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Let 5 be a compact connected Hausdorff space. Suppose, moreover, that

5 is a topological semigroup. A continuum X is said to be aposyndetic, (Jones

[8]), at a point x with respect to a point y if there is a subcontinuum M and

an open set 0 such that X — yD AOOD*. It is well known, [8], that the set

T(p) is a continuum, where T(p) denotes the set of points x such that X is

not aposyndetic at x with respect to p.

Our first section will be devoted to a study of the sets Tip) in S. A num-

ber of nonaposyndetic analogues of Faucett's results, [6], will be developed.

The results on the sets Tip) will be applied to continua, irreducible be-

tween two points, with S2 = S. It will be shown that if 5 has a zero then 5

is an arc. This includes a result of [15]. The case in which S does not have a

zero will be studied.

The results on the sets Tip) and on irreducible continua will be applied

to hereditarily unicoherent continua. It will follow, as a corollary, that if 5

is one dimensional with unit and zero then it is arcwise connected.

It is with the utmost pleasure that we acknowledge our considerable

indebtedness to Professor R. J. Koch for his advice, suggestions, and en-

couragement.

We now list some of the standard terms used in the study of topological

semigroups. A left (right) ideal is a nonvoid subset I such that SlilS) is a

subset of /. The minimal ideal if it exists is denoted by K. It is known that if

S is compact then K exists and is a retract of 5. A subsemigroup A is a subset

such that A2 is contained in A. By a clan we mean a compact connected

semigroup with unit. If e is an element such that e2 = e then e is called an

idempotent. The set E of all idempotents is closed. If A is a subset then

JiA) =A+SA-\-AS-\-SAS. The set Jp is defined as the set of x such that

Jip)=Jix). If e is an idempotent then Hie) denotes the maximal subgroup

of e.

Again, we assume 5 to be compact and connected.

1. Definition 1. The set T(p) is said to be symmetric if for any x in T(p)

it is true that p is a point of T(x).

The first part of the following theorem was proved in [13] under the as-

sumption 5 was a clan. For any set M, the symbol M* will denote the closure

of M.
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Theorem 1.1. If S = ES+SE and T(p) meets an ideal I then p is a point

of I. If T(p) is symmetric then T(p) is contained in I.

Proof. Suppose on the contrary that p is not in I. Let a; be a point in the

common part of I and T(p). Let D be an open set about J(x) such that D*

does not contain p. If J denotes the sum of the ideals of 5 contained in D

then / is open by [16] and connected since 5 = P5+5P. But /* is a con-

tinuum containing x within /, an open set. This is a contradiction.

The second statement follows from the first.

Theorem 1.2. If 5 = P5 and T(p) meets the left ideal L then p is a point of

L+K. If T(p) is symmetric then T(p) is contained in L+K.

Proof. Similar to the above.

Theorem 1.3. If S—T(p)=A+B mutually separate, S = ES+SE and K

is a subset of A then J(p) is contained in A*. If T(p) is symmetric then J(T(p))

is contained in A *.

Proof. If / denotes the sum of the ideals contained in A then J is open

(16). Since J* is an ideal it meets T(p). By Theorem 1.1 p is in J* and the

theorem follows.

It is easy to see that the restriction that T(p) be symmetric for the second

part of the above theorem is necessary.

Definition 1.2. An ideal is said to be prime if its complement is a semi-

group.

Theorem 1.4. Suppose T(p) is symmetric, 5 = P5P, and that S—T(p)

= A+B, mutually separate. If A is a prime ideal then T(p) is a group.

Proof. If x and y are two points of T(p) then xy is in T(p) +B since A is

prime. Now A* contains T(p) by Theorem 1.1 so that xy is in T(p). Thus

T(p) is a compact semigroup and, as such, contains an idempotent e. Using

Theorem 1.2 we see that eS and Se contain T(p) so that e is a unit for T(p).

Furthermore e is the only idempotent in T(p), for if/were another, one easily

sees that e = ef=f, a contradiction. It now follows by [14] that T(p) is a

group.

The following notion will prove quite useful.

