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The present paper is a direct continuation of a previous study by the same

title. The terminology is unchanged and the enumeration from the first paper

is continued. We suppose as before that the basic graph G is finite and without

loops. We observe that by small reformulations in certain statements loops

could have been included in the theory, while it is essential for several results

that G be finite.

Our starting point in Chapter 4 is the theorem of Petersen about the

interrelation between conformal subgraphs (subgraphs with the same local

degrees). The choice available in the determination of the edges in the desired

subgraph H leads to the concept of free equivalence as well as to a unique

decomposition of the graph into a bound and a free part. Criteria are estab-

lished to determine when an edge is free or bound. These are applied, in par-

ticular, to the subgraphs with constant proportions for the local degrees. The

existence of such subgraphs was established in Chapter 3. Here it is shown

that for these all edges are free equivalent; hence the same is true for the

regular graphs and subgraphs discussed in §3.2. A special case is a well known

result by Petersen for subgraphs of first degree in regular graphs of degree 3

without peninsulas. It is of interest to note that this particular theorem has

an important application for the method of alternating paths in general graph

theory. In §4.4 it is shown that the accessible characters of vertices under

alternating H-paths is invariant, that is, do not depend on H but only upon

the class of conformal subgraphs to which H belongs.

In Chapter 5 the concept of free equivalence is discussed in greater detail.

Its relation to the so-called cursal equivalence is examined. Among the results

are criteria for two vertices to have the same accessible set with identical

cursal properties. There exist a considerable number of problems related to

those analysed, but these may be left to others.

Chapter 6 contains observations on regular graphs which are completely

decomposable, that is, are the sum of subgraphs of first degree.

Chapter 4. Properties of alternating paths

4.1. Conformal subgraphs. Two subgraphs H and K of the graph G are

said to be conformal if they have the same local degrees.

(4.1.1) PH(v) - PK(v) = k(v)
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at every vertex v in the vertex set 5. Let us take ao to be some vertex at

which there exists an edge Eo = (ao, ai) which is in K but not in H. We con-

struct a path from ao beginning in E0 such that the edges alternately belong

to K but not to H and to H but not to K. If at the vertex ai one disregards

the K-edge E0 there will be one more edge in H than in K at this vertex.

Thus one can select an edge Ei = (oi, a2) in H but not in K. At the vertex a2

the same process is repeated and an edge E2 = (a2, a%) in K but not in H is

obtained. We continue this selection of edges as far as possible. One may re-

turn to vertices previously encountered and then the edges already used are

disregarded. For a finite graph one sees that this process can only stop by

returning to a0 in an .ff-edge and so we have constructed a cyclic path C(a0)

of even length consisting alternately of edges in K but not in H and in H

but not in K.

With respect to this path C(ao) we can perform a cyclic deformation of H,

i.e., we construct a new conformal subgraph Hi which coincides with H in

all edges not belonging to C while any .K-edge in C is assigned to Hi while no

.ff-edge in C belongs to Hi. If Hi is not identical with K the same process is

repeated and eventually one arrives at K. Thus we have the theorem due to

Petersen.

Theorem 4.1.1. Let H and K be conformal subgraphs. Then H can be trans-

formed into K by a series of cyclic deformations with respect to even cyclic paths

whose edges alternately belong to K but not to H and to H but not to K.

We have assumed G finite. The theorem is valid also when G is infinite,

but locally finite, but in this case one may also have to use two-way infinite

alternating paths and perform a sequence of deformations.

We say for short that a subgraph H is a K-graph if it has the local degrees

(4.1.1). We define an edge E to be a free edge if there exists some K-graph H

to which it belongs and also some K-graph K to which it does not belong. A

bound edge is an edge which is not free. The latter fall into two categories: The

bound H-edges belonging to every K-graph and the bound H-edges belonging to

no such graph. Let

B(H), B(H), F

respectively be the subgraphs consisting of the bound H-edges, the bound

H-edges and the free edges. Then there exists a unique disjoint decomposition

(4.1.2) G = B(H) + B(H) + F.

A free vertex is the endpoint of a free edge; otherwise it is bound. The pre-

ceding discussion shows:

Theorem 4.1.2. Let H be a K-graph. An edge is free if and only if it belongs

to an even cyclic alternating H-path C. A vertex is free if and only if it lies on

such a path.
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We notice that when an edge is free for the multiplicities k it is also free

for the complementary multiplicities <c. Two vertices a = ao and b = an are

free equivalent when they are connected by a series of free edges.

(4.1.3) (a0, ai)(au a2) • • • (a„_i, a*).

This equivalence introduces a decomposition of the vertex set into a family

of disjoint free connected blocks 1Jr. The singular blocks consisting of a single

vertex are the bound vertices. We notice that these blocks ^ are K-invariant;

that is, they are independent of the choice of the particular *c-graph H. Two

edges

(4.1.4) A = (oo, ai),       B = (a„-u a„)

may also be called free equivalent if there exists a series (4.1.3) of free edges

including them.

These definitions show that the edges in an even alternating cyclic path

C for any K-graph H are free equivalent. We shall say that a set is free closed

when it has the property that if it contains a vertex v then it contains every

vertex free equivalent to v. The free connected blocks >£ are free closed and

all free closed sets are the sums of such blocks.

In the discussion in Chapter 2 of alternating paths we introduced the

accessible sets W(co) under a and /3-paths from a center c0. We shall prove:

Theorem 4.1.3. The accessible sets W(co) from a center c0 are free closed.

