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1. Introduction. The definition of a linear hyperbolic partial differential

equation with constant coefficients was given by Girding [2]. In the case of

"distinct characteristics" (referred to here as the strictly hyperbolic case) the

extension of the definition to variable coefficients is immediate and the

Cauchy problem has been discussed for linear strictly hyperbolic operators

with variable coefficients by Garding and others (see [3] for further refer-

ences). It is harder to define a linear hyperbolic equation with variable

coefficients if multiple characteristics are allowed. A. Lax [4] has given such

a definition for two independent variables and has solved the Cauchy prob-

lem using an iteration scheme. This paper deals with the equations of A. Lax

and uses the methods of Garding and Leray to solve the Cauchy problem for

a wide variety of Cauchy data including distributions and with a minimum

of differentiability requirements on the coefficients.

Let the independent variables be x= (x1, x2) and let Di denote differenti-

ation with respect to x\ We consider operators of the form

(1) A = Dx + X(x)Di.

If A' =Pi +X'(x)P2 we assume that either X(x) =X'(x) or X(x) ?±X'(x) for all x.

Let

(2) a = Ao • • • Am

(the factors A< are not necessarily distinct). Associated with a are two left

modules ©(a) and ©(a) over a ring of functions, ©(a) consists of all linear

combinations of differential operators obtained from a by deleting one or

more factors from the product a and writing the remaining factors in the

same order, ©(a) is spanned by ©(a) and a itself. The ring of functions may

be all functions or all functions satisfying certain differentiability conditions.

The operators of A. Lax are operators of the form b = a + M, AfG©(a). a will

be called the principal part of b, a = Pb, even though when (2) is multiplied

out a will contain more than the highest order terms.

In addition certain other operators (first introduced in [3]), the partial

adjoints, are treated. Let Af and N be products of operators of the form (1).

We shall consider the tensor product ©(Af)0©(A7') but if Q®R lies in this
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product we shall use the notation QR* = Q(g>R. Suppose that the factors of

Af and N, taken together, are precisely the factors of a. Then a partial ad-

joint £ of a (or b) is an element of ©(Af) ®©(A) one of whose terms is MN*.

MN* is called the principal part of £, MN*=PE. E = A is a partial adjoint

of the first kind if A—PA lies in <B(M)<S)®(N) and if degree Af>0, and

£ = P is a partial adjoint of the second kind if B—PB is in ©(Af)®©(JV)

and if degree N>0. For example b = b®l is an operator of the first kind.

We wish to acknowledge our gratitude to Professor Lars Garding who

suggested this problem and whose encouragement and advice made this

paper possible.

2. The Friedrichs-Lewy inequality. Some preliminary notations and

properties of the module ©(a) are introduced. Then a number of norms and

Banach spaces are defined which include the ones used by Garding in [3].

Finally an inequality of the Friedrichs-Lewy type is proved.

heta = (ai,a2) be a pair of non-negative integers and write Da = D<[iDcip.

Let |a| —ai-\-a2 and let [a] f^p, q mean |a| ^p+q and ai^p.

We shall work in a strip F=F<:0gx1gZ^l. Lip(p, q) will denote the

class of all functions / bounded in V and such that Daf exists a.e. and is

bounded in V whenever [a]^£, q. A differential operator Z>GLip(/>, q) if all

the coefficients of b are in this class. If a is given by (1.2) and A,GLip(£+i, q),

a will be said to be of class (p, q). (This depends on the order of the product.)

If A,-GLip(£+m, q), a will be said to be of class [p, q}. In either event the

modules ©(a) and ©(a) will be taken over the ring of functions in Lip(/>, q)

and b and the various partial adjoints will be said to be of the appropriate

class. The number (p, q, b) is then defined to be the ess sup of all the various

derivatives that are asserted to be a.e. bounded by asserting that b is of class

(p, q). A similar definition is given for [p, q, b}. A partial adjoint £, PE

= MN*, is of class [p, q} if Af and A^ are of class [p, q} and if the modules

©(Af), ©(A7) are taken over Lip(J>, q). The number [p, q, E] is defined

similarly.