Definition 1.3. The set C is said to weakly cut the set A from the set B

if C meets every continuum which meets both A and B. If C is a point it is

said to be a weak cut point.

Theorem 1.5. Suppose T(p) is symmetric and weakly cuts the ideal A from

the set B. IfS = ESE and (T(p))2 meets T(p) then (T(p) +B)2 does not meet A.

Proof. Suppose on the contrary that the points x and y are in T(p) +B

and that xy is in A. Since Sx meets both A and B it meets, and hence con-

tains, T(p). Likewise yS contains T(p). Let c and d be points of T(p) such
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that cd is in I\p). Now c = sx and d = yt so that cd — isx)iyl) =sixy)t is a point

of A which is a contradiction. t

The following is now immediate.

Theorem 1.5. Suppose S = ESE, the set Tip) is symmetric, S—Tip)

— A -\-B, mutually separate, and A is an ideal. If iTip))2 meets Tip) then A is

prime.

Definition 1.4. An ideal / is semi-prime if x2 is not in / unless x is a point

oi I.

Theorem 1.7. Suppose S = ESE and that S— Tip) =A-\-B, mutually sepa-

rate. If A is a semi-prime ideal then A is prime.

Proof. Since p2 is not in A and since Jip) is contained in A * it follows that

p2 is a point of Tip). Now suppose x and y are not in A but xy is. Since Sx

meets Tip) it follows that p = sx for some s. Likewise p = yt. Now then,

p2 = isx)iyt) =sixy)t and hence is in A since A is an ideal. This is a contradic-

tion.

Conditions in some of the previous theorems may be weakened or varied

in accordance with the above.

Theorem 1.8. SupposeS = ES+SE and p is inS — K. If Tip) is symmetric

it has vacuous interior.

Proof. We note that Tip) does not meet K. Suppose that T(p) contains

an open set 0. If / denotes the sum of the ideals contained in 5 — 0* then /*

meets the boundary of 0. But then J* contains 0 which is impossible.

In both the above theorem and the following it is easy to see that the

condition of symmetry is essential.

Theorem 1.9. Suppose S = ESE and p is in S—K. If Tip) is symmetric

and meets Hie) then Tip) is contained in Hie).

Proof. Since eS and Se both contain Hie) and consequently Tip) it is

clear that Tip) is contained in eSe. If x is any point of Tip) then Sx contains

Tip) and hence contains Hie). Likewise xS contains Hie). We conclude that

Tip) is contained in Hie).

The following shows an important connection between a weak cut point

p and the set Tip).

Theorem 1.10. Let X be a continuum and suppose p weakly cuts a from b.

If Tip) contains neither a nor b then Tip) separates a from b.

Proof. Suppose on the contrary that Tip) does not separate a from b.

For each point x of X—Tip) there is a subcontinuum M and an open set 0

such that S — pZHMZiODx. The collection of all such open sets forms a

covering of X—Tip) and so there is a simple chain Ou 02, • • ■ , On with 0
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containing a and On containing b. Since each 0< is contained in a continuum

not containing p it follows that there is a continuum containing a and b

but not p. This is a contradiction.

Theorem 1.11. Suppose S = ES+SE and that A is the complement of a

maximal prime ideal. If V is an open subset about A there is an open set U such

that A E UE V and S—U an ideal and hence connected.

Proof. For each point x of S — A there is, as in Theorem 1.1, a subcon-

tinuum M and an open set 0 such that 5—AZ)MZ)OZ)x. Hence if V is

open about A, the set 5— V, since compact, is the sum of finitely many com-

ponents. Since A does not separate 5, an easy argument, similar to Theorem

1.10, shows the existence of the required set U.

Definition. A continuum is said to be the essential sum of a collection G

of continua if no element of G is contained in the sum of the others. A con-

tinuum is said to be ra-indecomposable if it is the essential sum of ra but not

ra + 1 continua (Swingle, [20]).

We apply the set T(p) to prove the following.

Theorem 1.12. If S is n-indecomposable and S = ES+SE then S = K.

Hence, if ra> 1, multiplication must be (1) xy — x for all x, y or (2) xy = y for all

x, y.

