
ON THE GROWTH OF MEROMORPHIC FUNCTIONS
WITH SEVERAL DEFICIENT VALUESO

BY

ALBERT EDREI AND WOLFGANG H. J. FUCHS(!)

Introduction. Let/(z) be an entire function of finite order X and let M(r)

denote its maximum modulus in the region |z| gr. The following well known

proposition is easy to prove.

Theorem A. If some value r (j£ 00) is exceptional in the sense of Borel, then

(i) X is a positive integer;

(ii) log M(r)=arK for some positive value of a.

In this paper, we investigate the possibility of proving analogous theorems

for meromorphic functions possessing deficient values (in the sense of R.

Nevanlinna).

The main interest of the results obtained lies in the fact that they provide

partial answers to the three following questions.

I. Under which conditions are deficiencies invariant under a change of

origini

II. When are deficient values also asymptotic values'?

III. How does the presence of deficient values influence the gap structure of

the Taylor expansion of an entire function?

We leave aside questions II and III which will be treated in another

paper [l].

We explain our notations in §1 before stating our results in §2.

1. Terminology and notations. The complex variable will be denoted by

z = x + iy = reiS (x, y, 6 real; r }z 0).

The function/(z) is, in general, meromorphic.

The sequence of its zeros (other than the origin) will be denoted by

(1.1) ax, a?, ai, • • • ,

and the sequence of its poles (other than the origin) by

(1.2) 61, bh 63, • • • .

As usual, the moduli of the terms of these two sequences are taken to be
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nondecreasing and each zero or pole appears as often as its multiplicity indi-

cates. By

di, d2, d3, • • • ,

we denote the sequence obtained by rearranging (1.1) and (1.2) as a single

sequence, the terms of which have nondecreasing moduli.

The standard symbols of the Nevanlinna theory

log, M(r,f), m(r,f), n(r, a), N(r, a), N(r,f), T(r,f),

are used throughout the paper; familiarity with their meaning is assumed.

If no confusion is to be feared, we write Af(r),  T(r), ■ ■ •   instead of

M(r,f),T(r,f), •••.
We define

n(r) = n(r, 0) + n(r, oo),

N(r) = N(r, 0) + N(r, oo).

The letters X and u denote the order and lower order oif(z), respectively:

.      ,. log T(r) ..    .log T(r)
X = hm sup->      u = lim inf-•

r-»»       log r j—•«      log r

We say that/(z) is of regular growth, ii\ = u (both may be + oo). The

deficiency 8(r,f) of the value t, with respect to f(z), is, by definition,

N(r, r)
&(r,f) = 1 - hm sup •

'—    T(r,f)

If no confusion is to be feared, we write 8(t) instead of 8(r,f).

An important part is played, in this paper, by the quantity

N(r)
(1.3) k = K(f) = hm sup —— •

r->»     T(r)

Clearly

A^r.O) N(r, oo)
(1.4) k g lim sup + lim sup ———-= 2 -5(0) - 5(oo).

r-»«>      T(r) r-*<o       T(r)

2. Statement and discussion of results. Let JJx (z) denote the canonical

product formed with the sequence of zeros {a,} defined by

a,= _„i/x       („ = 1,2, 3, • • • ,0<X< + oo).

Lindelof obtained an asymptotic representation of JJx (z) which readily

yields [5, p. 54]:
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(i-r   , A , . | sin x\|
IL(«)) = 1-W)=     '    ■   .    '   ■

/ q + [ sin irX \

(q<^gq + —>q^0, integer j,

(2.D   I ,, '
/ -i-r \ I Sin irA^IL(«)) = i-g(o)° '       '

(q + — <Xgq+l,q^0, integer).

It is therefore clear that the assertion (i) of Theorem A cannot hold for all

meromorphic functions satisfying the inequality

(2.2) k(J) < 1.

However, the following Theorem B, of R. Nevanlinna, shows that some

connection exists between the order X, of f(z), and the numerical value of«(/).

Theorem B. Let

(2.3) A(X) = inf (*(/))

where f ranges over all meromorphic functions of order X. Then

k(X) = 0 (X = 1, 2, 3, • • •).

For all other X, A(X)>0.

R. Nevanlinna posed the problem of determining the exact value of k(X).

Using an important lemma of A. A. Goldberg [3], we have obtained a com-

plete solution of this problem for X < 1. A detailed account of our work in this

direction will appear elsewhere [2].

In the general case X < + oo, which will be considered here, our results

are not as precise. We prove

Theorem 1. Letf(z) be a meromorphic function of finite order X. Then

| sin tX I

(2.4) K(f)Z '   t-
2.2X H-| sin n-X |

2

This result gives the correct order of magnitude of A(X) since (2.1), (2.3)

and (2.4) yield

* ( IIxW) ^ *W ̂  -^^-" 37 K ( nx(z)) (X - 1}
2.2XH-IsinxXl

2
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(For X<1, (2.4) is superseded by the result to appear in [2].)

Next we turn to generalizations of the second part of Theorem A.

First we shall show that an entire function may well have a finite deficient

value without being of regular growth. This is easily deduced from the follow-

ing theorem, which is also of independent interest.

Theorem 2. Let f(z) be an entire function vanishing at all points of the se-

quence [a,}"_! and nowhere else. Assume that

(i) o,<0(v=l, 2, 3, • • •);

(ii)   ^ | a, | ~>' converges for some finite value of p;

(iii)   ^31 °" I-1 diverges.
Then

8(0, f) >-—- (?£0,
1 + log q

where A is an absolute constant and q is the genus of the canonical product

formed with the zeros a,.

Canonical products of finite genus, with negative zeros, need not be of

regular growth. It is easy to see that, for a suitable sequence {a,}, with occa-

sional very large gaps between consecutive terms, X = tf + 1, u = q. Let g(z) be

such a product; then, by Theorem 2, 8(0, g)>0, provided q^l. Moreover,

taking q = 1 and replacing z by zk, we obtain examples of entire functions,

possessing deficient zeros, and such that \ = 2k, pt = k (k = l, 2, 3, • • • ).

It might be of interest to mention, without proof, that it is possible to

construct, for arbitrarily small positive values of e, entire functions with

\ = l-e, M = l/2-«, 5(0) >0.
A study of these examples suggests the following problem which we are

unable to solve:

If f(z) is entire and of finite order X, does the presence of a finite deficient

value imply X ̂  2/x?

Theorem 2 raises another interesting question:

Which sequences {a,} have the property that, if an entire function f(z) van-

ishes at all points av, and nowhere else, then 5(0, /) > 0?

Theorem 2 disproves the conjecture that such sequences are associated

with functions n(r, 0) possessing special properties (that is other properties

than the obvious properties of all counting-functions).