Proof. It is sufficient to show that when v is a vertex accessible from Co,

for instance in a /3-path, then all vertices lying on an even cyclic path C with

v are also accessible. Let u be such a vertex. Since v is accessible there is a path

P(c0, v); let Vx be the first vertex in P lying on C. Then P(c0, Vx) can be con-

tinued in one or the other direction along C to u.

We saw in Chapter 2 that all vertices bicursally connected with c0 formed

the central block S8o- We have:

Theorem 4.1.4. The central bicursal equivalence block 33o is free closed.

Proof. Let an even cyclic path C have vertices in common with 930- If a

vertex u on C did not belong to 58o there would be sections

C(u, x), C(u, y)

to the nearest vertices x and y lying in 93o- But since x and y are bicursal

from Co within S30 also u will become bicursal from c0.

There exists a block ^3o of all vertices which are bicursally point equivalent

to Co (§2.3). A similar argument shows that also tyo is free closed.

4.2. Characterization of free edges. In Chapter 2 we analysed the

properties of the accessible sets under alternating paths from a center c0. We

consider first the /3-paths for a fixed K-graph H and use the previous notations.

All edges from a vertex c0 to the set
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(4.2.1) Wa-r-W

must be bound a-edges. If namely such an edge should be a j3-edge there

would either be an entering /3-edge to an a-vertex or an inaccessible vertex.

No edge to W can be cursal. Nor can an a-edge to Wa be part of a returning

even cyclic path to Co because it would imply the existence of ah entering

B-edge to Wa. We conclude that all free edges from c0 must go to the comple-

ment

(4.2.2) Wf+Va+Vf

of the set (4.2.1). We shall show:

Theorem 4.2.1. An a-edge E = (c0, u) is free if and only if its endpoint u

belongs to the set (4.2.2).

Proof. 1. CoE$8o is bicursal. Excluding the edges to the set (4.2.1) there

can only exist edges from c0 to S80 and W$. Theorem 2.2.4 shows that a-edges

to 93o are free. No a-edge can be cursal to a j3-vertex in Wp. Thus when

uEWp there is a j3-path from c0 to u which can be continued through the

a-edge E back to Co, hence E is free.

2. Co is an a-vertex. No a-edge E can be cursal from Co since Co is not bi-

cursal. But there is a /3-path P(c0, u) to any vertex u in the set (4.2.2) ending

in a j3-edge and this can be continued through E to c0.

If one considers a-paths from Co the analogous results must hold. All

edges from c0 to the set

(4.2.3) Wf +W

are bound /3-edges. The free 8-edges from c0 must therefore go to the comple-

ment

(4.2.4) Wi + Va" + Vj

of (4.2.3). One verifies as in Theorem 4.2.1 that any B-edge from c0 with its

end point in the set (4.2.4) is free. When these results are combined with the

preceding ones it follows:

Theorem 4.2.2. Let E = (co, u) be an edge from the vertex cQ. Then E is a

bound a-edge or a bound B-edge according to

u E Wa + W,       u E Wf + Vi.

It is a free edge when

U e (W0 + Va + Vfi) ■ (w: + Vi +Vi).

4.3, Regular graphs. We shall apply this analysis to regular graphs or

somewhat more generally, to graphs where the multiplicities have constant

proportions. This means according to §3.1 that there are constants X and X

such that
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k(v) _       k(v)
(4.3.1) X = —,       X = -,        X + X=l

p(v) p(v)

independent of the vertex v. The effective deficiency for a set A in such a

graph was given by the expression (3.1.8).

The conditions (4.3.1) are satisfied when the local degrees for G, H and H

have the forms

p(v) = n-px(v),
(4.3.2)

k(v) = m-px(v),        k(v) = tn-px(v)

where the notations are such that

ml .ml
(4.3.3) X = — g—> X = —=i—>        m + th = n.

n       2 n       2

In Theorem 3.2.1 a condition was established under which a subgraph cor-

responding to the multiplicities (4.3.2) exists:

1. G has no peninsulas.

2. No set C with

k(C) m 1 (mod 2)

shall be a peninsula of rank

p(C, C) < n/m.

The proof shows that under these conditions all terms in the sums (3.1.9) are

non-negative.

We shall investigate the form of sets A of zero effective deficiency. We

take G to be connected. From the formula (3.1.8) we conclude that for such

a set A one must have

(4.3.4) P(Ix, Ix) = P(Ix, Ix) = 0

and

(4.3.5) 21=S2=0;

with each term in the sums vanishing.

Suppose first that A has an even inner overfilled component. Then e = 0

for the corresponding term in (3.1.9) so that the condition (4.3.5) gives

Xp(Ix,C)+XP(A,C) = 0

or

P(Ix, C) = p(A, C) = 0.

Since G is connected this is only possible when
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(4.3.6) A = C = S,        A = 0.

The above argument applies also to an outer even overfilled component.

Thus we may assume that A has no such components. Next let C be an inner

odd overfilled component. Then €=1 and for the corresponding term in

(4.3.5) we have

(4.3.7) \p(Ih C) +\-p(I, C) = 1.

This can be fulfilled only in the cases:

P(Ii,C) = 0,      P(J,C)----—,
X       m

(4.3.8) p(/„C) = l,       p(J,C) = l,

P(Ii, C) = 2,       P(A, C) = 0,        X = X = — .

The last two cases are excluded if G has no peninsulas of rank 2.

The same analysis applies to an outer overfilled component C. Corre-

sponding to (4.3.7) one finds

\P(A, C) + Xp(7i,   C) = 1.

This condition can be satisfied only when

P(A,C) = 0,      p(iuC)=-,
A

(4.3.9) p(A, C) = 1,       p(Ii, C) = 1,

P(A, C) = 2,       P(h, C) = 0,        X = X = — .