Let a' be a rearrangement of the product a and suppose that a and a' are

both of class (p, q) when considered in their respective arrangements of their

factors. It is proved in [4] that

(1) a' - aE ©(a).

This shows that the hyperbolic operator Zj = a + Af remains hyperbolic when

the factors of the principal part are rearranged.

Let Sr denote the line x1 =t, and let c* denote the complex conjugate of a

complex number c. By (/, g, ST) and (/, g) are meant respectively the integrals

ff(x)g(x)*dx2 and ff(x)g(x)*dx taken over the line ST in the first case and the

strip F in the second. If E = MN*, (Ef, g) means (Af/, Ng) and (Ef, g) is
defined for any partial adjoint by linearity. (Ef, g, ST) is defined similarly.

£ will denote the class of indefinitely differentiable functions with compact
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support and ET will refer to those functions in £ which vanish in a neighbor-

hood of the line Sr.

Following Garding [3, p. 53] a variety of norms is defined on S. First let

\Dp-"f, ST\ 2= £(P«/, Daf, ST), the sum being over all [a] gp, q. The closure

of 6 under \Dp-"f, 5rj is called Hp-q(ST). Now let

\D"f\i=  f   \D>"f,Sr\dT,

| 0P../I, =  | />,«/|   = (j"   | *>*•«/, 5r|2ar)    ,

| D"-qf\„ = ess sup | P™/, 5T |,       0 g r | /.

The closures of & under these norms are respectively called Lp-q, Hp'q, and

Cv'q. The functions fELp-q with |PP'5/|OT< oo form a Banach space under

this norm, called Bp-q. The inclusions Cp-qEBp-qELp-q are evident. If in the

above construction £T is used instead of S, the resultant spaces are denoted

with a subscript r.

Various properties of these spaces are given in [3]. In particular it is

immediate that if fELp-q, [a] gp, q, a meaning may be given to Daf (it is a

derivative in the sense of L. Schwartz) and PafGP0,0. Similar considerations

hold for the other spaces. In the case of Hp-q(ST) however, the functions Daf

are not all determined by one another and in fact a function fEHp,q(ST) if

and only if there is a collection of p + 1 functions/,-, 0gigp, fiEH°-p+q~i(Sr),

such that D\f=fi. The functions/, are entirely independent of one another

and may also be characterized by the fact that /,■ is square integrable on ST

and for each j, lgjgp+q — i, the Schwartz derivative Difi is a function

square integrable on ST.

In the case of multiple characteristics it is necessary to define more norms.

Roughly speaking the idea is to include in the norms of/ not only all deriva-

tives of / up to a certain order but also certain directional derivatives of /

taken in the characteristic directions of a. More precisely we define

\Da+'-"f, ST\2 and | D'+"-qf, ST\2 by the sum ]C|Pp,9Af/> Sr\2, the sum being
taken over all monomials M in ©(a) in the first case and ©(a) in the second.

The 1, 2 and oo norms are defined, for ©(a) and ©(a), the same as above. The

spaces obtained are denoted by Ha+p-q(ST), Ha+p-q(ST), etc. If a is strictly

hyperbolic these norms for the module ©(a) are equivalent to the usual

norms with indices m+p, q. If a is not strictly hyperbolic but has some dis-

tinct factors more complicated equivalent norms are given below. If 6 =a +Af

the norms and spaces with respect to b are defined to be those with respect

to a.

If fELa+p-q and AfG©(o), a meaning may be given to Af/, and MfELp-q.