Although Theorem 2 shows that an inequality such as (2.2) has little

influence on the regularity of the growth of the characteristic of a mero-

morphic function, a closer inspection reveals that the assertion (ii) of Theorem

A, may be generalized if k is sufficiently small (Theorems 4 and 5). This

generalization is basic in our results concerning the problems mentioned in

the Introduction. Its proof is based on the two following companion theorems.

Theorem 3a. Letf(z) be meromorphic. 7/<r>l and r>2, then
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(2.5) T(r) g-TV) + max {N(<rr, 0), N(ar, oo)} + O (log r)   (r -» »).
a — 1

If f(z) is entire,

4
(2.6) log Af(r) g-TV) + N(<rr, 0) + 0(log r) (r -» oo).

(7—1

Theorem 3b. Let q be a non-negative integer. Put

awo" /e£ P(w, a) denote the primary factor of genus q.

If f(z) is a meromorphic function withf(0) =1, then for

(2.7) 0<2P<r<—P,

we Aai/e

log |/(«<•) |  =log |/(z)|

=     £    log £(-, ?)   -     £    logP(-,?)+5,
P<|ar|siJ I       \a, / |        p<|l,|s« I       \b, / I

wAerc

151 £ 22v-(a/>) + AT(r) + -^ {&T(aR) + 2N(aR)} (q = 0),
P

(2.9) |5|  g {pj^T(aP) + 5(g + 1} iV(ap)}

/ r\q+1
+ (^-j     {87X«*) + 2N(aR)} (q^l).

Further, if

l  r* M
0(0 = — I    -1

irJo    (<2-2/cos0+l)1'2

/Ac«

2r(r) - N(r) < (q + l)rq f   N(al)rq'l<l>(—)dl

(2.10) J< W

+ 2N(aR)(^-j     +\S\,

where \ S\ satisfies (2.9).
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From Theorem 3a, we deduce

Theorem 4. Let f(z) be meromorphic and assume that two of its values a, 8

are deficient. If

y = maxjl - 5(a), 1 -8(B)},

then

l0g Vy(2 - y))

* = ~   , 4 \ (T^0)'

H^^^y))
M = 1 (7 = 0).

Corollary 4.1. Meromorphic functions with more than one deficient value

have a positive lower order.

From Theorem 3b, we deduce

Theorem 5. Letf(z) be a meromorphic function. Assume that for some non-

negative integer q and some 8, 0 </3^ 1/2,

(2-n) K(f)<^7)-

i. if

(2.12) X> ?+l-/3

then every interval

(2.13) xgrg(35)'% (x > x0)

contains a point s such that

T(u)u-q~1+» ^ T(s)s-q~l+» (xo^u^s).

II. If

(2.14) u<q + 8,

then every interval (2.13) contains a point t such that

p(i)r«-* ^ r(»)»-«-^ (v ̂  t).

Corollary 5.1. If (2.11) and (2.12) hold, then

u^q+l-8.

If (2.11) and (2.14) hold, then
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Xgq + p.

Combined with Theorems 1 and 4, Corollary 5.1 yields

Theorem 6. Let f(z) be a meromorphic function of finite lower order p. Let

p be the integer defined by

1 1
p--g,<P + -.

(2.i5) ^<^ri) (0<^y)'

then p^l,

K *
\X- p\   <~>1 '       10

and

P
p - P gpgX <p-\-

10

As an immediate consequence, we obtain the following generalization of

Theorem A.

Corollary 6.1. If n(f) = 0, then the order of f(z) is either infinite or a posi-

tive integer. In both cases, f(z) is of regular growth.

Valiron [10 ] proved

Theorem C. Iff(z) is of finite order X, and ifX—p<l, then all deficiencies

are invariant under a change of origin.

Combined with Theorem 6, this gives

Corollary 6.2. If f(z) is a meromorphic function of lower order p and if

1
k(J) <-,i<4+|)

then all deficiencies are invariant under a change of origin.

It is interesting to combine some of our results with the following

Lemma 1. Letf(z) be a meromorphic function of finite order. If

(2.16) A= I>(t,/)> 1-y (0<7<D,
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and

(2.17) «(«,/)> 1-7,

then

T(r,f) T(r,f)
(2.18) l-y<liminf-^glimsup-^-f<l + 7,

r-.-   T(r,f) ,—     P(r,/)

and

(2.19) K(/')g-i^—•
1 — y2

In the special case of entire functions, it is clear that the condition (2.17)

may be omitted. Lemma 1 then shows that if A is sufficiently close to 1,

k(/') will be so small that some of our results may be applied to /'. This

yields information about T(r,f) which, in view of (2.18), may be expressed

in terms of T(r,f).
Combining Corollary 6.1 and Lemma 1, we thus obtain

Theorem 7. An entire function of finite order with

(2.20) Z«M = 2,
T

is necessarily of positive integral order and of regular growth.

Using Lemma 1, in the same way, it is clearly possible to restate other

results of this paper. The modified theorems will be applicable to entire func-

tions with A close to one.

Using the full strength of Lemma 1, there will be further extensions to

meromorphic functions with ^,8(t) close to two and one deficient value of

deficiency close to one.

It would be interesting to omit the latter restriction. We are unable to do

this, but observe that such an omission would necessarily weaken some of our

statements. It is known, for instance, that part of Theorem 7 does not hold

for all meromorphic functions satisfying the condition (2.20), since there

exist functions of this type and of finite nonintegral order [4, p. 83].

3. Estimates for the logarithmic mean of the primary factor of genus q.

Let o(^0) be an integer and put

£(«,0) = l-«,

(3.1) /       «* ««\
|£(«,5) = (l-«)exp(« + -+ ••• + -) (?>0).

Since q is fixed throughout this section, we write E(u) instead of E(u, q).

We start from the representation
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Jtq
7-7^'

o    c — 1

where the path of integration can be chosen as a straight line segment, pro-

vided u is not a positive number greater or equal to 1. Hence, for 0<(?<27r,

/'T        tqdt

Integrating with respect to 8 gives

(3.2) - f    | log | £(««) \\d6 = m(r, E(z)) + m (r, —- J =  f' tq<b(t)dl
2tJ0 \    E(z)/      Jo

where

i  r2r      de l r2" de
(3.3) <b(t) = — -:-r = — |-

2irJo      |/e"-l|       2ttJ0     (t2 - 2t cos 6+ l)1'2

The function <p(t) is defined for all positive t (^1), and it is easy to

verify that

1     ( «  /1-3-5 • • • (2m - 1)\2/     it     V)

, ,  H,)~A1+L( »•«•»•■■». )w)l
(3.4)

1     (        2 11 + t)
g -\l + — log   - >•

1 + t\ ir \l - t j

We shall require several properties of <j>(t), in particular

(3.5) <*(<)=*(—)

which readily follows from (3.3). For <^2,

1   r2*    ^ 2
(3.6) 0 <*(/)<— I--<-•

lit J o     I — 1        *

By (3.2) and (3.5),

(3.7) m(r, E(z)) + m(r,-j g j    rq-l<b(t)dt = r" f   «-«-»0 (—) du.

