HYPERBOLIC EQUATIONS WITH MULTIPLE
CHARACTERISTICS()

BY
R. BRUCE KELLOGG

1. Introduction. The definition of a linear hyperbolic partial differential
equation with constant coefficients was given by Garding [2]. In the case of
“distinct characteristics” (referred to here as the strictly hyperbolic case) the
extension of the definition to variable coefficients is immediate and the
Cauchy problem has been discussed for linear strictly hyperbolic operators
with variable coefficients by Garding and others (see [3] for further refer-
ences). It is harder to define a linear hyperbolic equation with variable
coefficients if multiple characteristics are allowed. A. Lax [4] has given such
a definition for two independent variables and has solved the Cauchy prob-
lem using an iteration scheme. This paper deals with the equations of A. Lax
and uses the methods of Girding and Leray to solve the Cauchy problem for
a wide variety of Cauchy data including distributions and with a minimum
of differentiability requirements on the coefficients.

Let the independent variables be x = (x!, x2) and let D; denote differenti-
ation with respect to x*. We consider operators of the form

1 A = Dy + \(x)D..

If A"=D, 4N (x)D; we assume that either A(x) =N\’(x) or A(x) =\’ (x) for all .
Let

@) 6=1Ao- " Am

(the factors A; are not necessarily distinct). Associated with a are two left
modules &(a) and &(a) over a ring of functions. S(a) consists of all linear
combinations of differential operators obtained from a by deleting one or
more factors from the product ¢ and writing the remaining factors in the
same order. &(a) is spanned by S(a) and a itself. The ring of functions may
be all functions or all functions satisfying certain differentiability conditions.
The operators of A. Lax are operators of the form b=a+ M, MES(a). a will
be called the principal part of b, @ =Pb, even though when (2) is multiplied
out ¢ will contain more than the highest order terms.

In addition certain other operators (first introduced in [3]), the partial
adjoints, are treated. Let M and N be products of operators of the form (1).
We shall consider the tensor product &(M)®S(N) but if Q®R lies in this
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product we shall use the notation QR*=Q®R. Suppose that the factors of
M and N, taken together, are precisely the factors of @. Then a partial ad-
joint E of a (or b) is an element of &(M) ®S(NV) one of whose terms is MN*,
MN* is called the principal part of E, MN*=PE. E=4 is a partial adjoint
of the first kind if 4 —PA lies in &(M)®&(N) and if degree M >0, and
E=B is a partial adjoint of the second kind if B—PB is in &(M) ®S(N)
and if degree N>0. For example b=50®1 is an operator of the first kind.

We wish to acknowledge our gratitude to Professor Lars Garding who
suggested this problem and whose encouragement and advice made this
paper possible.

2. The Friedrichs-Lewy inequality. Some preliminary notations and
properties of the module &(a) are introduced. Then a number of norms and
Banach spaces are defined which include the ones used by Garding in [3].
Finally an inequality of the Friedrichs-Lewy type is proved.

Let @ = (a1, az) be a pair of non-negative integers and write D, =D1D32.
Let |a| =ar+a; and let [a] <p, ¢ mean |a| <p+gand a1 Sp.

We shall work in a strip V="V,: 0=x'<¢=<1. Lip(p, ¢) will denote the
class of all functions f bounded in V and such that D.f exists a.e. and is
bounded in V whenever [a]<p, ¢. A differential operator b&Lip(p, ¢) if all
the coefficients of b are in this class. If @ is given by (1.2) and A;ELip(p++7, q),
a will be said to be of class (p, ¢). (This depends on the order of the product.)
If A;€Lip(p+m, q), a will be said to be of class {p, g}. In either event the
modules S(a) and &(a) will be taken over the ring of functions in Lip(p, ¢)
and b and the various partial adjoints will be said to be of the appropriate
class. The number (p, g, b) is then defined to be the ess sup of all the various
derivatives that are asserted to be a.e. bounded by asserting that & is of class
(p, ). A similar definition is given for {p, ¢, b}. A partial adjoint E, PE
= MN*, is of class {p, ¢} if M and N are of class {p, ¢} and if the modules
S(M), S(N) are taken over Lip(p, q). The number {p, ¢, E} is defined
similarly.

Let a’ be a rearrangement of the product a and suppose that ¢ and a’ are
both of class (p, g) when considered in their respective arrangements of their
factors. It is proved in [4] that

1) d — a € &(a).

This shows that the hyperbolic operator b=a+ M remains hyperbolic when
the factors of the principal part are rearranged.

Let S, denote the line x!=7, and let ¢* denote the complex conjugate of a
complex number ¢. By (f, g, S;) and (f, g) are meant respectively the integrals
Jf(x)g(x)*dx? and [f(x)g(x)*dx taken over the line S; in the first case and the
strip V in the second. If E= MN*, (Ef, g) means (Mf, Ng) and (Ef, g) is
defined for any partial adjoint by linearity. (Ef, g, S,) is defined similarly.
€ will denote the class of indefinitely differentiable functions with compact
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support and €, will refer to those functions in € which vanish in a neighbor-
hood of the line S,.