Proof. It is clear that if we form S/K, assuming K is proper, we see that

there is an integer rgn such that S/K is r-indecomposable. Hence we may,

without loss, assume 5 has a zero 0. Swingle, [20], has shown that 5 is the

essential sum of ra-indecomposable subcontinua 5i, Si, • • • , 5„. Let 0 be in

5i. Since 5 = P5+5P, it follows that for p, a point of 5i, the set T(p) does

not contain 0. It is shown in (2) that this is impossible. Now an easy argument

shows that 5 cannot be the cartesian product of two nondegenerate continua.

This together with the fact that S = K, shown above, and Corollary 1 of

[16] implies the last statement of the theorem.

It is easy to see that if 5 is 1-indecomposable that any composant con-

taining K is an ideal and that it contains P.

2. Throughout this section we shall assume 5 is a continuum irreducible

between the points a and b. That is, no proper subcontinuum contains a and b.

We first examine the situation in which 5 has a zero and prove the follow-

ing. By an arc from a to b, where a and b are points, we mean a continuum

X containing a and b with the property that any point of X, other than a or b,

separates a from b. In other words X is irreducibly connected between a and b.

Theorem 2.1. If S2 = S and S has zero 0 then S is an arc. Either a or b is

idempotent. If 5 has neither left nor right unit then both a and b are idempotent,

S—0 = A+B, mutually separate, and both A* and B* are abelian semigroups.

If 0 does not separate 5 then 5 has a unit.
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Proof. Let us note first of all, that each set Tip) is symmetric. This is

quite easy to see since 5— Tip) has at most two components. Secondly, if 5

has neither left nor right unit, then it follows, from the irreducibility as in

[15] that S = eS-r-Sf and hence S = eSe-\-fSf for e and / in E. Since, in this

case, ar^Qr^b it follows that T(0) = {o} separates 5. In any case we see that

S = ES-\-SE. A straightforward argument using Theorems 1.1 and 1.3 shows

that if Tix) meets Tiy) then Tix) is contained in, or contains Tiy). This

argument is similar to the one we now use to show that if Tix) contains T(y)

then Tix) = Tiy). We suppose then that T(x) properly contains Tiy) and

we may suppose, without loss of generality, that y is not in r(a) + J"(&).

Then S— Tiy) =A +B, mutually separate, with 0 an element of, say, A. By

Theorem 1.2 the set Tix) cannot meet B. Let p be a point of Tix) which is in

A but not Tiy). By symmetry, Tip) does not contain y and it follows that

5— Tip) = C+D separate with 0 in C and y in D. Since x is in T(p) we have

a contradiction to Theorem 1.1 by means of Theorem 1.3. Hence the sets

Tip) are mutually exclusive, and an easy argument shows the collection,

whose elements are the sets Tip), to be upper semi-continuous. The hyper-

space G is seen to be an arc by Theorem 1.10. Let e be an idempotent. We

assert for any Tix) in the interval, in G, from 2"(0) to Tie), that Tix) = {x}.

We assume first that Tix) contains no idempotent. Let Tip) be the first

element in the order from Tix) to Tie) such that Tip) contains an idem-

potent/. It follows from [18] that in/5/an arc A may be started at/. If a is

a point of A, by considering the locally connected continuum

{A + aA + a2A + • • • + aNA\

for large enough N, and using the irreducibility of S, we see that Tix) = {x}.

Now suppose that some Tiy), in the interval 7\0) to Tie), is Tig) for g in E.

In the interval from 7\0) to Tig) one cannot have sets Tix), containing no

idempotent, arbitrarily close to Tig). Since in gSg there cannot be separating

points arbitrarily close to g unless Hig)=g, there is a subinterval TQi) to

Tig) each element of which is a set containing an idempotent. However, by

Theorem 1.9 each set Tip) contains at most one idempotent. Hence there is a

cross section at e and by restricting the canonical mapping it follows that

there is an arc from T(h) to Tig) and, finally, since there are not separating

points close to g in gSg, unless Hig) =g, we conclude that Tig) = {g}. It is

now clear that there is, in S, an arc from 0 to any idempotent e. Since

S = ES+SE it follows that 5 is an arc. The remaining statements are clear.