We now evaluate the integral

Cfi-l4>(i)dt = J(B),
J 0

which, in view of (3.6), is convergent for 0 </3 <1. Clearly,
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(3.8) 7(0)=- I    dfl-————dt,
v Jo     Jo   (t2 — 2tcosd + l)1'2

and the change of variable

cos (0 — <t>)
t = cos 0 + sin 6 tan tb =->

cos $

transforms (3.8) into

J      /• t /» t/2

/(/j) = — j   dd I       {cos (0 - <b)}"-1 {cos <p}-<>d<p.
TT  J o •> J-t/2

Interchanging again the order of integration

J      /» t/2 /» *+»/2

(3.9) 7(j3) = — I       (cos *)-*d* I {cos (0 - *)}*-»<».
IT  •/ -x/2 "7 0

Now

/. *+x/2 /• t/2 /. 0

{cos(0-tf>)}<'-1d0 =  f       {cosw}^-1do)+ j    {coswj^dw,
o J o «7 —*

where the latter integral is an odd function of <p. Hence (3.9) and (3.10) yield

1      /• t/2 /. t/2

/(0) = — J       {cos*}-"d« I       {coscoj^do.
X  •/ -I-/2 •/ 0

Expressing these integrals in terms of the T-function [ll, p. 256], we find

7(0) =-

Using the identity

r«r(i-i)-~,
sin tz

we obtain

T2

(3.11) 70S) =-
/ 3       1 — 2/3\      / 3       1 — 2/3\

The factor of sin (w8) in the denominator has a minimum atB = \/2. This

is readily seen by examining
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d /3        \     /3        \        • 2/

For \t\ <l/4, the left-hand side of (3.12) has the sign of /, so that

r(3/4+0r(3/4-<) has a minimum at * = 0. Hence, by (3.11)

/'"                                             x2                    4.4fi-l4>(t)dt = J(p) g-<-
o                                    r*(3/4) sin (irp)      ainirp

4. Proof of Theorem 1. Let/(z) be a meromorphic function of finite non-

integral order X. Then f(z) has the canonical representation

n<7)
(4.1) f(z) = «V«-—-     (E(u) = P(«, ?); q = [X]),

n-(f)
where E(u) is defined by (3.1) and P(z) is a polynomial of degree not greater

than q.

We write {d,} for the sequence obtained by rearranging the zeros {a,}

and the poles {b,} of f(z) in a single sequence (0< |a"i| g \d-2\ g \d3\ • • • ).

Obviously

£  1 = «(/, 0) + »(/, oo) = «(/).
\d,\it

From (4.1), we deduce

I log |/(«)| |  g £ loglpf^ll + OW (r-*+ «>),
„_i        I    \a,/ 11

and integrating with respect to B(z = rei>), we find

-fr.A + .(4) s 5{-('.£(7)) + »('.i^j)} +0H-

By (3.7)

■(" £(t)) + *('• «k) - ™(w'£W)+ m(w ̂ >)

s (w)'/.v,""*(^>" ■ -Ir'O'-
Therefore
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(4.2) m(r, f)+m (r, —\ = rq £ f    t~q-l<p (—\ dt + 0(rq).

Since

j£,{    /-«-'«(—)dZ = J   n(l)l-q-ld> (—) dt,

and

T(r) - »(r,/) + #(r, ») = m(r, -i) + A(r, 0) + O(logr),

(4.2) implies

(4.3) 2T(r) - N(r) £ rq f   n(t)r*-l<l>(—\dt + 0(r")      (r-> + oo).

We choose e (> 0) such that

(4.4) q + e<\<q+l-e.

By (4.3) and the definition of k(/) there is a constant C such that, for

r>r0,

(4.5) (2 - k - t)T(r) = rq f   n(Z)Z~8"V I—J dt + Cr".

Choosing y such that

(4.6) X < 7 < X + «,

multiplying (4.5) by r~'"~1 and integrating from x to + oo, we obtain

(2-K-e) f   T(r)r-r-Hr =  f   f^r-Hr f   n^r^^f—Sdl

x*-~i
+ C- (r > r0).

y - q

Denote by I the repeated integral in (4.7); interchanging the order of the

integrations, we find

1=1    ntyrt-Ht j    r«-r-ty (—J dr.

The substitution r = Z$ yields

(4.8) 7=  f   n(t)ri-ldt f  s*-y-l4>(—Jds.
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We now set

G(t) =  f   s^-^t-^ds,

(4-9) ^ W
/•  OO e%  oO

F(t) =  I    n(s)s-y~lds = - N(t)t~K + y I    N(s)s^-lds,

so that (4.8) takes the form

An integration by parts yields

//x\«-y   / t\dt

,m\i) *(t)t-
Clearly

/"*   ds       n(t)

,    s">+1     yP~'

and since n(t) is of order X, the second of the inequalities (4.6) yields

(4.11) lim sup t'F(l) = + oo.
f—»ao

Hence there must exist an increasing, unbounded sequence {x,} such that,

for each x„

(4.12) tF(t) g x',F(xr) (t g x,).

On the other hand, by definition, F(t) is a nonincreasing function so that

(4.13) F(l)gF(xr) (f^x,).

Using (4.12) and (4.13), in (4.10), we obtain for x = x,

= F(x,)< f uy-q-l-'<p(u)du + f  «^«-1^(m)^m>

= A(e)F(x,).

We now consider (4.7) with x=x, and use the estimate (4.14) for the re-

peated integral:

T(r)r-y-idr g F(x,) U(e) +-—— \ .
I Or - q)Hx,))
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In view of (4.11) and (4.12), for sufficiently large v

1
-^ x,
F(x,) ~

and hence

(4.16) lim—— = 0,
»-.- F(x,)

since

q — 7 + « < 0,

by (4.4) and (4.6).
Combining (4.15) and (4.16), we obtain

2 - k - e                             F(x)
- ^ lim sup- •

(4.17) Ait)        '    .-.-      /••

By (4.9) and the definition of «(/), we also have

/»  00

7 I    N(r)r-~»-Hr
Fix) Jx

(4.18) lim sup-g lim sup-^ y(f),

I     Tir)r^~ldr I     T(r)r->-^dr

so that (4.17) and (4.18) yield

2-n-t
-g k - K(f).

yA(t)

Now let «—»0; then 7—>X and

^(t) -» I    «x-«-V(«)d«.
Jo

Hence

2 - K

wx-8-1<K«)dw
0

Theorem 1 follows by solving this inequality for k and using the estimate

(3.13).
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5. A property of canonical products with negative zeros. We prove the

following:

Lemma 2. Let g(z) be a canonical product of finite genus q (^ 1). If all the

zeros of g(z) are real and negative, then

«(0, g)>-—-»
1 + log q

where A is an absolute constant.