Following Garding [3, p. 53] a variety of norms is defined on €. First let
ID‘Wf, S,l 2= 3 (D.f, Daf, S,), the sum being over all [a]<p, g. The closure
of € under |DMf, S,I is called H?:4(S,). Now let

t
| Drof|, = f | Drof, S, | dr,
0
t 1/2
| Dragls = | Drg| = ([ oo sifear)
0

| Dpeof|, = esssup | Drof, S,|, O0=<r=ut

The closures of € under these norms are respectively called L?:9, H?.¢, and
C?.4. The functions f&EL?:? with IDM{f|Q< o form a Banach space under
this norm, called B?:9. The inclusions C?*¢CB?:¢CL?:? are evident. If in the
above construction €, is used instead of €, the resultant spaces are denoted
with a subscript 7.

Various properties of these spaces are given in [3]. In particular it is
immediate that if fEL?9, [a] <p, ¢, a meaning may be given to D.f (it is a
derivative in the sense of L. Schwartz) and D,f&€L°:°. Similar considerations
hold for the other spaces. In the case of H?:9(S,) however, the functions D.f
are not all determined by one another and in fact a function fEH?9(S,) if
and only if there is a collection of p+1 functions f;, 0S¢ =< p, fiEHO?+e—i(S,),
such that Dif=f;. The functions f; are entirely independent of one another
and may also be characterized by the fact that f; is square integrable on S,
and for each j, 1<j<p+q—1, the Schwartz derivative Djf; is a function
square integrable on .S,.

In the case of multiple characteristics it is necessary to define more norms.
Roughly speaking the idea is to include in the norms of f not only all deriva-
tives of f up to a certain order but also certain directional derivatives of f
taken in the characteristic directions of a. More precisely we define
| De+?.9f, S,|2 and | De+»-9f, S,|2 by the sum Y| D#-aMf, S,|2, the sum being
taken over all monomials M in &(a) in the first case and &(a) in the second.
The 1, 2 and « norms are defined, for &(a) and &(a), the same as above. The
spaces obtained are denoted by Hetr.¢(S,), Hotr.9(S,), etc. If a is strictly
hyperbolic these norms for the module &(a) are equivalent to the usual
norms with indices m+p, ¢. If @ is not strictly hyperbolic but has some dis-
tinct factors more complicated equivalent norms are given below. If b=a+ M
the norms and spaces with respect to b are defined to be those with respect
to a.

If f€L+r.2and MES(a), a meaning may be given to Mf, and MfELr-.
Similar considerations hold for the other spaces and for the module &(a) and
it will be shown below (Lemma 3.1) that the collection of functions Mf, taken
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with certain equations relating them to one another, serve to characterize an
fELetr.e, As in the case a=1, when f& He+?.9(S,), some of the Mf may be
independent of one another. A collection (fi), fu©H?9(S), MES(a) will
be called consistent if the map M—fy is a linear map where &(a) and H?-4(S;)
are thought of as modulesover theringof functionsin Lip(p, ¢). If f&€ Het?.9(S,),
(fu) = (M) is a consistent collection and Lemma 3.1 gives the converse of
this statement.

We will frequently use a simple inequality [3, p. 18] which says that if
#(t), ¥(¢) are non-negative nondecreasing functions and if ¥(f) Scf{¥(r)dr
+(t), c=0, then

2 Y() < e'd(l).

TueEoOREM 2.1 (FRIEDRICHS-LEWY INEQUALITY). If b is of class (p, q) and
fEeg,

3) I D”+p.19¢’|“° < Cl Dbtr.af, Sol + cl Dp'qbfll
where ¢ >0 depends only on (p, q, b).

Proof. It suffices to prove (3) for b=a, for, assuming (3) for @ one obtains
as a bound for the left side of (3),
¢c| D¥2ef, So| + ¢| Drsbf|, + ¢| DmoMf|,

<c| D¥vf, So| + ¢| Drsbf|y + ¢| Dr+eef|,.
(3) then follows from (2).

If e=A and fEG, f(x) =f(0, ¢(0))-|—-f31Af(1', ¢(7))dr where ¢(7) is a solu-
tion of the differential equation ¢’ =\(r, ¢), ¢(x!) =x2. Squaring this and
integrating, one obtains after some manipulation |f, Sa| < c| Df, S|
+cfZ|Af, S.|dr which yields (3) for A with p=¢=0. Applying this to D.f,
[2]=p, g and adding, (3) is obtained for a=A.

(3) is proved for any @ by induction on the degree of a. If a=Aa’, we
have | De+v.9f| , <c| D¥"+2.4f, So| +c| D7 2a'f|1 S ¢| Do +7-5f, So| +¢| D?-9a’f]| .,
_S_ch“*‘ﬂ'qf, So] +c|DP-°af| » Adding to this the inequality (3) for A and
using (2), the inequality (3) for a is obtained, proving the theorem.