We apply these facts to the accessible set W(C0) under /3-paths from a

center c0 with respect to some K-graph H. In (2.4.5) we defined the a-com-

ponent as the set

(4.3.10) A   =   Wa+Va

consisting of all a-vertices and all vertices in the bicursal a-blocks Pa. A has

zero effective deficiency by Theorem 2.4.4.

We separate two cases:

1. c0 is bicursal so that there exists a central bicursal block %o^0- Then

by Theorem 2.4.2 ^0 is an inner even overfilled component of A and (4.3.6)

gives

(4.3.11) A = ¥o =S.

Theorem 4.2.1 shows that every a-edge from c0 is free.
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2. Co is an a-vertex. Theorem 2.4.2 shows that there are no even inner

overfilled components of A and the odd components are the a-blocks %a-

Theorem 2.4.3 establishes that the odd outer components are the /3-blocks

typ. There are no even outer components since as in (4.3.6) it would lead to

A = S,        A = 0.

Let us prove that there can be no inaccessible vertices from c0. Theorem 2.4.3

shows that in general an inaccessible vertex w must belong either to an even

outer component or it must be exactly filled from A. Here only the latter

case is possible. But w can have no edges connecting it with any typ by Theo-

rem 2.1.3, nor can there be any edges connecting w with A according to

(4.3.4). We conclude that all edges from w go to A, but this makes w over-

filled from A contrary to assumption. We conclude that

(4.3.12) W(co)=S,       W = 0.

In our case Ix=Wa. We conclude from Theorem 4.2.1 by means of (4.3.12)

and (4.3.4) that also in this case every a-edge from Co is free.

A similar argument applies to the sets of zero effective deficiency with

respect to the complementary multiplicities. We recall that these sets are the

complements of sets of zero effective deficiency. Thus we conclude that all

vertices are accessible also under a-paths from an arbitrary vertex c0 and

that all /3-edges are free. This gives:

Theorem 4.3.1. Let G be a connected graph without peninsulas and multi-

plicities of the form (4.3.2); for vertex sets C with

k(C) = 1 (mod 2),

the condition

_        n
P(c, c) ^ -

m

is fulfilled. Then there exist n-graphs H for these multiplicities and all edges in G

are free equivalent.

All decomposition theorems derived in §3.2 were special cases of graph

decompositions of this type. We conclude that for the subgraphs whose exist-

ence were established in Theorems 3.2.2 and 3.2.3 all edges must be free. It

follows in particular that for the regular subgraphs of regular graphs ex-

hibited in Theorems 3.2.4 and 3.2.5 all edges must be free. A very special

case is the result also due to Petersen that a connected regular graph of de-

gree 3 without peninsulas has subgraphs of first degree and all its edges are

free. In the next section we shall make use of this theorem to derive an im-

portant fact about the alternating paths in a general graph.
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4.4. Invariance of the accessible characters. In Chapter 2 we investigated

the properties of the alternating paths from a center c0 with respect to a

K-subgraph H of G. These paths were separated into two families, the a-paths

beginning in an edge in Hand the )3-paths beginning in an edge in the comple-

mentary graph //. With respect to any one of these families of paths, for

instance the /3-paths, all vertices vES were assigned certain accessible char-

acters. First, v is accessible if it appears in some such path, inaccessible other-

wise. Secondly, the accessible vertices were divided into three classes:

1. a-vertices accessible only in paths ending in an a-edge at v.

2. /3-vertices accessible only by paths ending in a /3-edge.

3. Bicursal vertices accessible from Co in paths ending both in a and

/3-edges.

The center c0 is always accessible. It is bicursal if there are returning/3-paths

ending in a pledge; otherwise c0 is an a-vertex.

In this section we shall prove:

Theorem 4.4.1. The accessible character of a vertex is K-invariant, that is, it

is independent of the particular choice of the K-graph H.

We notice to begin with that by Theorem 4.1.1 it is sufficient to show

that the accessible characters are unchanged by a single cyclic deformation

of II into another K-graph H'. We denote by C the even cycle with respect to

which the deformation is performed. We shall show that if P(co, v) is any

path from Co to v in H then there exists a path P'(cq, v) with the same initial

and terminal characters with respect to H'. This is evident if P and C have

no edges in common. Let &i be the first vertex from which P and C have a

common edge and denote by

Di = (bh b2)

the first common section of these two paths. If there is only one such section

one can, after the deformation, continue P from bi through the other part of

C to b2 and from b2 as before. Thus we may assume that P and C have several

sections in common. Our theorem will then be a consequence of the

Lemma. Let P(bi, b2n) be a path from bi to b2n having a certain number of

sections

(4.4.1) Di= (ii, b2), D2, ■ ■ ■ , Dn = (bin-u b2n)

in common with the even cycle C. The initial character of Di may be y and the

terminal character of Dn is 8. Then after the deformation of H with respect to C

there still exists an H'-path with the same end characters and consisting of sec-

tions of P and C.

Instead of using the terminology of alternating paths in a graph we can

introduce an equivalent formulation in terms of two intertwining continuous
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curves C and P. Here C is closed and the two curves have a number of links

or common sections £>,- indicated by their endpoints as in (4.4.1). Each curve

C and P then consists of an alternating sequence of links D,- and noncoincid-

ing sections Cj and Pk. We shall indicate this by writing

(4.4.2) P = Dx, Px, D2> Pi, ■ ■ ■ , Pn_x, Dn,

and

(4.4.3) C=Cx, Dkl, d, Dk„ ■ ■ ■ , Cn-i, Dx,

where Cx = (bx, Cx) is the section of C from bx in the opposite direction of Dx.