Proof. We start from the well-known representation

»(*)   Mt    ,    , <**.
o xq+1(z + x)

due to Valiron [8, p. 237]. Taking real parts,

/'"  n(x) x cos (q + 1)0 + r cos qd

~^T     , _,   ».a. 9-a     ^o     a;8*1      a:2 + r2 + 2*r cos 0

We first assume that q is odd and consider the [a/4] + l arcs defined by

2irk IT 2irk TT T     ,   -U
(5.2) —- + ggg + (* = 0,l>2,-.->k/4]).

o+l      4(a + 1)              o+l      3(o + 1)

Their total length is greater than 7rg/48(g + l), and on each of these arcs

1
(5.3) cos (?+1)0^ — •

Now (5.2) also implies

2ir* + — —-^ q6 < 2irk + -^ (k = 0, 1, 2, • • • , [?/4]),
4   o + 1 3

and since q — 8k^ —q, we have

1
(5.4) cos o0^ — •

In view of (5.1), (5.3) and (5.4)

I fg+l   /. »   w(a.) x+ r
log   -  ^- I-dx

6    g(re'») 2  J o     a8*1  x2 + r2 + 2*r

on arcs of total length greater than 7r/100. Hence

/    1\      r8+I r* n(x)     dx
(5.5) m[r,—) =- |      -^-

\    g)      4007 o     X0+1  x + r
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Using the estimates (3.2) and (3.4), it is easy to see that there exists an

absolute, positive constant B, such that

m(r, E(z, q)) + m (r, —--) g B(l + log q) f   -^— dt.
\    E(z, q)/ J o   1 + t

This implies

"('•*£' «)) + -(''-7fT-)sw + h,*/Z(Tr^7'
£t' V

/* °° tt(x)   dx-777 —;—'

o     n4"*"1 x + r

since g(z) is a canonical product.

Comparing (5.5) and (5.6), we obtain the lemma for odd values of q.

If a (>0) is even, we would consider the [(q — 2)/6] + l arcs defined by

2ttA w 2ttA 5tt / ra - 2"| \
(5.7)   —- + —- g e g——+ Ik = o, 1,2, • • •, y—- ).

g+1      q+ 1 5+1      4(g + 1)   \ L    6   J /

Their total length is still bounded from below, independently of q, and

on these arcs

q - 2k 5
2irA + a--g qO < Irk -\-it.

9 + 1 4

Since kg [(q — 2)/6] implies

q - 2k       2
-^ — ,

q+ 1        3

we now have

1 1
— cos qO ̂  — >         — cos (q + 1)6 3: — •

2 2

From this point on, the proof given for odd values of q applies without

modifications.

If q = 0, the inequalities (5.7) become meaningless because of the restric-

tions imposed on A; it is also clear that, in this case, the lemma is no longer

true.

6. Proof of Theorem 2. Let g(z) be the canonical product, of genus q,

formed with the zeros a,.

By definition, q is the smallest integer such that
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(6.1) E-r-^f-r< + «,

and hence, q is also the largest integer such that

(6.2) £*= + «,.
| a, |8

By assumption (iii) of Theorem 2, g^l and by assumption (ii),a< + oo.

Hence the results of §5 may be applied to g(z); in particular, the inequalities

(5.5) and (5.6) yield

Cw  n(x)     dx rx  n(x)     dx

(6.3) Cr^ -i-f —— =S T(r, g) g Drq+^ -f-f —— ,
7 o     xq+1 x + r 7 o     xq+1  x + r

where C and D are suitable positive constants.

It is well known [9, pp. 51-52] that (6.1) and (6.2) imply

/'M  n(x)

0     xq+2

and

/""  n(x)-^dx= +  00.

0        X0+1

Let t (>0) be given. By (6.4), we may choose Z (>0) so that

r "  n(x)
I       -dx < e,

J ,      xq+2

and hence, by the second inequality (6.3),

U' n(x) dx        )
-^- - + «| < 2</>8+\

provided r is large enough. This clearly yields

(6.6) Hm^—:= + °°-
'— Pi/, g)

Using the first inequality (6.3),

/■*■ n(x) dx
-^ — g T(r. f).

o   xq+l   2r

and by (6.5)

(6.7) lim-^-=C.
r-.- T(r, g)
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Now consider the most general entire function/(z), with the sequence of

zeros {a,}:

f(z) = <*Vg(z).

If Q(z) is a polynomial of degree at most equal to q,

(6.8) T(r, g) g T(r,f) + T(r, <r«) g T(r,f) + Hf,

the latter inequality holds for some suitable constant H and all sufficiently

large values of r. In view of (6.7)

1 g hm inf->
r—    T(r,g)

and this clearly implies

«(0,/) ^ 5(0, g) > —--,
1 + log q

by Lemma 2.

If Q(z) is a polynomial of degree greater than q, or an entire function, we

use

(6.9) T(r,e*)gT(r,f) + T(r,g),

instead of (6.8).

If Q(z) is a polynomial of degree greater than q

(6.10) T(r, eft) > Hrq+\

for some suitable H and r large enough.

If Q(z) is an entire function, we observe that

log Af (r, e°) = max <RQ(z)
1*1—r

and obtain (6.10) by an obvious argument involving the inequality of Borel-

Caratheodory, Liouville's theorem and Nevanlinna's inequality relating the

logarithm of the maximum modulus and m(r, eQ).

Now (6.6), (6.9) and (6.10) imply

..     T(r,f)
hm-= + oo
r-.. T(r, g)

and hence

5(0, f) = 1.

7. Proof of Theorem 3a. We may suppose, without loss of generality, that

f(z) has no zero or poles on |z| —or. (The general case follows from this by an

obvious continuity argument.)
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We may also suppose that/(0) = 1, since

T(r,f) = T(r,Azff(z)) + 0(logr).