The result may be written in several different but equivalent ways. First
we observe that if >0,

(4) | D¥2.af, S| 0 | Devabf, So| + | Dbwtef, S, .

It is obvious that the right side of (4) is majorized by a constant times the
left side. Conversely since Dy and all the A; differ by derivatives in the x?
direction any M E&(a) may be written as a sum of operators of the form
Db, [a]=p—1, ¢, and DiN, j<p+q, NES(a). (4) follows. Hence if p>0,
(3) may be written

(5) | D+esf|, < ¢| DP1abf, So| + c| Db#+af, So| + c| DPbf|s.
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(5) has the advantage that the S, terms only involve the initial data and
derivatives of the initial data of a Cauchy problem.

In (3) and (5) either the left side or the last term on the right side or both
may be replaced by | Dt+».qf| ;.

The inequality in the above theorem is not as sharp as the Friedrichs-
Lewy inequality given by Leray [3, p. 50]. This is because the possibility of
some distinct factors in (1.2) has not been used. (3) may be sharpened by
giving another, but equivalent, definition of the norms with respect to the
modules &(a) and &(a). This equivalent form will not be proved as it is not
difficult. The principal fact used in the proof is that the mth degree divisors
of a polynomial of degree m--1 with distinct roots form a basis for the vector
space of all polynomials of degree m. This fact must be used in one form or
another in establishing the Leray form of the Friedrichs-Lewy inequality.

Suppose there are s distinct factors in the product (1.2) and order them
in some fashion. With each monomial M&ES(a) associate a sequence of
non-negative integers (k) = (ki, - + -, ks) by letting k; be the number of times
the ¢th factor must be dcleted from a to obtain M. Not all of the k; can be
zero since  k;=degree a—degree M>0. For each such sequence let
o(k)=c= D k;—max k;. Then if a is of class {p, ¢}

(6) | Detrof, S.| w3 | DrteaMf, S, |

the sum being taken over all M E&(a). Similar expressions can be given for
the other norms.

A consequence of (6) is that if M&&(a) is a monomial obtained from a
by deleting one of each of the distinct factors in (1.2), then

) | Detpuaf, Sfl v | EM+p+c—1,qf’ Srl .

Thus every norm with respect to &(a) is also a norm with respect to &(M)
for some M E&(a). The results obtained in the next section for spaces of the
latter kind will apply immediately to spaces of the former kind.

Let d(a) =sup 1/|N\:(x) —\j(x) | , x&V, where A;, A; range over all pairs of
distinct factors of (1.2). The constants involved in the equivalences (6) and
(7) depend only on {p, q, a} +d(a).

3. Linear spaces. The object of this section is to establish for the spaces
defined in the preceding section the various properties given in [3] for the
strictly hyperbolic case. These properties are all needed in the solution of the
Cauchy problem for distributions.

The first property is, for b of class (p, ¢g), the inclusion

1) Lbtra C CHrue
which is an immediate consequence of the inequality
) | Dr2of |, < ¢| Di*osf],, fEG.

One may obtain (2) from (2.3) applied to the strip between S, and S, with



282 R. B. KELLOGG [November

the left side of (2.3) replaced by ID"“’"’f, S,ll , 0=7=4 <¢, if, first, the
integral of the resultant inequality is taken with respect to 7 from 0 to #
and then the sup is taken with respect to ¢ from 0 to &.

The next result is a characterization in terms of weak derivatives of the
elements of the function spaces introduced in §2. It amounts to a theorem of
Friedrichs [1] that the weak and strong extensions of a hyperbolic operator
are the same. The proof uses Theorem 5.3 but as will be seen this theorem
depends only on the results of §4 and some results of this section in the case
a=1. The results of §4 are self-contained.

LEMMA 3.1. If a is of class {p, q} a set of elements (fu), fu© H?1(So)’
ME®S(a), determines an f& Ho+?.9(S,) if and only if it is a consistent set. A
function gE Ho+?.9(S,) and a set of functions fy EL?9 (resp. B?-9), MES(a),
determine an fE Lot (resp. Bet?:9) if and only if

(3) (fA‘l’ h) + (fM7 Ah) = = (Mg’ h: SO) - ((ng)fu, h)
for all REG, and all AMES(a).

Proof. The necessity of both conditions is immediate. The sufficiency of
the first condition is proved by induction on p4-degree a. Let a;=A; - « - An.
We may choose m +p+2 independent functions f € H#+4(S,), a f E HO-?+4(S,),
0=<i=<m, Diaf € Ho»+e*(S;), 1 Sk < p. Pick a sequence g;E € approximating
f in the norm of H??+¢(S,). By induction and (2.7) the m+4p-1 functions
af, Diaf specify a function in He*+.9(S). So does the collection, for fixed j,
a.g;, Diag;. A sequence of functions of the form f;=g;+x%;EC will be found
which tend to f in He*#.9(S,). If the a;f; and D}f; are expanded on S, they are
seen to involve a set of differential operators on the k; which constitute a
basic set of derivatives for a function in He+?.¢(S,). Define ;& Het?.9(S,) by
setting the appropriate differential operator applied to %; equal to a:f —a.g;
or D*af— D¥ag;, as the case may be. Pick h;EE such that | De+?.ah;—%;, Sol

=<1/j. With this choice of %;, the f; converge to f.