To simplify the discussion we use the notion of C-set as defined, for in-

stance, in [21].

Definition 2.1. A subset Af of a space X is called a C-set if any con-

tinuum meeting M and X — M must contain M.

The boundary of a set A will always be denoted by FiA). If there is a

unique continuum irreducible from c to d it will be denoted by [c, d].
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Lemma 2.1. Suppose I is a closed subset of S, not separating S, such that 5'

(the space formed by shrinking I to a point) is an arc. If I has vacuous interior

it is a C-set. If I is an ideal and S' has a unit 1 and if F(S — I) is nondegenerate

then 5 — I is an abelian semigroup and F(S — I) is an abelian group.

Proof. The first conclusion is clear since each point of S — I weakly cuts.

To prove the second conclusion, let x and y be points of S — I and suppose

xy is in I. Now x[y, l] is a locally connected continuum containing x and

meeting I. Since 5' is an arc, it follows that F(S — I) is degenerate. Since 5 — 7

is abelian from [6] it follows that (S — I)* is abelian and its kernel is seen to

be F(S — I) which is then an abelian group.

In the remainder of this section, unless otherwise stated, we shall assume

K is nondegenerate.

Theorem 2.2. Suppose K has vacuous interior. Then K is a group and if it

does not separate 5 it is abelian and a C-set.

Proof. The case in which K does not separate 5 follows from Lemma 2.1.

We assume K separates 5 so that 5 — K = A+B, mutually separate. If

5 has neither left nor right unit then from Theorem 2.1 we see that a and b

are in P. If F(A) is nondegenerate it is, by Lemma 2.1, a group. The same is

true for F(B). Clearly one or the other is nondegenerate. Since K = F(A)

+ F(B) it follows that K is itself a group.

Let us suppose, now, that 5 has a left unit e which is in A. If F(A) is

degenerate then, letting F(A)= A, we see that the locally connected con-

tinuum [A, e]b contains an arc from b to K and K is degenerate. Hence F(A)

is nondegenerate and an abelian group by Lemma 2.1. We may suppose

K — F(A) is nonvacuous. We note that F(B) contains K — F(A) and is non-

degenerate so that by Lemma 2.1 F(B) is a C-set in B*. If x is any point of

F(B), by continuity of multiplication, we see that xS contains F(B), as does

Sx. Further, since F(A), a group, meets xS it follows that xS contains K. It

follows from [14] that K has a unit and consequently is a group.

Theorem 2.3. Suppose K has a nonvacuous interior. One of the following

must hold:

(i) eacA element of K is a left zero.

(ii) each element of K is a right zero.

(iii) K is a group.

Proof. It follows from [15] that our theorem will be proved if we can

show that K is not the cartesian product of two nondegenerate continua. If

K were such a product it would be aposyndetic [8]. By the irreducibility of

5, any point of the interior of K would be a weak cut point of K. Such a

point, by Theorem 1.10, is a separating point of K. Since K was a cartesian

product this is impossible, and the theorem follows.
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Theorem 2.4. If every element of K is a left zero and S has a left unit or has

neither left nor right unit then K, and consequently S, is an arc.

Proof. If 5 has left unit e and A is the component of e in S — K then F(A),

if nondegenerate, is a group by Lemma 2.1. Hence we may assume F(A)

= {A} is degenerate. Taking e = a, and considering [A, e]b, the first part fol-

lows. In the second part we merely note that then S = eSe+fSf and apply

the first part.

If K is composed of left zeros and 5 has a right unit then any irreducible

continuum may appear as K as in Example 2.3.

Theorem 2.5. If K is a group with nonvacuous interior then it is indecom-

posable.

Proof. We assert that K is irreducible between two points.

We suppose first that K does not separate 5 and take, using Theorem 2.1,

a as an idempotent and b a point of K. Now the boundary of 5 — K is either

degenerate or a group by Lemma 2.1 and, in either case, has vacuous interior

in K. It follows that K is irreducible from b to any point of F(S — K).