Through (4.4.2) and (4.4.3) we have defined directions on P and C. This

gives each section Di two assigned directions, one as member of P and the

other as member of C. One sees that the intertwining of the curves P and C

is described completely by the indices

kx, ki, • • •

in (4.4.3) together with the information for each £>,■ whether its two directions

coincide or are opposite.

The curve P may also be made closed by adding a section

Po = (bx, bin)

to it. Then the configuration consisting of the vertices bi and the sections

(4.4.4 {d}, {Pi}, {Di}

connecting them may be considered to be a regular graph Go of degree 3 with

the edges (4.4.4). The removal of any edge cannot make GQ disconnected,

thus Go has no peninsulas. Each of the three families in (4.4.4) are the edges

of a subgraph of first degree. The paths P and C in (4.4.2) and (4.4.3) are

Hamilton circuits in Go passing through each vertex once. The graphs

(4.4.5) K={d},       K = P={Di} + {Pi}

are complementary subgraphs of Go with degrees 1 and 2 respectively. The

result of Petersen, mentioned at the end of the previous section, on subgraphs

of first degree in regular graphs of third degree without peninsulas, shall now

be applied to the subgraphs K and K in (4.4.5). All edges in Go are free. Thus

we conclude that the edge Po in K lies on an even cyclic path

(4.4.6) P0,Cx,Kx,Cai,Ki,---,Cat

where the Ki indicate sections Di or P< and Ca, has the endpoint bin. When

Po is omitted in (4.4.6) we obtain the desired path in G0. We again interpret

the sections (4.4.4) as alternating paths. One then readily verifies that

(4.4.6), beginning with Cx, is a path cursal from bx to b2n with respect to the

graph H' obtained from H by deformation with respect to C. In regard to

H' this path also has the end characters y and 5 as required by the lemma.
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Theorem 4.4.1 can also be expressed:

Theorem 4.4.2. For a given center c0 all the sets

W, W, Wa, W,, Va + Ve

are K-invariant, i.e., independent of the K-graph H with respect to which the paths

from Co are constructed.

One readily verifies from their definition that also the central bicursal

blocks S3o and ^3o are K-invariant.

All noncentral bicursal blocks 33 and ty are also invariant, but their en-

trances and entering characters may depend on the choice of the K-graph H.

Chapter 5. Alternating path problems

5.1. Cyclic connectivity. We shall consider various types of problems con-

cerning alternating paths. To abbreviate we shall use the terminology that a

path P(ao, an) connecting two vertices ao and an is a (7, 8)-path when the first

edge in P is a 7-edge (y = a or y=B) and the last edge is a 5-edge (5 = a or

8 = 8).
Two vertices ao and ba are cyclically connected for the K-graph H ii there

exists a series of even cyclic paths

(5.1.1) CuCt, ■•-,&

such that ao lies on G and bo on Ck with each pair of consecutive cycles C,

and Ci+i having at least one vertex in common. Similarly two edges A and B

are cyclically connected if A lies on C\ and B on Ck.

Theorem 5.1.1. Two edges or vertices are free equivalent if and only if they

are cyclically connected.

Proof. Evidently the condition is sufficient from the definition of free

equivalence introduced in §4.1. To prove the necessity we need only observe

that if £ is a free edge it belongs to an even cyclic path for every K-graph H.

This follows from the construction used in the proof of Theorem 4.1.1. Thus

in the chain of free edges (4.1.3) each edge lies on an even H-cycle.

If in (5.1.1) a cycle C% has a vertex in common with a preceding cycle Cj,

j<i, then all cycles lying between Cj and C, are superfluous in establishing

the cyclic connection and may be omitted. Thus we can reduce the sequence

such that each cycle d contains only vertices of Ci_i and C,+i. We can sup-

pose that Ci has an edge in common with each of them, since two cycles with

vertices, but not edges in common may be combined into a single cycle.

We shall point out a certain analogy between free equivalence and bicursal

equivalence as defined in §2.2. A vertex a0 shall be called a y-apex if there is

a closed odd (y, 7)-path L(cv, c0) returning to c0; such a path L(c0, c0) shall

be called a y-loop. We say that a vertex &0 is B-loop-connected to Co when the
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following conditions are fulfilled: There exists a sequence (5.5.1) of cyclic

paths such that the d are either a or /?-loops or even cyclic paths. The first

Ci shall be a /3-loop with the apex Co while bo lies on Ck. The paths (5.1.1) are

connected such that each has at least one vertex in common with the pre-

ceding; in the case of a loop its apex shall belong to one of the preceding paths.

Theorem 5.1.2. A vertex bo is P-bicursally equivalent to c0 if and only if it

is P-loop-connected with this vertex.

Proof. We show first that every edge in the paths (5.1.1) is bicursal from

Co in paths containing only these edges. This is clear for Ci and so we may

prove the theorem by induction on k. Let Ck(x, y) be a section of Ck such that

the ends x and y belong to previous d while the edges in Ck(x, y) do not be-

long to any such C,. Then by the induction assumption there exist /3-paths

from Co to the bicursal vertices x and y such that they may be continued

through Ck(x, y) both ways.

Next suppose that the set L of loop-connected edges were only a part of

the set of bicursal edges connected with c0. Then there would exist an edge

E = (c, d) bicursal from c0 where c is loop-connected to Co while d is not. This

leads to a contradiction. By the preceding there would exist a /3-path P(co,c)

consisting of loop-connected edges such that P could be continued through

E. Since E is bicursal from c0 there exists some /3-path Q(c0, d, c). Let e be

the last vertex common to P and Q. Then eEL and E lies either on an even

cycle with e or e is the apex of a loop containing E.