For the second condition, from Theorem 5.3 there is an fE La+7-¢, f| So=g,
af=f,. Applying (3) successively with 4=a;, B=Ae:p, it is seen that
a:f=fa, until finally f=7. If all the f» €B?9, the above gives fE€L*+?-¢ with
| De+.9f| , finite. This completes the proof.

In solving the Cauchy problem one is confronted with certain bounded
sequences from which a limit must be extracted. A sequence f;&B+?.¢ is
said to converge weakly to an f& Bet».¢ if for each ME&(a), each [a]=p, q
and each AE LY, (D, Mf;, k)—(D.Mf, k).

LeMMA 3.2. Any bounded sequence f;& B*+7-% contains a subsequence g; con-
verging weakly to an f& B**+?-¢ and

@ | Do+sf |, < lim inf | De+rgs ..

Proof. When a=constant the result is [3, Lemma 8.1]. Since for each
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monomial M ES(a), Mf;is a bounded sequence in B?-? the usual diagonaliza-
tion argument enables a subsequence g; to be chosen such that Mg; converges
weakly to some fyE€EBre. If MES(a) and AMES(a), for each EEG,,
(Mgj, b, So) = —(AMg;, b) — (Mg;, Ah) — ((D:\) Mg;, k) converges so Mg;—gu
€ H(S,). Applying this argument to D.gj;, [a]<p, ¢, we find gu € H?9(S,)
so by Lemma 3.1 g€ H**?.9(S,) and (Mg, h, So)=—(fanm, b)—(fu, Ah)
+ ((Ds\) Mf, k). Again applying Lemma 3.1, f& Be*».4, (4) follows in the same
way as in [3].

The spaces discussed so far may be thought of as consisting of functions
with generalized derivatives in the sense of Sobolev. Following [3] certain
dual spaces are now defined which will be spaces of distributions. We define

(5) | Do?~<f|, = sup | (f, &) | /| D*+»-an|,,
(6) | Dor¢f|, = sup | (f, ) | /| D*+?%h|o,

the suprema being taken over all #&G,. The corresponding norms with re-
spect to &(a) are defined in the same way, removing the bar from both sides
of (5), (6). The closures of € with respect to (5), (6) are respectively called
C-pma and L+»-s, |

The elements of these spaces are linear functionals on §;. As an example,
let [a]<p, ¢, MES(a), gEL’. Then the linear functional

) F(h) = (DM, g), ke €

is in Z—o—7—9, To see this it is necessary to use one of the mollifiers
® 721 = [ 102 = ay

where j(x) =€ %o(xe1), joECMNE:, 7020, [jo(x)dx=1. The properties of
these smoothing operators are fairly well known [3, p. 65] and will be assumed
here. Let F.(h)=(D.Mh, Jtg). Since J*g&Qy, F.(h)=(h, ND,J*g) is in
L-+7=¢, Also | Fi(h) — F(h)| Sc| D**?-9h| o| J*g—g|1 so Fe(k)—F(k) as e—0.
The same argument shows that the F, form a Cauchy sequence in Z—o—?.—q,

Also Cy*?~2 and B—>»~¢ will denote respectively the dual spaces of
Ci*? and L7 with respect to the duality (f, g). The norms in these spaces
are respectively (6) and (5) where (f, &) is interpreted to mean the value of
the linear functional f on A. We have the inclusions

C-o»?—eC B-or—e C L-orp—aC Cyore,

The next lemma will state that Bf**¢ is the dual of Z—*—?.~¢, The proof
will use a certain formal identity involving the commutator[4, B]=4B—BA,
of two operators A and B. Let Eo, : - -+, En be operators. Let 8;=(j.)
1 =u =<, be an i-tuple of integers between 0 and # and arranged in increasing
order, and let Ym41—; be the complementary set to §; in (0, - - -, m), also
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arranged in increasing order. Let L[8;]=E;, - - - E;; and, for any operator
A, let AB:)=[E;, [ - - - [Esy A] - - - ]]. For example, 4(Bo) =4, L[Bs] =1,
L[Bmi1]=L=E, - - - E,. The identity in question asserts that

(9) [L’ A] = E A(Bi)L['Ym+l—:‘]’

the sum being over all 8; with 1 <4<m+1. The proof can be given by induc-
tion and will be omitted.

LeMMA 3.3. If a is of class {p, q}, Bit?%is the dual of T——7.