Similar considerations hold for the other spaces and for the module ©(a) and

it will be shown below (Lemma 3.1) that the collection of functions Af/, taken
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with certain equations relating them to one another, serve to characterize an

fELa+"-q. As in the case a = l, when/GP°+p-8(Sr), some of the Mf may be

independent of one another. A collection (fM), fMEHp,q(S), AfG©(a) will

be called consistent if the map Af—>/m is a linear map where ©(a) and Hp-q(Sr)

are thought of as modules over the ring of functions in \Ap(p, q). HfE Ha+p,q(ST),

(fin) = (Mf) is a consistent collection and Lemma 3.1 gives the converse of

this statement.

We will frequently use a simple inequality [3, p. 18] which says that if

<p(t), \p(t) are non-negative nondecreasing functions and if ^/(t) ^cfoip(r)dr

+4>(t), c^O, then

(2) +(t) ^ e°'<p(t).

Theorem 2.1 (Friedrichs-Lewy Inequality). If b is of class (p, q) and

/GS,

(3) | D*+™f |. g c | D»™f, S01  + c | D*-qbf 11

where c>0 depends only on (p, q, b).

Proof. It suffices to prove (3) for b — a, for, assuming (3) for a one obtains

as a bound for the left side of (3),

c| £*+*.<!/, So |  + c | D'-qbf\i + c | D>«Mf\i

&c\ Dh+P'qf, So|  +c\ D"-qbf\i +c\ PAH>'8/|i.

(3) then follows from (2).

If a=A and/GS, /(x) =/(0, 0(O))+</j?A/(t, <p(r))dT where <p(r) is a solu-
tion of the differential equation <j>' =X(r, (p), <p(xl) =x2. Squaring this and

integrating, one obtains after some manipulation |/, S^l ^ c|P0/, So|

+c/o | A/, Sr|dr which yields (3) for A with p = q = 0. Applying this to Daf,

[a]^p, q and adding, (3) is obtained for a=A.

(3) is proved for any a by induction on the degree of a. If a=Aa', we

have |P»'+".8/|00^c|Po'+P'8/, S0| +c|P*'«a'/|igc|ZK+*-8/, S0| +c|P"-8a'/|.

^c\D"+*'qf, S0| +c|Pp'8a/|w. Adding to this the inequality (3) for A and

using (2), the inequality (3) for a is obtained, proving the theorem.

The result may be written in several different but equivalent ways. First

we observe that if p > 0,

(4) | D^"-qf, So | w | D*-1^/, So |  + | P^+8/, So | .

It is obvious that the right side of (4) is majorized by a constant times the

left side. Conversely since Pi and all the A* differ by derivatives in the x2

direction any AfG©(a) may be written as a sum of operators of the form

Dab, [a]^p-l, q, and DiN,j^p+q, NE®(a). (4) follows. Hence if p>0,

(3) may be written

(5) | D^'-of^ ^ c| Dp-l-qbf, So | + c| PA*+8/, So| +c\ D'-qbf\i.
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(5) has the advantage that the So terms only involve the initial data and

derivatives of the initial data of a Cauchy problem.

In (3) and (5) either the left side or the last term on the right side or both

may be replaced by | Db+p-qf\x.

The inequality in the above theorem is not as sharp as the Friedrichs-

Lewy inequality given by Leray [3, p. 50]. This is because the possibility of

some distinct factors in (1.2) has not been used. (3) may be sharpened by

giving another, but equivalent, definition of the norms with respect to the

modules ©(a) and ©(a). This equivalent form will not be proved as it is not

difficult. The principal fact used in the proof is that the mth degree divisors

of a polynomial of degree m + 1 with distinct roots form a basis for the vector

space of all polynomials of degree m. This fact must be used in one form or

another in establishing the Leray form of the Friedrichs-Lewy inequality.