We now suppose that K separates 5 and write 5 — K=A+B, mutually

separate. If 5 has neither left nor right unit then F(A) is a group or degenerate

and hence has no interior in P. The same is true for F(B). It follows that K

is irreducible from F(A) to F(B). If 5 has a left unit, say a, then F(A) is

nondegenerate and a group. (If not, we consider a translate by b of the arc

from a to P.) Now F(B) is a C-set in B*. If F(B) is degenerate it follows

easily that K is irreducible from F(B) to F(A). If F(B) is nondegenerate it

follows that if x is in B and y is in A the product yx is in B, that is AB is

contained in P. By continuity of multiplication it follows that if p is a point

of F(B) then pF(A) contains F(B). Hence F(B) has no interior in K and it

follows that K is irreducible from F(A) to F(B).

Since K is irreducible between two points and is homogeneous it follows

from [3] that K is indecomposable.

We now list some examples.

Example 2.1. It is shown in [15] that if G is any compact, connected,

separable, abelian group then there is a clan, with kernel G, irreducible from

G to the unit.
Throughout the following examples, I will denote the usual unit interval,

SXT will denote the cartesian product with coordinatewise multiplication.

Example 2.2. Let 5 be the clan of Example 2.1. Let C be a two point

semigroup. Form 5X C and shrink each set gX C to a point for g in G. That is,

define (s, c)R(s', c') if s = c and s' = c' or if s = s' is in G. The usual methods

show that S/R is a semigroup irreducible between two points. 5 may be

described as a continuum group with two spirals winding upon it.

Example 2.3. Let N be any continuum irreducible between two points c

and d. For ra and m in N define the product nm to be ra. The semigroup
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iNx[0}) + i{c} Xl) + i{d} XI) is irreducible between two points, has a

right unit, and has N as kernel.

Example 2.4. In [6] there is described a clan 5 irreducibly connected

between two points k and e. Its kernel is nondegenerate and does not separate.

First form SXI. We note that i{k}xl)+iSx[o}) + i[e} XI) isanon-

abelian clan, is an arc, and is separated by its kernel.

Secondly we note that the semigroup i{k} Xl)+iSX {o}) is an arc, has

a nondegenerate kernel which separates, and has neither left nor right unit.

Example 2.5. Let 5 be, as in Example 2.1, irreducible from G to u. Form-

ing SXI we see that ({e} Xl)+(Sx\o})+({u} XI) is a clan which is ir-

reducible.

Suppose G contains a subgroup H with the properties needed for Example

2.1. Form SXI and from the cylinder HXl construct T, irreducible as in

Example 2.1. We see that 7"+(5x{o}) is irreducible and has neither left

nor right unit. Its kernel has vacuous interior but is not a C-set.

Concerning the above example, it is easy to see that if S — K = A+B,

mutually separate 5 has a left unit e in A and F(A) =K, then FiB) is either

equal to K or is degenerate.

Example 2.6. Let G be an indecomposable continuum which is a group.

Forming GXI we note that (GX {0}) + ({e} XI), where e is the unit of G, is

irreducible.

3. A continuum is said to be hereditarily unicoherent if the common part

of two subcontinua, which intersect, is a continuum. If there is a unique

continuum irreducible from the point c to the point d it will be denoted by

[c, d]. It is obvious that in an hereditarily unicoherent continuum the sub-

continua irreducible between two points are unique.

Theorem 3.1. If S is hereditarily unicoherent and has a unit 1 and a zero 0

then S is arcwise connected. Further, the arc [0, l] is an abelian semigroup.

Proof. We shall show first that the continuum irreducible from 0 to 1 is a

semigroup. Let x and y be points of [0, l] and suppose that xy is not an

element of [0, l]. We assert first that x is not an element of [0, xy]^[0, l].

