'Si-simple semigroup with an identity. As a preliminary to the proof

of this theorem we obtain (§3) a characterization of the ©-classes of the

semigroup of all mappings of a set into itself.

2. The construction of R. H. Bruck. Let 5 be a semigroup. If 5 has an

identity element e, say, write S = S1. If 5 has no identity element then, by

the adjunction of a single element e, say, to S, we can embed 5 in a semigroup

51 with identity. In either case S1 is a semigroup with e as identity. Let N

denote the set of non-negative integers. Let T be the set product NXS1X.N

and define a product in T by the rule:

(m, s, n)(m', s', «') = (m + \m! — n],f(n — m'; s, s'), «'+[» — m']),
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where for any integer x,

[x] = x if * ^ 0;        [*] = 0 if x < 0;

and

f(x; s, s') = s, ss' or s' according as x > 0, x = 0 or x < 0.

Then Bruck shows that with this product P becomes a simple semigroup,

with (0, e, 0) as its identity, in which 5 is embedded.

We now prove the result claimed in the introduction: T is 'Si-simple if and

only if S has an identity and is "Si-simple.

Firstly suppose that 5 has an identity and is ©-simple so that S1 is 5D-

simple. Let (m, s, n) and (m', s', ra') be any two elements of P. Since S1 is

SD-simple there exists s" in Sl such that s£s"&.s'. Hence, since 5l has an

identity, there exist x, y, u, v in S1 such that xs — s", ys" = s, s"u = s' and

s'v = s". Then it may be verified that (m', x, m)(m, s, n) — (m', s", ra) and

(m, y, m')(m!, s", n) = (m, s, n) so that (m, s, n)£(m', s", ra). Similarly we

have that (m', s", n)(n, u, ra') = (m!, s', ra') and (m', s', n')(n', v, ra) = (m', s", ra)

so that (m', s", n)(R(m', s', ra'). Thus (m, s, n)£(m', s", n)(R(m', s', ra') and so

(m, s, ra)2D(ra', s', ra'); and this proves that T is 3D-simple.

Conversely suppose that T is SD-simple. For any s, s' in S1 it follows, in

particular, that (0, s, 0)2D(0, s', 0). Thus there exists an element (m, s", n)

in P such that (0, 5, Q)£(m, s", ra) 81(0, 5', 0). We will show that this implies

that s£s" Ms'.

Since (0, s, 0)£(m, s", ra) there exist (p, x, q) and (p\ y, q') in T such that

(p, x, q)(0, s, 0) = (m, s"; ra) and (p', y, q')(m, s", n) = (0, 5, 0). Thus

(p + [~q],f(q; x, s), [q]) = (tn, s", ra)

and

(p' +[m- q'],f(q' - m; y, s"), n + \q' - «]) = (0, s, 0).

The second equation implies that ra = 0 and it then follows from the first

equation that q = 0. Hence/(g; x, s)=xs and so from the first equation we

have xs = s". Again the second equation gives [q' —m]=0 and [m — q'] = 0

and these together imply that q' = m. Hence f(q' —m;y, s") =ys" and we have

ys" = s. Thus xs = s" and ys" = s i.e. s£s". By a similar argument we deduce

that also s"(Rs'. Hence we have sS)s'; and this shows that S1 is SD-simple.

It now follows that S=S1. For if S^S1 then the identity element e of

S1 is not SD-equivalent to any element of S and so S1 could not be SD-simple.

This completes the proof of our assertion.

Let S be regular but not 3D-simple. Then T is regular. For let (m, a, ra) E T.

The regularity of 5 implies that S1 is regular and hence there exists an x in

S1 such that axa = a. Then (m, a, n)(n, x, m)(m, a, ra) = (m, a, ra) which shows

that P is regular. Thus T is a simple regular semigroup which is not 3D-simple:

which proves an assertion made earlier.
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3. Determination of the ©-classes of the semigroup of all mappings of a

set into itself. Let 2( =H(A)) be the semigroup of all single-valued mappings

of A into A, combined under composition. The composition of the mapping

a with the mapping 8 is the mapping obtained by following a by p (we write

operators or mappings on the right). Regarding a mapping a of A into A

as a subset of A XA, namely the subset {(a, aa): aEA }, then this operation

of composition is the same as that defined earlier in the introduction. It will

be convenient in what follows to write sometimes a/3 and sometimes ao B for

the composition of the mapping a with the mapping p. If aEA XB then a~l

denotes the set {(x, y):(y, x)Ea}; if CEB then Ca~x denotes the set

{x: (x, y)Eot, yEC}.
Since 2 has an identity element, namely the identical mapping of A

onto A, two elements a, 8 in 2 are £-equivalent if and only if there exist

7, 8 in 2 such that ya=p and 8p = a. A similar comment applies to (R-

equivalent elements. We now give two lemmas which determine the £-classes

and the (R-classes of 2.

Lemma 1. If a, /3£2, then (a, P)E£ if and only if Aa = AB.

Proof. If (a, P)E£ then there exist y, 8 in 2 such that ya = P and 8p = a.

Hence AP=AyaEAa and Aa = A8PEAp. Thus if (a,/3)G£ then Aa = Ap.
Conversely suppose that Aa = A@. Define the mapping y of A into A as

follows: for each element b in AP let y map the elements of the set bP~l onto

a single element in ba~K Then ya = p. Similarly there exists 5 in 2 such that

8P = a. Thus (a, P)E£.

Lemma 2. If a, PE^ then (a, P)E (R if and only if ao a-1 =/3 o P'1.

Proof. If (a, P) E (R then there exist y, 8 in 2 such that ay=p and P8 = a.