Suppose there are 5 distinct factors in the product (1.2) and order them

in some fashion. With each monomial AfG©(#) associate a sequence of

non-negative integers (A) = (Ai, • • • , A,) by letting A,- be the number of times

the ith factor must be deleted from a to obtain Af. Not all of the A,- can be

zero since 2ZA, = degree a —degree Af>0. For each such sequence let

cr(k) =<r= ~Yjki — max Aj. Then if a is of class {p, q}

(6) | D*»«f, 5V |   w £ I D*+p'qMf, S, |

the sum being taken over all ME®(a). Similar expressions can be given for

the other norms.

A consequence of (6) is that if AfG©(#) is a monomial obtained from a

by deleting one of each of the distinct factors in (1.2), then

(7) | D"+p-of, STI  <n | DM+p+'-l'qf, ST | .

Thus every norm with respect to ©(a) is also a norm with respect to ©(Af)

for some AfG©(o). The results obtained in the next section for spaces of the

latter kind will apply immediately to spaces of the former kind.

Let d(a) =sup 1/| X,-(x) — Xy(x) |, xG 7, where Aj, Ay range over all pairs of

distinct factors of (1.2). The constants involved in the equivalences (6) and

(7) depend only on {p, q, a} +d(a).

3. Linear spaces. The object of this section is to establish for the spaces

defined in the preceding section the various properties given in [3] for the

strictly hyperbolic case. These properties are all needed in the solution of the

Cauchy problem for distributions.

The first property is, for b of class (p, q), the inclusion

(1) IM-P.a c C*p'q

which is an immediate consequence of the inequality

(2) | D"+p-qf\agc\D^p-qf\x, /GS.

One may obtain (2) from (2.3) applied to the strip between S, and St with
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the left side of (2.3) replaced by \Db+p-qf, Stl\, O^rgZigZ, if, first, the
integral of the resultant inequality is taken with respect to t from 0 to Zi

and then the sup is taken with respect to Zi from 0 to t.

The next result is a characterization in terms of weak derivatives of the

elements of the function spaces introduced in §2. It amounts to a theorem of

Friedrichs [l ] that the weak and strong extensions of a hyperbolic operator

are the same. The proof uses Theorem 5.3 but as will be seen this theorem

depends only on the results of §4 and some results of this section in the case

a = l. The results of §4 are self-contained.

Lemma 3.1. If a is of class [p, q] a set of elements (fid), fMEHp,q(So)'

AfG©(«), determines an fEHa+p-q(Sn) if and only if it is a consistent set. A

function gEHa+p-q(So) and a set of functions fMELp-q (resp. Bp-q), AfG©(a),

determine an fELa+p-q (resp. Ba+p-q) if and only if

(3) (Um, h) + (fM, Ah) = - (Mg, h, So) - ((D2\)fM, h)

for all hE&t and all AAf G©(a).

Proof. The necessity of both conditions is immediate. The sufficiency of

the first condition is proved by induction on p+degree a. Let a<=A,- • - • Am.

We may choose m +p+2 independent f unctions/G^0'*"1"8^), aifEH°-p+q(So),

Ogi^wi, Pfa/GiPJ'p+4-*(So), i-^k^p. Pick a sequence gyGS approximating

/ in the norm of H0'p+q(So). By induction and (2.7) the m+p + l functions

aif, D\af specify a function in Ha+p-"(So). So does the collection, for fixed/,

aigj, D\agj. A sequence of functions of the form/y = g,-+x1AJGS will be found

which tend to/ in P0+"'8(So). If the a</y and D\fj are expanded on S0 they are

seen to involve a set of differential operators on the hj which constitute a

basic set of derivatives for a function in Ha+p-q(S0). Define h~jEHa+p-q(So) by

setting the appropriate differential operator applied to Uj equal to atf—atgj

or D\af—D\agit as the case may be. Pick AyGS such that \Da+p-qhj — Uj, Sa\

^ 1/j. With this choice of hj, the fj converge to/.

For the second condition, from Theorem 5.3 there is an fELa+p-q, f\ So = g,

af—fa- Applying (3) successively with .4= a,-, P=Aia<+i, it is seen that

av/=/0l until finally/=/. If all the fuEBp-q, the above gives fELa+p>q with

| Da+p-"f\ M finite. This completes the proof.