5.2. Mutual connections. Two vertices a0 and b0 shall be said to be

mutually connected if there exist paths

(5.2.1) P(a0,bo),       Q(a0,h)

connecting them, having the end characters (a, y) and (P, y) where 7 is the

opposite character of y. We shall prove:

Theorem 5.2.1. Free equivalent vertices are mutually connected by paths

consisting of free edges.

Proof. The theorem is evident when ao and bo lie on the same even cycle.

Thus it may be proved by induction on the number k of cycles in (5.1.1).

Then if 60 lies on C* we may assume that ba does not belong to any of the

previous cycles d. From 60 we can follow Ck in two directions

(5.2.2) Ck(bo,x),       Ck(b0,y)

to the first vertices x and y belonging to Ck-x. We suppose the paths (5.2.2)

have the characters (a, b) and (/3, «).

According to the induction assumption there exist two paths

(5.2.3) P(ao,x),       Q(aa,x)
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consisting of edges in the first k — 1 cycles and having opposite characters at

ao and at x. To y there exist paths

(5.2.4) Pi(ao,y),        Qi(ao,y)

of the same kind. One of the paths (5.2.3) must have the end character 8 and

can be continued through Ck(x, b0) to bo. Suppose for instance that this path

is P and that it is a /3-path from a0. Let Pi be the path in (5.2.4) which has

the initial character a and d the first vertex in Pi lying on Ck. If Pi(a0, d) can

be continued on Ck through y to bo the theorem is proved. If Pi(a0, d) can be

continued on Ck in the other direction then both paths

P' = P(a0, x),       P" = Pi(a0, d) + Ck(d, x)

can be continued through Ck(x, bo) to b0. These paths are respectively (8, 8)

and (a, 5)-paths. But one of the paths (5.2.4) can be continued through

Ck(y, b0). By pairing it with that path P' or P" which has the opposite char-

acter at a0 a mutual connection of the desired kind has been obtained.

Theorem 5.2.2. If a0 and bo are free equivalent and E = (b0, c) any edge

from bo then E is cursal from bo to c in some path from ao.

Proof. When E is free this is a consequence of the proof of the preceding

theorem. When E is not free there is a path of free edges P(a0, b0) with a

suitable terminal character so that it may be continued through E.

Under certain conditions one can conclude conversely to free equivalence

from the existence of a mutual connection.

Theorem 5.2.3. Let ao and bo be two vertices mutually connected by a

(y, 8)-path P(a0, bo) and a (y, 8)-path Q(aa, b0). If there are no (y, 8)-pathsfrom

ao to bo consisting of edges in P and Q, then ao and bo are free equivalent.

Proof. The theorem is obvious when P and Q have no common edges,

because together they form an even cyclic path. Thus it may be proved by

induction with respect to the number of common edges in the two paths.

Let E = (c, d) be the first edge in P which also belongs to Q. Then E cannot

be cursal in the same direction in the two paths because P(a0, c, d) could be

continued in Q(d, bo) giving a (7, 8)-path to b0.

We assume therefore that the e-edge E has opposite directions in P and

Q. Since

P(ao, c, d) + Q(d, ao)

is an even cyclic path the vertices ao, c and d are free equivalent. Furthermore,

c and bo are mutually connected by the (e, 7)-path P(c, b0) and the (e, 7)-path

Q(c, bo). No (e, 5)-path from c to bo consisting of edges in these paths can exist

because it would lead to a (7, 5)-path from a0 to b0. Thus the theorem follows

from the induction assumption.



1959] GRAPHS AND SUBGRAPHS, II 197

We shall need also the following auxiliary result:

Theorem 5.2.4. Let Q be some y-loop with the apex e and q some vertex on

Q. If there exists some path P(q, e) with the end character y then e and q are free

equivalent.

Proof. If P has no edges in common with Q there are two possible return-

ing paths

P(q, e) + Q(e, q)

to q. One of these is seen to be an even cyclic path. Thus one may base the

proof upon induction with regard to the number of common edges in P and

Q. Let A = (a, b) be the last edge in P before e which lies on Q. Two cases may

occur. First the direction from a to b on Q is such that the section Q(a, b, e)

does not contain q. Then

Q(e, q, a, b) + P(b, e)

will be an even cyclic path containing e and q. Secondly, q is included in

Q(a, b, e). Then the path

Qx = P(b, e) + Q(e, q, b)

is a loop with the apex b and containing q. If Qx is a 5-loop P(q, a, b) has the

end character 8 and so by the induction assumption q and b are free equiva-

lent. But since

C = P(b, e) + Q(e, a, b)

is an even cycle also e and b are free equivalent.

5.3. Cursal equivalence. For some center Co we have defined the accessible

sets

(5.3.1) W(co,a),        W(c0,8)

consisting of all vertices accessible from c0 under a-paths and /3-paths respec-

tively. We shall introduce also the sets

3 W(c0, a+ 8) = W(co, a) + W(c0, ft),

W(co,a   ■  B) = W(co,a)   ■   W(co,B).

The first of these sets (5.3.2) consists of the vertices accessible by either a

or /3-paths, the second of the vertices accessible by both a and /3-paths.

Let Cx be a vertex which is accessible from c0 in a (7, 5)-path. We shall say

that cx is (7, b)-cursally included from c0 if every edge E which is cursal from

Cx in a 5-path is cursal in the same direction from c0 in a 7-path. Furthermore,

Co and Ci are (7, b)-cursally equivalent if Ci is (7, 6)-cursally included from c0

and c0(5, 7)-cursally included from c%.