For if x were, the continuum [0, x]y contains [0, xy] which, in turn, contains

[0, x] since the irreducible continua are unique, and finally, [0, x]y contains

[0, x] since xy is not in [0, x]. This is impossible by [14]. Hence we may sup-

pose both x and y are not points of [0, xy]O[0, l]. We now note that

{ [0, xy] + [0, l]} — { [0, xy]n[0, l]} =A+B, mutually separate, where xy

is an element of A and x is an element of B. Since the continuum x[y, l]

contains xy and x, and again by the uniqueness of the irreducible continua,

we conclude thatx[y, l] meets the continuum x[y, l]f~\ [0, l]. Let z be a point

in the common part of these continua. We note z = xt for some Z in [y, l].

We now assert that y is in tS. We suppose, on the contrary that y is not

in tS. It is then clear by Theorem 1.2 that / is not in Tiy). We consider two

cases: the first, when 1 is not in Tiy), the second, when 1 is in Tiy). In the
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first, we assert that either y weakly cuts t from 1 or that y weakly cuts 0 from

t. If neither of these held, there would be a continuum containing 0 and 1

but not y which would be a contradiction to the uniqueness of the irreducible

subcontinua. Now if y weakly cuts 0 from t it is immediate that y is in tS.

Hence we may suppose that y weakly cuts / from 1. Since t is not in T(y),

and 1 is not in T(y), it follows from Theorem 1.10 that S—T(y)=A+B,

mutually separate, with tin A and 1 in P. Now T(y) +B is a continuum con-

taining y and 1 and consequently, [y, l]. Since t was in [y, l], this is mani-

festly impossible. Hence we may suppose that 1 is in T(y). Since T(y) then

contains [y, 1 ] we conclude that t is in T(y) which is a contradiction.

We now have shown that y is an element of tS so that y = ts for some 5.

Now xy = x(ts) = (xl)s, so that xy = zs with z in [0, xyJf^fO, l]. Finally,

[0, z]s contains [0, zs] = [0, xy] which properly contains [0, z] since xy is not

in [0, z]. Since [0, z]s properly contains [0, z] we have a contradiction to

[14]. Hence [0, l] is a semigroup and by Theorem 2.1 is an arc. By [6] we

know that [0, l] is abelian. If c and d are two points of 5, the locally con-

nected continuum c[0, l]+rf[0, l], which is hereditarily unicoherent, obvi-

ously contains an arc [c, d]. It has been shown, in the proof of Theorem 5 of

[13], for instance, that a one-dimensional clan with zero is hereditarily uni-

coherent.

Corollary. Suppose S2 = S and S has a zero. If S is hereditarily unicoher-

ent it is arcwise connected. In particular, a one dimensional clan with zero is

acrwise connected.

Proof. The condition S2 = S implies that 5=5P5 [16]. If 5 is any point
of 5 then s = xey for some e in P. Now the clan eSe, if one dimensional, is

hereditarily unicoherent by [13]. Hence there is an arc [0, e].By considera-

tion of x[0, e]y the theorem follows.

Theorem 3.2. Suppose S is arcwise connected and hereditarily unicoherent.

If S has a zero 0 and x weakly cuts Ofrom y then y is not in Sx.

Proof. If y = sx, the continuum s[0, x] properly contains [0, y] in contra-

diction to [14].

Theorem 3.3. If 5 is arcwise connected, hereditarily unicoherent, and has a

zero 0, *Aera p[0, q] = [0, pq] and [0, p] [0, q] = [0, pq].

Proof. Clearly p[0, q] contains [0, pq]. Suppose, for some x in [0, q],

that px is not in [0, pq]. Now p[x, q] contains px and pq. Let z be the first

point of [px, 0] in the order from px to 0 which is a point of [0, pq]. We then

have z = py for some y in [x, q] so that x = ys for some 5. But then, px = p(ys)

= (py)s = zs in contradiction to Theorem 3.2.

For the second conclusion we note first that [0, p][0, q] contains [0, pq]

and we suppose that for some x in [0, p] and y in [0, q] the point xy is not in
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[0, pq]. We note that x[y, q] contains [xy, xq] and that xq is an element of

[0, pq] by the first part of this theorem. If z is the first point of [xy, xq] in

[0, pq] then z = xt for t in [y, q]. Since y = ts, we see that xy = zs in contradic-

tion to Theorem 3.2.