In solving the Cauchy problem one is confronted with certain bounded

sequences from which a limit must be extracted. A sequence fjEBa+p-* is

said to converge weakly to an fE~Ba+p'° if for each AfG©(a), each [a] ^p, q

and each AGP0, (DaMf, h)->(DaMf, h).

Lemma 3.2. Any bounded sequence fjEBa+p,q contains a subsequence gj con-

verging weakly to an fEBa+p-q and

(4) | P>+™/|» ^ lim inf | D"+"-qgj |M.

Proof. When a = constant the result is [3, Lemma 8.1]. Since for each



1959]    HYPERBOLIC EQUATIONS WITH MULTIPLE CHARACTERISTICS      283

monomial Af G©(a), Af// is a bounded sequence in Bp-q the usual diagonaliza-

tion argument enables a subsequence gy to be chosen such that Afgy converges

weakly to some fnEBp<q. If AfG©(a) and AAfG@(o), for each AG£i,

(Afgy, A, So) = - (AAfgy, A) - (Afgy, AA) - ((DiX)Mgi, h) converges so Mgi~>gu

EH°(So). Applying this argument to Dagt, [a]gp, q, we find gMEHp-q(Se)

so by Lemma 3.1 gGP^-'OSo) and (Afg, h,_ S0) = - (Jam, h)-(fM, Ah)
+ ((D2X)Mf, A). Again applying Lemma 3.1, fEBa+p-q. (4) follows in the same

way as in [3].

The spaces discussed so far may be thought of as consisting of functions

with generalized derivatives in the sense of Sobolev. Following [3] certain

dual spaces are now defined which will be spaces of distributions. We define

(5) | P—"■-«/|M = sup | (/, A) | / | P«+™A I„

(6) | #-«-».-«/11 = sup | (/, A) | /1 P«+™A U

the suprema being taken over all AG St. The corresponding norms with re-

spect to ©(a) are defined in the same way, removing the bar from both sides

of (5), (6). The closures of £ with respect to (5), (6) are respectively called
Q-a-p-q an(j X~a~p-q.

The elements of these spaces are linear functionals on S(. As an example,

let [a]:2£, q, AfG©(a), gEL". Then the linear functional

(7) F(h) = (PaAfA, g), A G <£«

is in L~a~p~q. To see this it is necessary to use one of the mollifiers

(8) /*/(*) = J* f(y)j(±(x - y))dy

where j(x) = <r2jo(xe~l), joGSof^S*, Jo^O, fjo(x)dx = l. The properties of

these smoothing operators are fairly well known [3, p. 65] and will be assumed

here. Let Ft(h) = (DaMh, J+g). Since J+gGSo, P€(A) = (A, NDaJ+g) is in
L-a-P.-q Also | Fe(h)-F(fi) \gc\ Da+p-"h\ „| J+g-g11 so P(A)->P(A)_as e-K).
The same argument shows that the Pe form a Cauchy sequence in L,~a~r~q.

Also Cra~p~q and B~a~p~q will denote respectively the dual spaces of

C"+P,q and L"+p'' with respect to the duality (/, g). The norms in these spaces

are respectively (6) and (5) where (/, A) is interpreted to mean the value of

the linear functional / on A. We have the inclusions

Q-a—P,-q £ ~]$—a—P.—t r~ "lj~a—p.—8 £ Ci""-p~9.