We extend this terminology also to the symbols a +/3 and a ■ /3 as in (5.3.2).
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We say for instance that c is (a+8, 7)-cursally included from c0 if Ci is ac-

cessible from Co in some path ending in a 7-edge and every edge E cursal from

ci in a 7-path is cursal in the same direction in some path from Co. The two

vertices are (a+/3, 7)-cursally equivalent if Ci is (a+/3, 7)-cursally included

from Co and Co is (7, a+/3)-cursally included from c%.

We shall illustrate these definitions on a few simple examples:

Theorem 5.3.1. Two free equivalent vertices ao and bo are (a+/3, a+/3)-

cursally equivalent.

Proof. We saw in Theorem 5.2.1 that the two vertices are connected by

paths. Let A = (c, d) be an edge which is cursal in this direction in some path

P(ao, c, d). Denote by E = (e, f) the last edge in P whose initial vertex e is free

equivalent to ao. Then by Theorem 5.2.2 there exists a free path Q(bo, e)

which can be continued from e through P.

Theorem 5.3.2. Let e be the apex of a 8-loop Q. Then every vertex q on Q is

(8, a+8) -included from e.

Proof. Let A = (c, d) be an edge cursal in this direction from q in a path

P(q, c, d). The last vertex on P lying on Q shall be/. Then there is a /3-path

Q(e, f) which can be continued in P(f, c, d).

A consequence is:

Theorem 5.3.3. A vertex a0 is (8, a+8)-cursally equivalent to itself if and

only if it is a B-apex.

Proof. Theorem 5.3.2 shows that a /3-apex is (B, a+/3)-cursally equivalent

to itself. Conversely, let ao have this property. Then there exists a /3-path

returning to a0. If this is not a /3-loop it is an even cyclic path ending in an

a-edge. This must also be cursal in a /3-path from a0, hence a0 is a /3-apex. A

consequence of Theorems 5.3.1 and 5.3.3 is:

Theorem 5.3.4. Two free equivalent y-apexes are (7, y)-cursally equivalent.

An a-apex and a /3-apex which are free equivalent are (a, /3)-cursally

equivalent. Theorems 5.1.2 and 5.3.1 and 5.3.2 combined yield:

Theorem 5.3.5. For a B-apex Co let B(ca) be the central block of vertices bi-

cursally equivalent to Co. Then every vertex b in B0(co) is (B, a-{-B)-cursally

included from c0.

For the proof of a following theorem we need the observation:

Theorem 5.3.6. Let e be the apex of a B-loop Q and q a vertex on Q. If q is

(8, a-{-8)-cursally equivalent to e then e and q are free equivalent.

Proof. Under these conditions there must be some path P(q, e) ending in

an a-edge at e so that it can be continued through the two /3-edges
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Ex = (e, qx),        Ei = (e, qi)

in Q at e. The theorem is therefore a consequence of Theorem 5.2.4.

We are now prepared to prove:

Theorem 5.3.7. Two vertices a» and bo are free equivalent if and only if they

are (a+P, a+P)-cursally equivalent.

Proof. According to Theorem 5.3.1 it is sufficient to show that (a+P,a+P)-

cursally equivalent vertices are free equivalent. Then there exists some path

P(ao, bo). We denote the edges in P by

Ai = (ai, at+x), i = 0, 1, ■ ■ ■ , n, a„ = bo.

Each of these edges is cursal in P from b0 in the direction from ai+1 to a,-, hence

they must be cursal from Oo in the same direction. Thus for each i there exists

a path

Qi(a0, ai+1, ai).

If Qi has no edges in common with P(ao, a<) the closed path

P(ao, a,) + Qi(aiy ai+1, a0)

is even cyclic or a loop with the apex a0. When P and Qi have edges in com-

mon let

Aj = (as, aJ+1)

be the last such edge in P(a0, a,-) before a,-. If Aj appears in the same direction

from a0 in P and Qi then

P(ai+x, a() + Qi(at, ai+1, aj+i)

is a loop with the apex a,-+x. If Aj has opposite directions the path

P(aj, aj+x, at) + Q(ait ai+1, aj)

is an even cycle. Thus one sees that every vertex a^ao on P is connected

either with an even cycle to some previous vertex fly or by a loop with aj as

its apex. This means that bo is loop-connected with a0 and so by Theorem

5.1.2 bo lies in the bicursal block 93o(flo) defined by flo. If in the preceding a<

and aj lie on the same even cycle they are (a+P, a+/3)-cursally equivalent

according to Theorem 5.3.1. If a,- lies on a loop with the apex a,- then a< is

(a+P, a+|8)-cursally included from a,- by Theorem 5.3.2. But since o0 and

bQ were (a+P, a+/3)-cursally equivalent it follows that in each such step at

must be (a+P, a+j8)-cursally equivalent to a,- and so from Theorem 5.3.6

we obtain that a< and a3- are free equivalent. This completes the proof.

5.4. (P, /3)-cursal equivalence. We shall determine when two vertices a0

and bo are (p, /3)-cursally equivalent, that is, when the two vertices have the

same accessible set with the same cursal properties for all edges. We examine
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first when bQ is (B, /3)-cursally included from a0.

Theorem 5.4.1. The vertices which are (8, B)-cursally included from the

vertex ao are those which belong to the set

(5.4.1) 93o(a0) + Wa(ao)

consisting of the a-vertices from ao and the vertices belonging to the central bicursal

equivalence block.

Proof. We show first that no vertices outside of the set (5.4.1) can be

(8, jS)-cursally included from a0. The inaccessible vertices are excluded by

the definition of cursal inclusion. No /3-vertex can be (8, /3)-cursally included

from ao since the unicursal /3-edges to it would become cursal in the opposite

direction. Nor can any vertex v in a noncentral bicursal block 33(e) have this

property since the unicursal entering edge to the entrance e would become

cursal in the opposite direction in a /3-path from v.