Theorem 3.4. Let S be hereditarily unicoherent. If S=ES+SE and has a

zero 0 then x being in T(p) implies p is not in T(x).

Proof. Obviously we may assume xy^Oy^p. We assert that [0, p]f~\T(p)

= p. Let y be any point in [0, p]C\T(p). It follows from Theorem 1.1 that

J(y) contains p which, by the usual argument, is impossible. Now suppose

for some x in T(p) that p is in T(x). Now T(p) contains [p, x]. Since [0, p]

(~^T(p)=p we conclude [0, p] + [p, x]= [0, x] but by the first part, T(x)

P\ [0, x] =x. We conclude that x = p.

Definition 3.1. Let S be arcwise connected and hereditarily unicoherent.

By an endpoint we mean a point which separates no arc.

The following theorem implies that a one dimensional continuum with

unit and zero, which is a subset of the plane, is accessible at each of its non-

zero endpoints from its single complementary domain.

A problem, which we leave unsolved, is when such a semigroup is acces-

sible at its zero.

Theorem 3.5. Suppose S is hereditarily unicoherent and S = ES+SE. If

p is an endpoint and p is not in K then S is semi-locally connected at p.

Proof. Since we may form the Rees quotient S/K, we shall assume S

has a zero 0. Let x be a point of Tip). If x is in [0, p]C\Tip) then x = p. If x

is not in [0, p] then it follows that p separates the arc [0, x]. Hence Tip) =p.

An easy argument shows that if F is an open set about p, there is an open set

U containing p such that ZJ is a subset of F, and S— U is connected.

The notion of limiting set, (Aa-^>A), as used in the following, is the usual

one as described, for example, in [12].

Theorem 3.6. Suppose S is hereditarily unicoherent having a left unit e and

a zero 0. If \Aa} is a collection of arcs each with 0 as an endpoint and Aa—*A

then A is an arc.

Proof. Let aa be the nonzero endpoint of Aa and suppose aa—*a. By con-

tinuity, [0, e]aa—>[0, e]a. By Theorem 3.3, this implies [0, aa]—>[0, a].

This theorem also follows from Theorem 3.4, but not in so direct a fashion.

Theorem 3.7. Suppose S is hereditarily unicoherent, has a zero 0, and a left

unit. If one defines x^y if either x weakly cuts 0 from y or x — 0, then gl is an

order dense continuous partial order.

Proof. It is clear that ^ is an order dense partial order. To show con-

tinuity, suppose a£b and b%a. We assert that there exist open sets, U and
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Vabout a and b such that ugv and v gu for u in U and v in V. Suppose on the

contrary that there exist arbitrarily small Ua and V« such that ua g va for ua

in Ua and va in Fa. It then follows that [0, va]= [0, «„] + [«„, va]. Now the

limiting set of { [0, va]}, (or some subcollection), contains 0, a, and b, and,

since it is an arc from the previous theorem, we conclude that 0 weakly cuts

between a and b. Now 5 is locally connected at 0 so that we may find an

open set D about 0 such that D* is a continuum. An easy argument shows

that for some /3, a subarc of [0, v$] has its endpoints in D* but is not a subset

of D*. Since this is impossible the proof is complete.

Definition 3.2. By a maximal arc we mean one which is not a proper sub-

set of any other arc.

It can be shown, using standard techniques, that in an arcwise connected

hereditarily unicoherent continuum, any arc can be extended to a maximal

arc. The situation is somewhat easier with a semigroup as the following shows.

Theorem 3.8. If S is hereditarily unicoherent with a left unit e and a zero 0

then 5 is arcwise connected and every arc is contained in a maximal arc.

Proof. Arcwise connectedness follows from Theorem 3.3. Let [0, a] be an

arc. Let Q be the collection of all arcs of the form [0, xa], a in A, where

[0, xa] contains [0, a]. Let T be a maximal tower in Q and let L be the closure

of the union of the elements of T. Define bagbp if ba weakly cuts 0 from bp

if and only if [0, ba] is contained in [0, bp]. Note that (A, g) is a directed

set. Let b be a cluster point of {bp}. By [14] and Theorem 3.3, we see that

L = (U[0, bp])* = (U[0, e]bp)*= [0, e]b= [0, b] and the theorem follows.