We start from the Poisson-Jensen formula

1    /. 2t R2 — r2

log I/to I  = -\    log I f(Re») | ——- dtj,
2t 7 o R2 — 2Rr cos (0 — <j>) + r2

+    Z   log | g(z, a.) |   -    £   log I g(z> b') I »
lo,|<« |6,i<je

where

R = o-r (<r> 1),

and

P(z - a)

R2 — az

Let

P2 - r2

(7.2) -=1 + Q.
P2 - 2rP cos (0 - 0) + r2

Then

P-r R+r-^ 1 + C ^-»
P + r P-r

(7.3) lei 5-—
P — r

Using (7.2) and (7.3) in (7.1) and noting that

|g(z,«)|   < 1 (|«|   <*)>

we obtain

(7.4) log |/(Z) |  S - f 'log |/(Pe») | d* +- f '| log |/(P«*) | | d*
2ir./ o <r — 1 •/ o

-   E   log | g(z, b,) | .
IM<«

Now

1   /*2x

(7.5) — I      log |/(Pe*) | d<p = N(R, 0) - N(R, oo)      (Jensen's formula),
2x7 o

and
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(7.6) —f * | log | f(Re») \\d4> = m(R,f) + m(r, j) g 2T(R).

Combining (7.4), (7.5) and (7.6) we obtain

+ i     ■ +    4r(P)     _
(7.7) log | f(z) |  g (N(R, 0) - N(R, co)+ + —i-f -   £   log | g(z, b,) \ ,

where X+ denotes max {0, X}.

If f(z) is entire, it is clear that (7.7) is equivalent to

4
(7.8) log Af(r) g-TV) + N(ar, 0) (P = or).

(T  —  1

If f(z) is meromorphic, we integrate (7.7) with respect to 0 and notice

that, by Jensen's formula,

-    £  7T f ' log | g(«« K) | d8 = N(R, =o) - N(r, «,).
IM<« 2x J o

We thus obtain

r(r)=m(r,/) + JV(r, «o)

4
g-TV) + (AV, 0) - N(ar, oo))+ + N(ar, oo)

<r — 1
(7.9) 4

=-TV) + max {AV, 0), N(<rr, <»)}.
o- — 1

The inequalities (7.9) and (7.8) coincide, respectively, with (2.5) and (2.6)

except for the 0(log r) term which appears if the condition/(0) = 1 is dropped.

8. Proof of Theorem 3b. Let/(z) be meromorphic,/(0) = 1. Consider the

polynomials

IL(*)« n (i--),    n-oo= n (i-t)>
|o,|sS    \ a,/ |6>.|SK    V °,/

formed, respectively, with the zeros and poles of f(z). The function

IL (z)
(8.1) h{z) = log.^^^f(z).

llo (z)

is clearly regular for | z| gR and, for a suitable choice of the determination of

the logarithm

(5.2) A(z) = £Cm(P)z'» (|z|   gR).
nt-X
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Since P is fixed throughout this section, we write Cm instead of Cm(R).

To estimate the coefficients Cm we use the well known formulae [6, p. 86]

1   r+T
(8.3) Cmrm = — I     <R{A(re*»)}«r<m'd0 (r ^ R, m ^ 1).

TT  7_x

If 0<|d| <|z| =r,

/ z\ r "    1    dm
(8.4) (Rlog (1 - —) = log r—| - CR X)--z»

\ df \d\ m,i  w   r2m

and the formulae (8.3) may be applied to the power series on the right-hand

side of (8.4); we thus obtain

1   dm      1   /•+» reie .    .
(8.5) -= — I      log   1-e-im,dO (0 < | d |   < r; m ^ 1).

m rm      it 7_T d

Similarly

1   f«       1    /*+' re<9
(8.6) -=— I      log  1-e-imedd (r < | d\ ;m ^ 1).

m   dm        TT J -r d

By a simple continuity argument, it is easy to see that (8.5) and (8.6) remain

valid for |d| =r.

Combining (8.3), (8.5) and (8.6), we obtain

m

CV" = — f     log \f(reie) | e~imedd + —  E ^
TT  7_T m   |a,|Sr r""

(8.7) m m m

W   r<|n,|aB   a„ W   |6,|Sr r r<|6,|Sfi »»

Now

I i c+T l     i r+T
— I       log |/(re*'9) | e-«m«d0   ^ — I       | log \f(reie) \ | dd

I ir 7 _T x 7 _T

(8'8) =2(»(r,/)+«(r,y^

= 47Xr) - 2N(r),

so that (8.7) and (8.8) yield

(8-9) Cm=-   E   1-1   E   -+7-W

where
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4r(r) - 2N(r)      n(r)
(8.10) ym(r)    g —^—--+ -4- •

In particular, r = P implies

Cm = ym(P)

and hence

. 4T(P)      n(R)
(8-ii) \cm\ g——+ ^r-

Rm        mRm

We next choose a bound p (0<p<(P/4)) and assume

i R
(8.12) 2p <r =  | z|   < — •

Let q (^ 1) be an integer and let E(u, q) denote the primary factor of genus

q, defined by (3.1).

Replacing, in (8.9), r by p, and returning to the definition of E(u, q), we

find

«{£Cmz*-log5^}=     £    iog|p(-M)|
Vm-l iLo(Z)J p<|a„|s/J I        \a, /  I

(8.i3) - £ loglpY^-, ?)|+iog| n (i--)l
p<I6,|sr       I     \ o,       /I I |a,|Sp \ ay / \

- log n (i - t) I + <* i *-to*"-
IMSP   \ 0,/ I m=l

Combining (8.1), (8.2) and (8.13), we obtain

(8.14)    log|/(z)|=     D    log|p(-, g)|-     Z    log|p(^, 9)l + 5,
P<|o,|sB I        \fl» /I p<|6,|sB I        \0» /I

where

S = «{ £ 7«(p)«" +   £  Cmz- + log   n (i - —)
U=l m=g+l |av|£p  \ Of/

(8.15)

-iogn(i--f)}.

We now estimate the various terms on the right-hand side of (8.15). We

first prove
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(8.16) E I T-GO I »■ < {sr(p) - 4iV(p) + - n(P)\ (-Y.

By (8.10)

8 q   /r\m q     1   /r\m
(8.17) E I 7-(p) I 'm ̂  {4r(p) - 2iV(p)} E (-)   + »(p) E - (-) ,

m-=l M-l \ p / m-1   m\p /

and since (p/r) < (1/2) (by (8.12)),

(S..8) fc(i)-<(^Y£(i)-<2(iy.
m=l \ P / \P /   m=0\r / \ P /

£±(JL)-.i(JLYS_L/>Y
m-i   m\p / q \p /    i_0   3 — Z\r /

<i(iYt9 + i)(iY<±(^.Y.
q \P /   j-o \ r /        q \p /

The inequality (8.16) follows from (8.17), (8.18) and (8.19).
Similarly, using (8.11) and (8.12)

(8.20) E    | Cm | r-g |sr(P) +-.B(£)1(1Y '.
m-j+1 I 3+1 )   \R/

We next observe that

(8.2i) log n(i--) ^ e ]ogr^+ ^g n(i--) ,
|o,|ap \ a,/ II        |o,|sp I a» I |a„ls/> \ 2/11

and since

P                     flr P
1-^   1-gl+ —

r z r

we also have

a, /        p \
log 1-—   g -iogh--j.