Assume now boEWa and let E = (c, d) be an edge cursal from b0 in a

/3-path P(b0, c, d). Since bo is an a-vertex there exists a (8, a)-path Q(a0, bo).

If P and Q have no edges in common Q may be continued through P and E.

Next assume that D = (di, d2) is the first edge in Q also in P. Then D cannot

appear in opposite directions in P and Q because

Q(ao, du d2) + P(d2, bo)

would be a (8, /3)-path from ao to b0. Thus D appears in the same direction

in P and Q and the path Q(a0, di) can be continued in P(di, d2, c, d).

Finally assume &oE33o(a0) and as before let E=(c, d) be an edge which

is cursal from b0 in a /3-path P(b0, c, d). If E has both end points in 33o(a0)

it is bicursal from a0 and there is nothing to prove. Assume therefore that

/ is the last vertex in P before d which belongs to 93o(flo)- Since/ is bicursal

from ao there exists a path Q(ao, f) within 33o(ao) which can be continued in

P(f, c, d).
One can also determine the vertices which are (8, a)-cursally included

from ao. Through an analogous analysis one finds:

Theorem 5.4.2. The set

(5.4.2) 93o(a0) + W,

consists of all vertices (8, a)-cursally included from ao.

Since the intersection of the two sets (5.4.1) and (5.4.2) is 33o(a0) we can

also state:

Theorem 5.4.3. The central block 93o(ao) consists of all vertices which are

both (B, B) and (8, a)-cursally included from a0.

We prove next:
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Theorem 5.4.4. If two vertices a0 and bo are (P, P)-cursally equivalent then

they are free equivalent; in addition either both are P-apexes or neither vertex is

a p-apex and in the latter case bo is an a-vertex from ao and ao an a-vertex from

bo. Conversely, when these conditions are fulfilled ao and bo are (/3, P)-cursally

equivalent.

Proof. We point out first that if boEWa(ao) in (5.4.1) then b0 cannot be

a /3-apex. There exists some (/3, a)-path P(a0, bo). If Q were a /3-loop with the

apex b0 there would be a first vertex q in P lying on Q. But then P(a0, q)

could be continued in one or the other direction along Q giving a (/3, /3)-path

from ao to bo.

Next we show that if ao is a /3-apex it cannot be (/3, /3)-cursally equivalent

to an a-vertex bo- If this were the case there would exist some /3-path Q(bo, ao)

with the first vertex d in 93o(ao). Since d is bicursal from a0 within So(flo)

there would be some /3-path from ao which could be continued through

Q(d, b0) to give a (p, /3)-path to b0.

These observations show that to be (/3, /3)-cursally equivalent ao and bo

must either both be /3-apexes or both not /3-apexes.

If a0 and b0 are both /3-apexes each is (/3, a+/3)-cursally equivalent to

itself according to Theorem 5.3.3 and so they are free equivalent by Theorem

5.3.7. Conversely, if this is the case they are (/3, /3)-cursally equivalent by

Theorem 5.3.1 and

S3o(a0) = S30(O0).

If ao and bo are not /3-apexes Theorem 5.4.1 shows that they are mutually

a-vertices and from Theorem 5.2.3 one concludes that they are free equiva-

lent. Theorem 5.4.1 shows conversely that if these conditions are fulfilled the

two vertices are (/3, /3)-cursally equivalent.

We shall not pursue this topic of cursal equivalence any further although

there are other results of interest. We shall only mention that instead of cursal

inclusion and cursal equivalence one can introduce a wider concept of ac-

cessible inclusion and accessible equivalence. For instance, two vertices a0

and o0 are (/3, /3) -accessibly equivalent if every vertex v which can be reached

from ao in a (/3, 7)-path can be reached from bQ in the same manner and vice

versa. There are a number of results which may be obtained but we shall not

discuss these questions here.

Chapter 6. Simultaneous subgraphs

6.1. Subgraphs of first degree. As before let G be a finite graph and H a

subgraph of first degree. We write G as a direct sum

(6.1.1) G=H+H.

In the following we shall prefer to call an edge oi H a /3-edge and an edge of

H an a-edge.
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To an arbitrary vertex c0ES we construct the accessible set W(c0) under

/3-paths. Since there is only a single B-edge at each vertex G can have no

/3-apexes, hence in W(c0) there is no central bicursal set. Furthermore, since

any noncentral a-block tya has an entrance e which is a /3-apex there can be

no such blocks. Thus the a-component of the accessible set W(c0) is simply

the set A = Wa of a-vertices.

Any /3-edge from Wa must go to W& or be the entering edge of some

/3-block ^3,3 whose entrance e is an a-apex. Each block tyg is composed of a

certain number of bicursal equivalence blocks 93. Since their entrances cannot

be /3-apexes all 93 are /3-blocks.
Take vEtyp- According to the general theory of alternating paths there

are both a and /3-edges at v belonging to the section graph GC^) except pos-

sibly at the entrance e of typ. Thus except for the entering /3-edge to ^3 coming

from Wa there are no /3-edges touching typ. It follows that there are no

/3-edges from ^ to /3-vertices while all a-edges from ^ go to W«. We conclude

that each block ^ is a disjoint component within the section graph G(A) of

the complement A of A = Wa- Similarly, any /3-vertex b0 is isolated in G(A)

because the /3-edge to b0 must come from A and the a-edges at bo must be

cursal to A.