The next lemma will state that Bf+P,t is the dual of L~a~p~". The proof

will use a certain formal identity involving the commutator [.4, B ] =AB—BA,

of two operators A and B. Let Po, • • • , Em be operators. Let Pi=(j„)

lgpgi,he an z'-tuple of integers between 0 and m and arranged in increasing

order, and let 7m+i_,- be the complementary set to p\ in (0, • • ■ , m), also
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arranged in increasing order. Let L[Bi]=Eil • • • £;v and, for any operator

A, let A(8i) = [Ej1, [... [EivA] ■ ■ ■ ]]. For example, A(B0) =A, L[B0] = 1,
L [Bm+i ] = L = £0 • • • Em. The identity in question asserts that

(9) [L, A] = £ AdSDLhn+i-i],

the sum being over all p\- with l^i^m + 1. The proof can be given by induc-

tion and will be omitted.

Lemma 3.3. If a is of class {p, q}, B1+P,t is the dual of Tra-p~q.

Proof. Let L be a continuous linear functional on L~a~p~q. Then L is

continuous on L~p~q so by [3], Lemma 8.1, £(/) = (/, g) for some gEBPQ.

Similarly if AfG©(a), L(Mf) is a continuous functional of fEL~p~q so

L(Mf) = (/, gAf) for some giaEBf1. It is seen from Lemma 3.1 with the strip

F reversed that gEB]+™.

Conversely if gEB%+p,q it must be shown that (/, g) gives rise to a con-

tinuous functional on L~a~p~q. Setting J=J~ this follows from

(10) | Dp-q[a, J]g\„gc\ D°+p-qg|M, g E PT3"8.

For (10) implies that | Da+p-qJg\_K^c\ Da+p-qg\ x. Now JgE&t and, if /GS,

(f, Jg)-*(fg)- Hence | (/, g)|/| P>+».8g| M^c| P-°-p-8/|i. Since S is dense in

jj-a-v-q^ ij^ g) can be extended to a continuous functional on this space. It

therefore remains to prove (10). This will be done in a number of steps.

First the effect of commuting J with Pi or D2 must be determined. It is

evident that / commutes with D2 and its powers. A computation yields

[D\, /]g = 0 when g and its first p — 1 derivatives in the x1 direction vanish

on St. This condition is satisfied when gEBp,Q.

Define operators J{n} and J(n) inductively by J{o} =J(0)=J, J\n]

= u[v, j{n— l}], J(n)=u[A, J(n — 1)], where u, v are functions and A is

an operator of the form (1.1).

One can show by induction the following facts. First, when applied to

functions g which vanish on S<, [Dit j[ n} ] is a sum of operators of the form

j{w}. Again if g = 0 on St, J(n) is a sum of operators of the form j[i}D{,

O^j^i, lgigw. Finally if [a]^p, q, [Da, J[n}] when applied to a gEBVA

is a sum of operators of the form /{i} Af where Af is a differential operator of

degree ^p, q — l—n+i. From these facts we will derive the inequality

(11) | Dp-qJ(n)g |. g c | Dp-qg |K, g E tf*.

It suffices to show that, if [a] ^p, q, j^i^n, and Af is an operator of degree

^p,q — 1— i+fe, the right side of (11) majorizes | /{i}P0P;sg|«, and

I J\k} AfP^gl oo. The second quantity is of the same type as the first and we

shall show that /{i}PaP2g is bounded by a sum of terms of the form

(12) fv(y-x)\Ky)\dy
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where A is a derivative of g of order gp, q and v\ has bounded integral for all

e>0. Observe that if J{n} = [ux, [ • • ■ [un, J] • • • ]], then

J{n}g = J j(y - x)g(y) Yl [w,(x) - ut(y)]dy.

Hence after an integration by parts, j{i}DaDig(x) is bounded by

J I D\, ij(y - x) n [ur(x) - ur(y)]\  \ Dag(y) | dy

where the subscript y indicates derivatives with respect to the y variable.

Every derivative of j(y — x) brings out a factor 1/e and since jgi each e may

be placed under one of the factors ur(x)—ur(y). j(y — x) vanishes outside a

set I y — x| gee so using a Lipschitz condition on the u, the integrand remains

bounded save for the e~2 that occurs in the definition of j(x). Hence the inte-

gral remains bounded so the integral is of the form (12). Squaring (12) and

integrating over Sr it is seen that (12) is bounded by c\ h\ „, which completes

the proof of (11).