Hence (8.21) implies

log n(i--)||
(8.22) ,a"'sA        a'/M

^ A(p, 0) + »(p, 0) jlog (pj - log (l - y) j .

By (8.12)
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r
— > 2,       r - p > p,
P

so that

log (—) ~ log (1 - —) = log ( /      X  < 2 log — < —
(8.23) W V        ^ Ur-P)j P       P

1 /r\q

q Vp/

Using (8.23) in (8.22), we obtain

T-r   / s \ 11 n(p, 0) / r \*
(8.24) log    II   (1--) \\^N(p,0)+-^-L(-) ,

U»Isp \        a,/ \\ q      \p /

and this estimate remains valid if the zeros a are replaced by the poles b.

Combining (8.15), (8.16), (8.20) and (8.24), we finally obtain

(8.23) i«i s {8n,)+i^}(i)'+{I1W+2^}(ir-

In the above estimate, we have assumed q^l, but it is clearly possible

to obtain for log |/(z)| an expression such as (8.14) with q = 0. Starting from

(8.1) and (8.2), we obtain immediately (8.14) with g = 0 and

(8.26) S = flj £cmz" + log II (l " —) - log n (i - ^-)\ ■
Vm=i |o,|ap \ a,/ IMsp \ ",/)

The inequality (8.20) is still valid with q = 0. There is nothing to change

in (8.22) and, by (8.23), its right-hand side may be replaced by

N(p, 0) + n(p, 0) jl + log —1 .

Hence (8.26) yields

(8.27) \S | g {ST(R) + 2n(R)} ̂  + N(P) + n(p) jl + log-1.

Using the fact that T(u) and N(u) are increasing functions and that

r        rT n(l)
n(p) log- g  \    -■ dig N(r) (p < r),

P      J p     I

Cau dt

(8.28) n(u) = n(u)(q + 1) I      — g (q + T)N(au)    (a = «"<«+»),
J u t

we obtain (2.8) and (2.9) from (8.14), (8.25) and (8.27).
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From (2.8), we deduce

I log |/to | |  =§     E     l°gU(j-' ?)|| + \s\>
p<ld,ls«        I     \d,      / II

where {d,} denotes again the sequence obtained by combining the sequences

{a,} and {b,}. Taking mean values, as in the proof of Theorem 1, we find

*n(r,f)+m(r,—) =     E    \i»(r, E (^), q) + m \r, —--|| + |s|.
\     //        p<|tf,ls*i      \ \dj      / (z       \

I [ E\d-'V\\
Minor modifications of the arguments which lead to (4.3), now yield

2P(r) - N(r)

(8.29) £rq f   nil)t-q-V(—) dt + rqniR) f   r*"V(1)dt + \s\ .

By (3.6) and (8.28)

rq-l<p\ — \dt^ 2rq+1niR) I    t~q~2dt

(8.30)
/ r \8+1

= 2NiaR) (^-j     .

Inequality (2.10) follows from (8.28), (8.29) and (8.30); this completes

the proof of Theorem 3b.
9. Proof of Theorem 4. We may suppose, without loss of generality, that

a = 0,        8 =  oo,

since, by Nevanlinna's first fundamental theorem, a bilinear transformation

of /(z) does not alter the lower order of Tir).

Let

7 < c' < c < 1;

then the definition of deficiency implies

Nir, 0) < c' Tir),       Nir, oo) < c' Tir).

for all sufficiently large values of r.

In (2.5), choose

(9.1) „«i + _!_^.
c(l - c)

Then, for all sufficiently large values of r.
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(4 A log r)
(9.2) T(r) < T{cr) \- + c' + —M ,

{a — 1 T(r) )

where A is a suitable constant.

Since/(z) is clearly not a rational function,

T(r)

as r—» + oo, and hence

^4 logr

(9.3) '' + ^rW«-

provided r is sufficiently large.

By (9.1), (9.2) and (9.3), there exists some r0 such that

T(akr0) 1
—i-i_>- (A = 1, 2, 3, • • •)•
T(o-k~lro)      c(2-c)

This implies

7V"ro) =  ^    T(akr0) j       1       \ "

Hence, if r>r0 and n is determined by

CTBr0 g r < o-n+1ro,

we have

n log -j-\ + log TYr0)
log T(r)      log r(aVo) 8   U(2 - e)J 8
->-> -j

log r log (<7-B+1r0) (» + 1) log <r + log r0

,    log TV       l0g i(2 - c)f
p = hm inf-^-•

r->»       log r log <7

Theorem 4 now follows by letting c—*y.

10. Proof of Theorem 5. In this section, we put

(10.1) r=(3Sy",        p = —>        R = — •
aar a

We show first that, in view of (2.11),
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27» - 22V(r) < (3 + l)r8 f   N(al)t-q~^(—\dt

(10.2) J' W
/r\8 /r\8+1

+ 8.5(-j T(ap) + 8.5 f—j     r(atf) (3 §= 0),

provided r is sufficiently large.

If/(0) = 1, this follows immediately from (2.10), (2.9) and the inequality

N(u) < — T(u),

which is a consequence of (2.11), for all large u.

In fact the constants 8.5 could be replaced by the smaller number 8 +10/27.

If/(0) ?^1, we replace/(z) by

Z,(2) = Az*f(z),

where the constant A and the integer v are determined so that/i(0) = 1. The

functions Ni and Pi associated with /1, in the same way that N and P are

associated with/, satisfy

(10.3) Ni(u) = N(u) (u = 1),

(10.4) Ti(u) = T(u) + 0(log u) (u-*+ 00).

Since/(z) and/i(z) obviously are not rational functions,

log u
—->0
T(u)

as w—>+ 00 and so, by our choice of p,

T(ap)

as r—> + 00.

Now (10.2) holds with N and P replaced by Ni and Pi. In view of (10.3)

and (10.4), it is possible to return to N and P provided suitable logarithmic

error terms are introduced. These terms may be absorbed in the term with

T(ap), at the expense of the increase in the numerical factor from 8+10/27

to 8.5.