We denote by

(6.1.2) &>={%} + {&}

the family of all /3-blocks typ and all /3-vertices b. Since there is exactly one

/3-edge from each vertex in Wa to a single component in ftp we conclude that

Wa and 55(3 contain the same number of terms

(6.1.3) vm=v(Wa).

There may be other connected components in G(A) but these must con-

sist of inaccessible vertices in the complement W of W(c0). There can be no

edges from W to ftp and the edges connecting W with A must all be a-edges.

We make the observation:

Theorem 6.1.1. Let H be a subgraph of first degree for which every edge is

free. Then the blocks fyp consist of a single bicursal equivalence block 93/s.

Proof. If typ consists of more than one block 93 the section graph GC$p)

has bridges which are entering edges to the various 93. Thus they are bound

/3-edges as we have seen, contrary to assumption.

Two or more subgraphs shall be called simultaneous ii no two of them

have any edge in common. Let us suppose that G has a family of k^2 simul-

taneous subgraphs Hi of first degree. Then any edge in such a graph is free

and Theorem 6.1.1 holds. The previous discussion also shows:

Theorem 6.1.2. Let G be a graph with k^2 simultaneous subgraphs Hi

of first degree. Then each bicursal block 93 and each B-vertex b is connected to Wa

by a single edge in each graph Hi.
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Thus for any UiEW there is exactly one edge belonging to each H,- and

these edges connect ai with /3-vertices b and blocks 93. The proof of Theorem

6.1.2 follows immediately from Theorem 4.4.1.

6.2. Completely decomposable graphs. A graph G is completely decompos-

able if it is the sum of n simultaneous subgraphs of first degree

(6.2.1) Gn = XHi,       Hx = H.

Such a graph is regular of degree n. By means of the preceding observations

a certain reduction can be achieved in the problem of determining when a

regular graph G„ is completely decomposable.

As before we construct the accessible set W(c0) with respect to H-paths

from a vertex Co. Since there are at least two graphs Hi in (6.2.1) we conclude

from Theorem 6.1.1 that ^3^ = 33 for each bicursal equivalence block. Theorem

6.1.2 shows that there is a single edge of Hi connecting a block S3 with Wa.

Since there are no other types of edges in G„ we conclude that each 93 and

each /3-vertex b is connected to Wa by n edges, one from each Hi. There can

be no inaccessible vertices when Gn is connected, because as we saw, the

edges from Wa to W were a-edges, that is, edges not in II. Since this must be

true for every Hi in (6.2.1) there can be no such edges.

Let us denote by

(6.2.2) Ei= (a{, bi),       aiEWtt, bj E 93, Et C Bi

the n edges connecting a block 93 with Wa. To each 93 there is a section graph

G(93) consisting of the edges in G connecting vertices in 93. To G(93) we shall

construct an enlarged graph as follows. To the set 93 we adjoin a single new

vertex b* and to the edges in G(93) we add the new edges

(6.2.3) E?=(b*,bi)

defined by the endpoints &,- of the connecting edges £,• in (6.2.2). This new

graph we shall call the block graph of 93 and denote by

(6.2.4) G(93*), 93* = 93 + b*.

The block graph (6.2.4) is seen to be regular of degree n; it is connected and

has no bridges. We shall show:

Theorem 6.2.1. Let the regular connected graph G„ have a subgraph H of

first degree such that all edges in G» are free for H. Then G„ is completely de-

composable if and only if each block 93 defined by H has n connecting edges

(6.2.2) and the block graphs (6.2.4) are completely decomposable.

Proof. It is evident from their definition that the block graphs (6.2.4)

are completely decomposable if G„ has this property. Conversely let there

exist a subgraph H of G„ of first degree with the properties indicated. Then

there can be no inaccessible vertices and typ = 93 for each bicursal block.
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We introduce a bipartite graph

(6.2.5) G'=(Wi,&)

where the vertex set Wi is in one-to-one correspondence with the set Wa of

a-vertices and 3fl m one-to-one correspondence with the terms in the family

%p in (6.1.2) consisting of the /3-vertices and the /3-blocks. We connect vertices

a/ in Wi by an edge (a/, bj) to a term bj in %p if and only if there is an

edge in G connecting the corresponding quantities a,- in Wa and 93,- in Fp. We

notice that this construction may result in multiple edges in G'. Evidently

G' is regular of degree n by our assumptions.

From the general theory of bipartite graphs we conclude that

(6.2.6) G'=XHk' (k = 1, 2, • • -,n)

is the sum of n simultaneous subgraphs of first degree. The decomposition

(6.2.6) gives a corresponding decomposition of the graph of edges in G con-

necting Wa and \Jp into subgraphs Hk, so that there is a single edge of each

Hk at every vertex atEWa and a single edge of Hk to each 93 or /3-vertex b.

This classification of the edges from Wa to %p can be combined with the

postulated complete decomposition of each block graph (6.2.4) to give a com-

plete decomposition of G.

Theorem 6.2.1 shows in particular that the graph G is completely decom-

posable if there are no /3-blocks 93, that is, the family JJ/s in (6.1.2) consists

only of /3-vertices.

Theorem 6.2.1 may be used for repeated reductions of the problem of

determining when a regular graph is completely decomposable. Such reduc-

tions are possible until one reaches the point where Wa = c0 consists of a single

vertex and this holds for every vertex c0. When this stage has been reached

every vertex in G is an a-apex.

In case G is planar it is readily verified that all block graphs G*(93) in

(6.2.4) are planar. Thus the preceding discussion applies to such graphs and

the problem of determining when a complete decomposition exists may be

reduced to the case where G has a subgraph of first degree for which all edges

in G are free and all vertices are a-apexes. This applies in particular to regular

planar graphs of degree 3.
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