Concerning the existence of weak cut points we have the following.

Theorem 3.9. Suppose S is one dimensional and has a unit. If S has no

weak cut point then S is a simple closed curve.

Proof. If K is not proper form S/K. We know S/K is arcwise connected

and hereditarily unicoherent. Let 0 be the zero of S/K. Since S/K — 0 and

S—K are homeomorphic it follows that 5 has a weak cutpoint. Hence we

know that 5 = P and consequently 5 is a topological group. Now 5 is cer-

tainly not indecomposable for every point of an indecomposable continuum

is a weak cutpoint. Since 5 is a decomposable, one dimensional, compact,

connected, topological group it is a simple closed curve.

Theorem 3.10. Suppose S is arcwise connected, hereditarily unicoherent and

equal to ES+SE. If A is the complement of a maximal proper ideal M then every

point of A is an endpoint and A is totally disconnected.

Proof. We may assume 5 has a zero 0. Let a be in A and assume a is not

an endpoint. Then [0, a] is a proper subset of some [0, /]. Now J(a)C\[a, t]

= a. Since M+J(a)=S we conclude [a, t]— a is a subset of M. Since J(t)

is contained in M we see that a is in M which is impossible.
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Theorem 3.11. Suppose S is arcwise connected, hereditarily unicoherent and

has a zero. If the endpoints are idempotent and commute, one with another, then

S is abelian.

Proof. If r and 5 are any two points of 5 then r is in [0, e] and s is in

[0,/] for some idempotents e and/. We note, from Theorem 3.3, that [0,e] [0,/]

= [0, ef] = [0, fe] = [0, /] [0, e] and that all of these contain rs and sr.

Now rs = (re)(fs) =r(fe)s = (rf)(es). Both rf and es are points of [0, ef]

which is abelian by Theorem 3.1. Hence irf)ies) =eisr)f. We now assert that

eisr)f=sr. Ordering [0, ef] from 0 to ef, we cannot have eisr)f<sr, using

Theorem 3.2, and were we to have eisr)f<sr, then f(e(sr)f)e = (fe)(sr)(fe) —sr,

again a contradiction to Theorem 3.2. Hence, S is abelian.

Corollary (Faucett). If S is irreducibly connected between two idempo-

tents which commute and has a zero then S is abelian.

Theorem 3.12. Suppose S is hereditarily unicoherent with unit 1 and zero 0.

If every endpoint is an element ofH(\) then H(\) and [0,1 ] commute elementwise.

Hence if H(l) is abelian so is S.

Proof. Using Theorems 3.1 and 3.3, the argument of [7] suffices.

We note that if 5 is hereditarily unicoherent and has a unit and a zero

it has the fixed point property. This is, certainly in the metric case, well

known [l]. It also follows from Theorem 3.7 and [22].

Theorem 3.13. Let S be one dimensional with unit 1. If S is not arcwise

connected then K is a group.

Proof. Since K is one dimensional it is not the cartesian product of two

nondegenerate continua. Hence, [15], every element of K is a left (right)

zero or AT is a group. The continuum M, irreducible about AT+{l}, is a

semigroup by Theorem 3.1. Let N=M—K, and let F(N) he the boundary of

N in N*. Since any point of N weakly cuts K from 1 it follows that F(N) is a

C-set in N* and hence by Lemma 2.1, is a group if nondegenerate. Hence we

may suppose F(N) = {k} is degenerate. By considering translates of [k, 1 ]

the theorem follows.

By taking C as the Cantor set under "min" and G as the circle group in

Example 2.2 the result is a totally nonaposyndetic clan which is one dimen-

sional and has no separating point.

Let C be the Cantor set under "min" and 5 be a clan which is a triod with

zero endpoint. Form SXC and shrink {OJ +C to a point. The resulting one

dimensional clan with zero is not a subset of the plane.
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