Hence a o a"1 = (03) o (/35)-1 =0 o (5 o 5"1) o P~*DP o /J"1; similarly, /3 o /3"1
Z)a o a-1. Hence a o a-1 =j8 o P~l.

Conversely suppose that a o a-1 =/3 o /8-1. Then we may define a mapping

7 as follows. Let y map ^4\^4a identically and for b in ^4a let y map & onto

(6a-1)/8. The condition a oa_1=/3 o/3_l implies that (tar1)/? is a single ele-

ment, for a o a-1 is the equivalence relation on A determined canonically by

a: ix, y)Ea o or1 if and only if xa = ya. Thus ay=p. Similarly there exists 8

in 2 such that P8=a. Thus (a, j8) E (R.

Using these lemmas we now easily have the following determination of

the ©-classes of 2. Denote by | X\ the cardinal of a set X.

Theorem 1. Let 2 be the semigroup of all mappings of the set A into A

combined under composition. Then a, P in 2 are Si-equivalent if and only if

\Aa\=\Ap\.

Proof. We know, since © = £o (R=(Ro£, that (a, j3)E© if and only if

there exists 7 in 2 such that (a, y)E£ and (7, j8)£(R. By Lemmas 1 and 2
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this is equivalent to the existence of a mapping y in S such that Aa = Ay and

7 0 7_1=/3o/3_1.

Consequently, denoting by A/p the quotient set determined by the equiv-

alence p on A, if a is SD-equivalent to P, then |^la| = \Ay\ = |.4/(7 o 7_1) |

= \A/(pop~1)\ =\AP\, so that |i4a| = \Ap\.
Conversely, suppose that |^4a| = |i4j8|. Denote by p the equivalence

P o P~l on A. Since \Ap\ = \A/p\, we have |^4/p| = \Aa\. Let 5 be any (1, 1)-
mapping of A/p onto Aa. Then let y be the mapping of A into A which maps

the elements in each p-class onto the image of the p-class under 5. Then

7 oy~l=p=P oP~l and Ay=Aa. Thus (a, P)ESJ; and this completes the

proof of the theorem.

4. The embedding theorem. If 5 is a semigroup with an identity then it

is easily verified that S is SD-simple if and only if for any two elements a, b in

S there exist elements s, t, u, v in 5 such that as = ub, ast = a and vub = b.

To embed an arbitrary semigroup 5 in a SD-simple semigroup we can

clearly suppose, without loss of generality, that 5 contains an identity ele-

ment. The first stage in our construction is to embed 5 in a semigroup 5(1),

say, with the same identity element as 5 and such that for each pair of ele-

ments a, b in S there exist elements s, t, u, v in 5(1) such that as = ub, ast = a

and vub = b.
Let B be a set of elements disjoint from 5 and such that if I 5| is finite

then |P| is countably infinite, whilst if |5| is infinite then |P| =|5|. Let

A =B\JS and let 2=2(4), the semigroup of all mappings of A into A. Each

element s in 5 then determines an element p, in 2 defined thus:

txs,       ii x ES,
xp, = \

\x,        HxE B.

We easily verify, since by assumption 5 contains an identity element, that

the mapping s-^p, embeds 5 isomorphically into 2 and that the identity ele-

ment of 5 is mapped onto the identity element of 2.

Now, for each 5 in 5, | Ap, | ^ | B | = | A \, and hence | Ape | = | A |. Hence,

by Theorem 1, all the elements p. of 2 belong to the same 2D-class in 2. Thus

for each pair of elements s, t in 5 we may select a set of four elements a, P, £, t\

in 2 such that p,a = l-pt, p,aP = p, and n^pt=Pf For each pair of elements s, I

in 5 select a definite set of four such elements and let P denote the set of all

such elements so selected. Let 5(1) be the subsemigroup of 2 generated by

PKJ{pa: sES}. Then, regarding 5 as identified with its image in 5(1) under

the mapping s—>p„ we have embedded 5 in a semigroup 5(1) with the prop-

erties we required, and the first stage of the construction is completed.

Now construct 5(2) from 5(1) in exactly the same way as 5(1) was con-

structed from 5. Similarly we construct 5(ra + l) from S(n) for any integer

n^l. Let P=U„".15(ra).
Then T contains an identity element, viz. the common identity of all the
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Sin). Further for any a, b in T there exists an integer n such that a, bES(n)

and then there necessarily exist s, t, u, v in 5(w + l), and hence in T, such

that as = ub, ast = a and vub — b. Thus, in view of a remark made earlier, T is

©-simple and we have proved the following theorem.

Theorem 2. Any semigroup can be embedded in a (necessarily regular)

Si-simple semigroup with identity.

We note finally that our construction is such that if 5 is infinite then

\T\ =\S\ and that if 5 is finite then T is at most countably infinite.

Acknowledgment. In the author's original proof of Theorem 2 5(1) was

constructed as a free semigroup subject to certain relations. In a letter to the

author (February, 1958) Dr. M. P. Schiitzenberger suggested that it could

probably be shown that when A is an infinite set then the subset Q(A) of

2(^4) consisting of all those mappings a such that (i) | A | = | ̂ 4a| and (ii) for

all b in Aa, |&a-1| <|.4|, formed a ©-simple subsemigroup of 2. In fact £2

is a semigroup if and only if | A | is a regular cardinal and when it is a semi-

group it is ©-simple. Then, as Dr. Schiitzenberger suggested, the proof of

Theorem 2 can be completed in one step by the mapping s—>p, of the previous

section which now embeds 5 in Q(A) if we choose B such that \B\ >\S\. The

referee suggested yet a further proof of Theorem 2. The proof given in the

paper results from a combination of the referee's proof with the author's

proof of Dr. Schtitzenberger's conjecture.
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