Next we prove

Lemma 3. // (2.11) holds and if

o- = (3Sy">,

(10.5) q + 8^c^q+l-8,

then,
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TV T(u)
(10.6) —— <    sup    ->

rc r/o£,u£<,T     Ue

provided r exceeds a suitable positive bound ra.

Proof. Put

P

5e(q + 1) '

so that, by (2.11),

(10.7) N(u) <tT(u)

for all large u.

Suppose now that r is so large that (10.2) holds and that (10.7) is valid for

all u> (r/a). Suppose also that (10.6) is violated, so that

(10.8) T(u) g (—} T(r) (—gugarj.

Then, by (10.2), (10.1), (10.7) and (10.8)

(2 - 2r)T\r) = (q + l)rT(r)rq f    (—) rq~l4>\—\dl + %.5(a<r)qT(r)o-c

+ 8.5 I — j     T(r)<r<.

Hence, dividing by T(r) and putting v = t/r, we obtain

/(.S/r) v'-i-^v) dv + 8.5aV«-c

(10.9)
+ 8.50^+V-o-1.

Let J denote the integral in (10.9); by (3.13) and (10.5),

/4.4               4.4        2.2
v°-q-l<p(v)dv <-<-< —- •

o                             sin ir(c — q)      sin irP       P

We finally notice that, in view or (10.5), the definitions of a and a imply

(10.11) a" < ac < aq+i = e,

1
(10.12) aq-c < a'*, (T"-*-1 < <7~" = — •

35

Using the estimates (10.10), (10.11) and (10.12), in (10.9), we obtain

,   2.2e(q + l)r  ,   17e
2 g 2t H-1-;

P 35
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and in view of the definition of r,

1       2.2      48
2 g— +-h— < 2.

Se       5       35

This contradiction, which is a consequence of (10.8), completes the proof

of Lemma 3.

We now prove assertion II of Theorem 5. Let

C = q + P.

By assumption (2.14), c>p. and hence

T(u)
(10.13) liminf—— = 0.

u-»»        Mc

We first show that (10.13) implies the following property: Given «o (>0)

it is possible to find y0 (> u0) such that

T(y0) T(u)
(10.14) _^=       sup      ^^>

yl voSu§<r»«     uc

In view of (10.13), there exists some v (>u0) such that

T(v)      T(u0)
(10.15) ff. _iZ<_L_i.

*° «S

At some point y of the closed interval [u0, v]

T(y) T(u)
(10.16) _^i=    Sup-

ye iiogusi    «c

This definition of y and (10.15) imply

(io.i7) ZM>2W-Y.

If

(10.18) »^o-y,

(10.17) yields

T(y)      r(p) ^ T(y)

yC yC yC

This contradiction shows that (10.18) is impossible; therefore

«o ^ y < o-y < v,

and hence, by (10.16),
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T(y)                T(u)
-=   sup   -.

y" v£u£cll    uc

Taking yo = y, we obtain (10.14).

It is now clear that we may find an increasing, unbounded sequence

{yxjr-i. such that

T(y.) T(u)
(10.19) -±L=    sup    ~^--

yl       v,£u£<,v,   uc

It is also possible to assume

(10.20) yi>ro,

where r0 is the bound in Lemma 3.

We now associate, with each y„ a sequence Y, containing a finite number

of elements:

to   ,tx   , ■ ■ ■ ,tj (j =j(v)).

Since our arguments involve a single sequence Y„ we write tu instead of

h •
Definition of F,.

(i) Let
to = y,

and take tx to be some point of the closed interval [to/a, ato] such that

T(tx) T(u)
(10.21) _lii=      SUp      -±1.

t{ t<J<r%u£'h      W

By assumption,

to ^ yi,

so that, in view of (10.20), we may apply Lemma 3 with r = t0. This yields

oca, ™>jw.

Since by (10.19)

(10.23) -=     sup    -1

it is clear that

(10.24) —gtx<to,
a
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and also

Till) T(u)
(10.25) —— =     sup    —— •

ll (iSuScfj     U"

(ii) Notice that (10.25) is the same relation as (10.23) with ta replaced

by h. Hence the arguments which lead from to to Zi may be repeated with Z0

replaced by h, provided Lemma 3 is still applicable. This requires r0<Zi. If

ZiS=r0, we interrupt our construction and take F„ to be the sequence: Z0, h.

Otherwise, we define successively t2, t3, ■ ■ ■ , tj and terminate Y, with tj

characterized by

(10.26) tj g r0 < Z,-_i.

It is clear, by our construction of Y„ that the relations (10.21), (10.22),

(10.23) and (10.24) imply

T(lk+i)      T(tk)      T(u)
(10.27) _l*^>_i2fc_l'. ih&HZk;k-0,l,---,j-l),

tl+i ll uc

and

(10.28) —^k+i<tk (k = 0, 1, ••-,/- 1).
a

(iii)  In order to see that F„ has a finite number of terms, we prove

fe-i , .
tk+i <- (k-l > ro).

a

If this inequality were false, we would have

T(tk+i) ^ T(u)       T(lk)
- s sup -= -,

t'k+i W»;£«£W*_i      uc ll

which contradicts the first of the inequalities (10.27).

Now let x (>r0) be given and choose some point t, in the closed interval

[x, ax], where

Tit) T(u)
(10.29) -=    sup-

te iS«£«    Uc

Given v (^Z), we select some y„ such that

(10.30) v < y„       ax < y,.

Then

lj ^ r0 < x < ax < Zo,
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and, in view of (10.28), some member h, of Y„ falls in the closed interval

[x, ax]. Hence

T(t)       T(tk)
(10.31) -±L^-^-L.

If

I g v g <rx,

the inequality

T(t)       TV
(10.32) -11 ^^1,

tc vc

follows from (10.29).

If ax<v, then

/* < v

and, by the first inequality (10.30)

v < to.

In this case,  (10.32) follows from  (10.31) and the second inequality

(10.27). This completes the proof of assertion II of Theorem 5.

The proof of assertion I is along similar lines, but simpler in detail.

Put

C=q+1-P

and let r0 (>0) be the bound in Lemma 3.

The assumption X > c implies

T(u)
lim sup- = + oo,

u->« Uc

and hence, it is possible to find a point u0 (><rr0) such that

T(uo) T(u)
(10.33) —^->     sup    —-,

«S rog«S»n>    U"

and then a point sx, of the closed interval [r0, u0], such that

T(sx) T(u)
(10.34) -lii»     sup    — •

S{ rogugtio      Uc

By (10.33) and (10.34), it is clear that

and also that
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TV) T(u)
(10.35) —^- =     sup    — ■

S{ rt£u<s,     Uc

We next choose some point s2 belonging to [sx/a, asx] and such that

an ™ T{S2) ™(10.36) —-— =      sup     -•
S% «l/<r SuSiTJi       U"

Since Si>ro, Lemma 3 yields

T(si)       T(sx)
(10.37) ^_L>_L1,

and in view of (10.35)

(10.38) sx < s2 g o-sx.