Proof. Let L be a continuous linear functional on LZ—*—?.=¢, Then L is
continuous on L7~ so by [3], Lemma 8.1, L(f) =(f, g) for some g&B?".
Similarly if MES(a), L(Mf) is a continuous functional of fEL~?~¢ so
L(Mf)=(f, gu) for some gy & B It is seen from Lemma 3.1 with the strip
V reversed that g& Bf+7.

Conversely if g€ B{*?? it must be shown that (f, g) gives rise to a con-
tinuous functional on L*~?:—¢, Setting J=J- this follows from
(10) | Dafa, J]g|a < c| Dotorsg)., g€ B,
For (10) implies that | De+r.¢Jg|,, <c| D**+7-9g| ... Now JgEG, and, if fEC,
(f, Jg)—(f, g). Hence l(f, g)l/] 1_)°+P'qg| mécl 5‘“*1’""1’[1. Since € is dense in
L—s7~9, (f, g) can be extended to a continuous functional on this space. It
therefore remains to prove (10). This will be done in a number of steps.

First the effect of commuting J with D, or D, must be determined. It is
evident that J commutes with D, and its powers. A computation yields
[D%, J]g=0 when g and its first p—1 derivatives in the x! direction vanish
on S:. This condition is satisfied when g& B

Define operators J{n} and J(x) inductively by J{0} =J(0)=J, J{n}
=ulv, J{n—1}], J(n)=u[A, J(n—1)], where u, v are functions and A is
an operator of the form (1.1).

One can show by induction the following facts. First, when applied to
functions g which vanish on S, [D;, J{n}] is a sum of operators of the form
J{n} Again if g=0 on S;, J(n) is a sum of operators of the form J{i}Dé,
0<j=<i, 1<i<n. Finally if [@]<p, ¢, [Da, J{n}] when applied to a g&EB}*
is a sum of operators of the form J{i} M where M is a differential operator of
degree <p, ¢g—1—n+i. From these facts we will derive the inequality

(11) | DPaJ(n)g|e < | DP9g o, g€ B,

It suffices to show that, if [a] <p, ¢, j<i<n, and M is an operator of degree
<p,g—1—i+k, the right side of (11) majorizes IJ{'i}DaDégl » and
IJ {k} MDégI « The second quantity is of the same type as the first and we
shall show that J{i}D.Djg is bounded by a sum of terms of the form

(12) [aty = 2| | 2y
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where k is a derivative of g of order <p, ¢ and 7 has bounded integral for all
€>0. Observe that if J{n}=[u, [ - - [us, J]- - ]], then

Hbe = [ 560 = 980) TT ) — w)lay.

Hence after an integration by parts, J {i}DaDég(x) is bounded by
[]pdio - 2 I w6 - winl}
1

where the subscript y indicates derivatives with respect to the y variable.
Every derivative of j(y —x) brings out a factor 1/e and since j <7 each € may
be placed under one of the factors u.(x) —u.(y). j(y—x) vanishes outside a
set | y—x| <ce so using a Lipschitz condition on the u, the integrand remains
bounded save for the €2 that occurs in the definition of j(x). Hence the inte-
gral remains bounded so the integral is of the form (12). Squaring (12) and
integrating over .S, it is seen that (12) is bounded by c] h] », Which completes
the proof of (11).

The proof of (10) can now be given. By (9) the left side of (10) is majorized
by |D?9J(B:)L[Ymi1—:i]g|» and, since i=1, L[ymu1—:]ES(a). Hence using
(11), (10) follows completing the proof of the lemma.

To obtain the full generality of results available in the strictly hyperbolic
case it is necessary to allow p and ¢ to have different signs. Following [3],
let €’ denote the infinitely differentiable functions f in V such that P(x)Q(D)f
is bounded for any polynomials P, Q. (€’ is the space of “rapidly decreasing”
functions of Schwartz.) € D€ and € is dense in all the spaces introduced
above in which @ is dense. Define T°—2¢= Y (—1)D¥, 0<j<g. Evidently
T°—2¢§’C G’ and it follows from a consideration of the Fourier transform that
T°—2¢is a (1-1) map of € onto €. Hence it has an inverse, which is denoted
T02¢ We define , and He+r.—3(S,) as
the closure of €’ (or €) under this norm. The other norms are defined in
terms of this in the same way as in the case +g¢. It is clear that the maps
T+ extend to homeomorphisms between the spaces He+?-%¢(S,), Lotp.q,
etc.

More generally it is possible, using the methods of the preceding lemma,
to show that )| Dr.tet2rTo.2rpff, S, | M a monomial in &(a), is a norm
equivalent to | De+#.2¢f, S,| 2. Using this it is seen that the maps T°-+* extend
to homeomorphisms between Hetr.t¢(S,) and Hetrtet?r(S) and similarly
for the other spaces.