The proof of (10) can now be given. By (9) the left side of (10) is majorized

by \Dp'qJ(Pi)L[ym+x-i]g\„ and, since t'^1, Z[ym+i_j]G©(a)., Hence using

(11), (10) follows completing the proof of the lemma.

To obtain the full generality of results available in the strictly hyperbolic

case it is necessary to allow p and q to have different signs. Following [3],

let 6' denote the infinitely differentiable functions/in 7 such that P(x)Q(D)f

is bounded for any polynomials P, Q. (&' is the space of "rapidly decreasing"

functions of Schwartz.) SOS and £' is dense in all the spaces introduced

above in which S is dense. Define T°~2q = ^2( — l)'DlJ, Ogjgq. Evidently

P0,_23£'CS' and it follows from a consideration of the Fourier transform that

T°~2q is a (1-1) map of &' onto S'. Hence it has an inverse, which is denoted

T°-2q. We define | Da+p---f, ST\ = | D"+p'qT°'2qf, ST\ ,/GS', and Ha+p-"(ST) as

the closure of S' (or (5) under this norm. The other norms are defined in

terms of this in the same way as in the case +q. It is clear that the maps

T°-±2q extend to homeomorphisms between the spaces ~Ha+p'±Q(ST), La+p-±q,

etc.

More generally it is possible, using the methods of the preceding lemma,

to show that Y/\Dp^q+2rT°-2rMf, ST\2, M a monomial in ©(a), is a norm

equivalent to | Da+p-±qf, ST\2. Using this it is seen that the maps r0'±2r extend

to homeomorphisms between Ha+p-±q(ST) and Ha+p'±q+2r(ST) and similarly

for the other spaces.

Ha+p-±q(ST) are evidently Hilbert spaces. One can also show that they are

dual to each other under an extension of the duality

if, g, Sr) = E (DaMf, DaMg, Sr), \ a |   g p, M E ©(a).

The proofs of these facts are not included as they are not needed in the sequel.
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The same considerations apply when the module ©(a) is used instead of

©(a).

As a consequence the various versions of the Friedrichs-Lewy inequality

given in §2 remain valid if q is replaced by —q. Also (3.1), (3.2) and Lemmas

3.2 and 3.3 remain true if q is replaced by —q. (3.7) may be modified to make

FEL~"-p-q by requiring \a\ ^p and gGP0,9-

4. The density theorem. This section is devoted to proving the density

theorem and deriving some of its consequences. The density theorem, which

asserts that aSf is dense in Lp,s is the key result needed in solving the various

Cauchy problems considered in §5. As a consequence of the density theorem

there is obtained a variety of inequalities for partial adjoints which include

as special cases the Friedrichs-Lewy inequality and Garding's "basic in-

equality" for hyperbolic operators [3, p. 70 ].

This proof of the density theorem was suggested by Garding.

Theorem 4.1. Ifais of class (p, q) and A0GLip(l) then aS( is dense in Lp,i.

Proof. Note that if p = 0 the subscript t must be dropped. The proof is by

induction on m. Suppose a=A, and let <p(x) satisfy the differential equation

d<p/dx1=\(xl, <j>), 0(0, x2) =x2. The map F: x—►(x1, <p) is a (1-1) map of class

Lip(p, q) of V onto itself (as may be seen by an easy modification of [5,

p. 40]) and FA = DiF. Let/GS«, and let DiV = Ff; then u = F~1v is a solution
of class Lip(p, q) of Au=f, a = 0on St. To show AS. dense in Pp,s it suffices

to show AS< dense in Hf'" and to show this it suffices to show ASj dense in a

dense subset of Hf'1, namely S*. Let /GS( and let Au=f as above. Let

!/ = J~«GS(. We show that Av—*f in Hf'* by showing that |Pp-8A»|2 is bounded
and that G(Av)-^G(f) where G is one of a dense set of linear functionals on