It is also clear, by (10.38), (10.36), (10.37) and (10.35), that

TV)      T(u)
- ^ - (To g U g Si).

s\ uc

Repeated application of the same construction leads to a sequence

{5*}"-i such that

(10.39) sk < sk+1 g ask (k= 1,2,3, •• •),

and

T(sk+i)      T(sk)       T(u)
(10.40) -^- > -^- £ — (ro S « £ ft, * = 1, 2, 3, • • • )•

In order to see that the sequence {$*}"_! is not bounded, we prove

<«*_i < sk+i.

If this inequality were not true, we would have

2V+0 ^                       T(u)      T(sk)
-g sup -= —-—)

Sk+X «*-i/<r£«£«*-i      U" s\

which contradicts the first of the inequalities (10.40).

In view of (10.39), it is clear that, if x>Sx, each closed interval [x, ax]

contains a point s of the sequence {s*}"-i- Assertion I of Theorem 5 now fol-

lows from the second of the inequalities (10.40).

11. Proof of Corollary 5.1. If (2.11) and (2.12) are satisfied, assertion I of

Theorem 5 enables us to associate, with each r (>Xoa) an s, in [r/a, r], such

that
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T(r) 2= T(s) = T(xo) (-) S r(*o) [ — )
\ Xo/ \ axof

Hence

u^q+1- 6.

Similarly, if (2.11) and (2.14) are satisfied, there will exist, by assertion II

of Theorem 5, some Z such that r^t implies

/ r\q+»
Tir) =g (j)     Til).

Hence

X ̂  3 + P.

12. Proof of Theorem 6. We show first that p^l.

Since by the definition of k(/) and (2.15),

(12.1) 7 = max {1-5(0), l-S(oo)} < «(/) < —,
lOe

Theorem 4 gives u = 1 if 7 = 0, and

<i22) ̂   *{^}   >_Mg_
'4+^)   h«(s)+to«{r^+2T}

if 7^0. By (12.1)

1 1 10
10<5e<—, -<—,

2y I-7      9

and hence

8 80       1 1
-+27<—+ — <10< — •
1-7 9       10 27

It is now clear that (12.2) implies u> 1/2 and therefore p^l.

We next show that

(12.3) X^p+1-8.

If this inequality were false, we could, in view of (2.15), apply Corollary

5.1 with q = p and obtain

u^p+l-8,
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contrary to hypothesis. By (2.15), Theorem 1 and (12.3)

8 sin tt\\ I sin tX \ | sin 7rX I
-> k(/) ^ —-■— ^->- •
5e(p +1) 1 1     " e(p + 1)

2.2X + — 2.2(p + 1 - p) + — KV '

Hence

i   . i        P
sin ttXI   < — •

5

If Z is one of the integers closest to X, then

iii i B
2 \l — X    ^   sin jt(Z — X)     =   sin ttX   < — •i        l i       5

Since

p - (1/2) ^u^X^p+1-8,

this leaves only the possibility l = p,

\X - p\   < — •
10

The last unproved assertion of the theorem, u^p—B, now follows from

Corollary 5.1 with q-\-\=p.
13. Proof of Corollary 6.1. Suppose first that/(z) is of infinite order. Then

(2.11) and (2.12) hold for every integer q (^0) and, by Corollary 5.1, n is

greater than any assigned integer. Hence u = + oo and the result is proved for

functions of infinite order.

If X< + oo, then Corollary 6.1 follows at once from Theorem 6.

14. Proof of Lemma 1. The following inequalities are implicit in R.

Nevanlinna's proof of the second Fundamental Theorem [5, p. 64]. They were

stated explicitly by Ullrich [7, p. 207].
For every meromorphic function/(z), of finite order, and every finite set

of complex numbers n, n, • • • , t,

(14.1) Y,m(r, -— \ + n(t,j) + 0(log r) ^ Tir,/')

£mir,f) + Nir,f') + 0(logr).

Since /'(z) has a pole of order k + 1 where /(z) has a pole of order k

(14.2) N(r,f')^2N(r,f).

For e>0 and all sufficiently large r,

(14.3) N(r,f) < (1 - 5(oo,/) + e)T(r,f).
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Using (14.2) and (14.3) in the second of the inequalities (14.1), we obtain

T(r,f) g T(r,f) + (1 - S(oo,/) + t)T(r,f) + 0(log r),

and in view of (2.17),

T(r,f)
(UA) lim sup g 2 - o(oc,f) < 1 + y.

r-.«.     T(r,f)

The first of the inequalities (14.1) yields

tn I r, -
,.     .     T(r,f)                      p          \   f-rj
hm inf- > lim inf   V -

(14 5) ~"    T{rJ)        ~"     *~l T{rJ)

(  1 ^i

^ £ hm inf --/—- = £ «(r„/).
v_i    r->» i (r, j) ,_i

Since p is arbitrary, (14.5) and (2.16) imply

T(r,f)
(14.6) lim inf ^ A > 1 - y.

r-.-    T(r,/)

Combining (14.4) and (14.6), we obtain (2.18).

Now by (14.2), (14.6), (2.16) and (2.17)

AW) „ „ ,. jAV/)?V0)
hm sup- s 2 hm sup <->

r--     7V/') -        r— *  \ T(r, f)   T(r,f) j

g 2(1 -5(»,/))4-<7^-
A       1—7

The first inequality (14.1) may be rewritten in the form

"('•?)   IirA± ■(r'prrJ +0/WLya,
H',/')      r(r,/')_,      re,/) Vn',/)/

Hence

,.     ^v'/i _ .. . r(r,/)A.. ., "v'/^J
hm sup-< 1 — hm inf- X, hm mf->

~.F    r(r,/')    - ,->.   r(r,/')^   — T\r,/)

and in view of (14.4)
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N(r>-7r) I>(r„/)

hm sup-:s 1-•
r-.. T(r,f) 1+7

Since p is arbitrary, this inequality implies

(14.8) lim sup- <1-
-- T(r,f)     ~ 1 + 7

Using (14.7), (14.8) and (2.16), we finally obtain

N (r, —)
,.... Njr,f)   t   ,. V    /'/   ^      27 1-7 47

k(Z) < hm sup-h hm sup-<-r 1-= - •
KJ J -    r~»T(r,f) ^.F     T(r,f)     ~l-7 l+7      1 - 7*

This completes the proof of Lemma 1.
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