Hetr.£49(S,) are evidently Hilbert spaces. One can also show that they are
dual to each other under an extension of the duality

(f, & S) = 25 (DaMf, DuMg, S-), |a| = p, M € S(a).

| Dag(y) | dy

The proofs of these facts are not included as they are not needed in the sequel.
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__ The same considerations apply when the module &(a) is used instead of
S(a).

As a consequence the various versions of the Friedrichs-Lewy inequality
given in §2 remain valid if ¢ is replaced by —g¢. Also (3.1), (3.2) and Lemmas
3.2 and 3.3 remain true if ¢ is replaced by —g¢. (3.7) may be modified to make
FEL-*71 by requiring |a| <p and g€ L%«

4. The density theorem. This section is devoted to proving the density
theorem and deriving some of its consequences. The density theorem, which
asserts that a@, is dense in L} is the key result needed in solving the various
Cauchy problems considered in §5. As a consequence of the density theorem
there is obtained a variety of inequalities for partial adjoints which include
as special cases the Friedrichs-Lewy inequality and Géirding’s “basic in-
equality” for hyperbolic operators [3, p. 70].

This proof of the density theorem was suggested by Géirding.

THEOREM 4.1. If a is of class (p, q) and A& Lip(1) then a€, is dense in LY.

Proof. Note that if p =0 the subscript ¢ must be dropped. The proof is by
induction on m. Suppose a=A, and let ¢(x) satisfy the differential equation
9¢/9x' =N(x!, @), (0, x2) =x2. The map F: x—(x!, ¢) is a (1-1) map of class
Lip(p, ¢) of V onto itself (as may be seen by an easy modification of [5,
p. 40]) and FA=D,F. Let fEG,, and let Div = Ff; then u = F-1p is a solution
of class Lip(p, ¢) of Au=f, u=0 on S:. To show AC, dense in L7’ it suffices
to show AG, dense in H?* and to show this it suffices to show AG; dense in a
dense subset of H}? namely G, Let f&C, and let Au=f as above. Let
v=J-uEG,. We show that Au—f in HP* by showing that | D?-Av|. is bounded
and that G(Av)—>G(f) where G is one of a dense set of linear functionals on
Hp?. | D?Aw|,<|DPoau|,+|Dre[A, J]u|. is bounded by (3.10). Also if
rECNE,, (Av, ) = (v, A’k)—(u, A’h) =(f, k) where A’h= —D\h—D;(\k).

Now let a be as in (1.2) and let b=A; + - - An. Let fELP® and by induc-
tion pick g&€G, such that ID”'QAog —fl 1 is small and v&€,; such that
| Dr+1.aby —g|, is small. Then |D7-tav—f|,<|D?%av—Aog|:1+|D? 9Aog—f]:
§c|DP+""bv—gl 1+|D‘WAog —f|1 is small, completing the induction.

Because of the multiplicity of characteristics there are a larger variety of
inequalities for partial adjoints than in the strictly hyperbolic case. The next
theorem gives some of these inequalities. (Recall that degree M >0 (degree
N>0) for a partial adjoint of the first (second) kind.)

THEOREM 4.2. Let A and B be partial adjoints of the first and second kinds
respectively with PA=PB= MN*. Let A and B b_e of class {p, q} and let N
satisfy the hypotheses of Theorem 4.1. Then if f& LM ¢

1 | 1_)M.i«f|1 = c] DM xaf, Sol + ¢ sup l (Af, k) | /l EN'ithw;
and if fCBM.tq
(2) I D.M'iqfloo = Cl DM’i?f, So| -+ ¢ sup | (Bf, h) I /I DN-:FahLo
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where the suprema are taken over all h&EC, and the S, term in (2) is to be
dropped if degree M =0.

Proof. We first prove (2) with the lower signs. By the density theorem
and (2.3) with the strip V reversed, | D*~*Mf| .. <csup|(Mf, Nh)|/| D¥:h| .
The left side of this inequality majorizes ¢=!| D¥.~¢f| ,— | DM.=¢f, Sy|. Since
|((PB—B)f, h)] gclﬁ“'"qflllDN'“h]w an application of (2.2) gives (2). For
the upper signs apply (2) to T°~2%¢.

In the case B=N* M =1, (2) implies that if f&€L%¥¢ and (f, Nk) =0 for
all k€@, then |D°'*¢f] 1= ]D°-*qf| »=0so f=0. Hence NG, is weakly dense
in B%*9, the dual space of L%¥4, (This is a weak analogue of Theorem 4.1.)
With this weak density, (1) is proved in the same way as (2).

To give more inequalities an inequality is needed in the strictly hyper-
bolic case which is the same as but not quite a consequence of Girding’s
inequalities for strictly hyperbolic partial adjoints [3, p. 83]. Namely, if
B = MN* is a strictly hyperbolic partial adjoint (the factors of M and N are
distinct) and if || denotes the order of any differential operator b,

o | PPyl S o] Dt S| 4 csup | 810 /| DL,
k& G,

Let N=AL, let A; be one of the | M| distinct factors of M and let M; be the
product M with the factor A; deleted. Applying (2) to the partial adjoint
AMA¥L* and summing on %, (3) is obtained.

Write MN*=YQZ*R* where YZ* is a strictly hyperbolic part of MN*.
By permuting the factors of M and N if necessary such a strictly hyperbolic
part may in general be separated out in a variety of ways.

THEOREM 4.3. Let a, M, N be of class {p, q}. Then if fELIY1+Q.xa,
@ | DTl s | Dy, so| 4 esup | (47, 1) /| DRk,
hE G,
If fEBITI+Q.ta
| Divi+etef |, < ¢| DeHYi-Lizef, So| + ¢ sup | (Bf, B)| /| DRHZI-1.F4p],,
5
®) ke G..
Proof. By (3),
| D'Y"*"Qflw < cl DIYI=L1taQf, Sol + csup | (YQf, Zk) | /I DlZl—l.inhlw

and by the density theorem the last term is majorized by the last term of (5)
so (5) follows. (4) is proved in the same way.

5. The Cauchy problem. The equation bu=f will be solved for a wide
class of f and | S, including the case when these are distributions. In order
to make this meaningful we write (bu, k) = (f, &) where k is any function in
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@ and integrate the left side by parts, throwing the derivatives on % and ob-
taining the adjoint of & plus some integrals on S,. It may not be necessary
to throw all the derivatives on % and this is why the partial adjoints of b are
considered. Corresponding to each of the inequalities in the preceding chapter
is a Cauchy problem. First the Cauchy problems arising from Theorem 4.2
are given and then the Cauchy problems coming from Theorem 4.3 are
stated (the proofs are the same). Finally the extreme cases when no integra-
tions by parts are made and when all of them are made are treated.

THEOREM 5.1. Let A be a partial adjoint of the first kind satisfying the
hypotheses of Theorem 4.2 and let PA = MN*. Then the equations

(1 Au = f& LN,

&) u| So = g € HM2(Sy)

have a unique solution w<1LM 19 satisfying

3) | DMty |, < ¢| DMteg, S| + ¢| D-Vtef|,,

Proof. Equations (1), (2) are meaningful for any u € LM-te, Let Y = LN +q
@ HM.+4(S,). By Lemma 3.3 and the fact that the latter summand is a Hilbert
space, the dual of % is A’ =BN ¥ @ HM.£4(S,). Define a map G: C—YU by
Gv=Av®v|S,. (AvEL-V-t1by (3.7).) GC is dense in ¥, for let kHgENA’ and
suppose that (4w, k)= {v, g, So} =0 for all €€ where { } is the inner
product on HY:+4(S,). Picking v&EC, and applying (4.2) to (Bk, v)*=(A4v, k)
with the strip V reversed, IEN':F¢h| »=0 5o k=0. Therefore g=0 too so G&
is dense in A. Approximating the data f &g of (1), (2) by a sequence Gv; and
using (4.1), the v; converge to an #& LM 2 which solves the Cauchy problem.
(3) and the uniqueness follow from (4.1).

Observe that the parameter ¢ determines the regularity of the solution.
By choosing —g small enough the Cauchy data f, g may be taken as distribu-
tions and the solution % will be a distribution.

THEOREM 5.2. Let B be a partial adjoint of the second kind satisfying the
hypotheses of Theorem 4.2, and let PB= MN¥*. Then the equations

4) Bu = f &€ CrV4g,

(5) u| So = g € HM*(Sy)

have a unique solution u < BM 14 satisfying

(6) | DMty |, < c| DMtag, So| + | DVofs.

If | M| =0, the Sy term should be dropped.

Proof. Equations (4), (5) are meaningful for any « & BM-t¢ if (4) is inter-
preted to mean (Bu, k) = (f, h), k& C¥ ¥ Let A= C}" ™ @ H™-+9(S,) with dual
space 2[’=C[N’i"€BHM'i¢(So). A map G: E—U' may be defined as follows.
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For heCY ¥, v @, write (By, k) = (Bik, v)*+(Bsh, v, So)* where the partial
adjoint B, is obtained from B by integration by parts, throwing one factor
of N onto M. Then |(Bv, k)| <c|D"¥h|., so Bv is a linear functional on
CN-¥_ Define Gv=Bv @v[ So. G€ is weakly dense in ', for let k®gEN and
suppose (Bv, k) + {v, g, So} =0, for all v&€. Then (B.#, v) =0 for all vEG,.
If PB,= M NY, two distinct factors A; and A, are picked from M;, Ni, and
Theorem 4.3 is applied with YZ*=A;A; and with the strip V reversed, one
obtains =0. Hence g=0 so G€ is weakly dense in 2’. Hence if f@g are the
data of (4), (5), there is a sequence v;&€ such that for any 2&EG,, (Bv;, h)
—(f, k) and {v;, b, So}—{g, , So} and

| DM 4aBy; |, + | DMtay;, So| < | DV2of|, + | DMteg, Sy .

By (4.2), v; is a bounded sequence in B¥-*¢ so by Lemma 3.2 there is a sub-
sequence converging weakly to an & BM+*¢ which solves the Cauchy prob-
lem. Uniqueness and (6) follow from (4.2).

Itis easy to see that the functions in C°!are all continuous, so f=0&Ci? !
where 6 is the Dirac distribution at any x, in V. Hence if, in the above theo-
rem, the regularity parameter is —g= —1, the equation Bu« = 3§ may be solved
for u©BM.—1, y is then a Green’s “function” for the operator .

The other inequalities of §4 also give rise to Cauchy problems but as the
proofs are the same we merely state the results. Let 4 satisfy the hypotheses
of Theorem 4.3, PA=YQZ*R* with YZ* strictly hyperbolic. Then Au
=fEL-1ZI-R.tq u| So=gE H+IYI-1.+4¢(S;) hasa unique solution u S LY 1+Q.£¢,
This is a stronger result than Theorem 5.1 but the same is not the case for the
following result about partial adjoints of the second kind. Let B be a partial
adjoint of the second kind satisfying the hypotheses of Theorem 4.3. Then
Bu=fc Crl\2I+t1-R.itq ul So=gEHYI-14Q.1+¢(S)) has a unique solution
uwE& B!Y1+Q.2¢, In both cases there are inequalities analogous to (3) and (6).

Finally two theorems are stated concerning the extreme cases for partial
adjoints of the first and second kinds. The proofs are the same as for Theo-
rems 5.1 and 5.2.

THEOREM 5.3. If b is of class { b, q} the equations

Q) bu = f € Lrs,

® u|So = g € Herta(Sy)

have a unigque solution wC Lr+ete satisfying

) | Do*etau|, < c| Dortag, So| 4 ¢| Detkef, So| 4 | Drtef]y,
THEOREM 5.4. If b is of class {p, q} the equation

(10) b*u=fE& Crtrte

has a unique solution u© Bt satisfying
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(11) | 1)--».:!:«“'°° < Cl D—b—p,tqf'll.

The proof of Theorem 5.1 involves the results of §3 for spaces defined
with respect to N. In Theorem 5.3, N=1 and the results of §3 are used only
in the simplest case so Theorem 5.3 may be used in the proof of Lemma 3.1.

Rl

So Sl

In solving a hyperbolic equation it is expected that the values of the
solution on a bounded interval of the line S; depend only on a bounded set of
values of the data, f and g. This expectation is fulfilled with the Cauchy prob-
lem considered here. With any factor A one associates characteristic curves
x?=¢(x!) where ¢ is a solution of the differential equation d¢/dx* =N\(x", ¢).
A characteristic curve of a hyperbolic operator b is a characteristic curve of
one of the factors of its principal part. If I is a connected interval of S;, a
dependence domain RC V of b is the set of segments lying in V of all the char-
acteristic curves which pass through I. If E is any measurable set in V, an E
placed in any of the norms with positive indices that have been defined will
indicate that the integrations used in defining the norm are to extend only
over E.

The proof of Theorem 2.1 actually proves the more precise inequality

(12) | Dotvof, R| o < ¢| Dot29f, RN So| + ¢| D*f, R|s

and similarly for the other versions of this inequality given in §2.

The density theorem may also be modified to include the dependence do-
main. If ECV, let €(E) be those functions in € whose supports are in E.
Then aG,(R) is dense in L?%(R). This is proved by induction in the same
way as Theorem 4.1. To start the induction it is necessary to show that if R
is the dependence domain of @ and if A is a factor of a, AG(R) is dense in
L?(R). As in Theorem 4.1, let fEG,(R) and let Au=f, v=J"u, so Av—f. If
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xER, I, and R’ are as in the figure, and if x is so close to the boundary of
R that f=0 in R’, then an application of (12) with the strip reversed gives
#=0 in R’. This argument may also be used on the lower boundary of R
and it follows that the support of % is contained in R and # vanishes in a
neighborhood of the boundary of R. Hence for small ¢, y€€(R) so AC,(R) is
dense in a dense subspace of L{(R).

These remarks show that R is indeed the dependence domain for the vari-
ous Cauchy problems considered. (12) shows that, in Theorem 5.3, if f=g=0
in R, then # =0 in R. When the regularity parameter ¢ is negative or zero the
proof of Theorem 4.2 uses only the density theorem and the Friedrichs-Lewy
inequality and so may be carried through with the dependence domain. This
shows that in Theorems 5.1 and 5.2, if the regularity parameter is nonpositive
and if f=g=0 in R, the solution #»=0 in R. Finally a solution for positive
regularity parameter is equally a solution for zero regularity parameter so in
all cases f=g=0 in R implies #=0 in R.

The proof, or validity, of Theorem 4.2 with positive ¢ and ¢ dependence
domain R seems to be more difficult.
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