Hf,a. |Pp'8A!7|2g|Pp'8M|2+|Pp-8[A, J]u\t is bounded by (3.10). Also if

AGS0rW„ (A», h) = (v, A'ft)-K«, A'h) = (/, h) where A'h= -Dih-D2(\h).
Now let a be as in (1.2) and let b=Ai • • • Am. Let fELp,q and by induc-

tion pick gGSt such that |Pp'8A0g—/|i is small and i>GS< such that

\Dp+1-qbv-g\i is small. Then Dp-qav-f\i^ |Pp'8au-A0g|i + |Pp'8A0g-/| i

^c\Dp+1-"bv — g|i+|Pp'8A0g— / i is small, completing the induction.

Because of the multiplicity of characteristics there are a larger variety of

inequalities for partial adjoints than in the strictly hyperbolic case. The next

theorem gives some of these inequalities. (Recall that degree Af>0 (degree

N>0) for a partial adjoint of the first (second) kind.)

Theorem 4.2. PeZ A and B be partial adjoints of the first and second kinds

respectively with PA = PB = MN*. Let A and B be of class {p, q} and let N

satisfy the hypotheses of Theorem 4.1. Then if fELM-±q

(1) | DM*qf\i ^ c | DM*qf, So |  + c sup | (Af, h)\/\ D»*qh |.,

andiffEBM-±q

(2) | !?"■*«/1. =g c | P^±8/, S„ |  + c sup | (Bf, h)\/\ D»*qh |.
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where the suprema are taken over all AGS, and the So term in (2) is to be

dropped if degree Af = 0.

Proof. We first prove (2) with the lower signs. By the density theorem

and (2.3) with the strip Freversed, |£>°-«Af/|00gcsup| (Af/, Nh)\/\DN-qh\K.

The left side of this inequality majorizes c~l\DM~qf\ x— \DM~qf, S0\. Since

|((PP-P)/, A)| ̂ cIP^-'/lilP^'AUan application of (2.2) gives (2). For
the upper signs apply (2) to T°~2qf.

In the case P = N*, Af = 1, (2) implies that itfEL°-*q and (/, Nh)=0 for

all AGS,, then |P°-T»/| xg \D°'Tqf\ M = 0 so/=0. Hence NS, is weakly dense

in B°-±q, the dual space of L0-*". (This is a weak analogue of Theorem 4.1.)

With this weak density, (1) is proved in the same way as (2).

To give more inequalities an inequality is needed in the strictly hyper-

bolic case which is the same as but not quite a consequence of Garding's

inequalities for strictly hyperbolic partial adjoints [3, p. 83]. Namely, if

B = MN* is a strictly hyperbolic partial adjoint (the factors of Af and N are

distinct) and if | b\ denotes the order of any differential operator b,

| P|M|-±9/|„ g c | Pl"l-i.i±</, So |   + c sup | (Bf, A) | / | DN^-*qh |„,
(3) A G <£,.

Let N=AL, let A,- be one of the | Af | distinct factors of Af and let Af j be the

product Af with the factor A,- deleted. Applying (2) to the partial adjoint

AAfjAfL* and summing on i, (3) is obtained.

Write MN*= YQZ*R* where YZ* is a strictly hyperbolic part of Af/V*.

By permuting the factors of Af and N if necessary such a strictly hyperbolic

part may in general be separated out in a variety of ways.

Theorem 4.3. Let a, M, N be of class {p, q}. Then iffELiYl+Q'±q,

| Jjm+Q.i^ g c\ z)<H-m-i.±,yf 5o| + c sup | tAjt Aj | /| 5izi+b,t«a|ooj
W A G Ci.

Pf/G^m+o^*,

| P|y|+«'±4/|» g c\ W+w-i^qf,So\  + c sup | (Bf, h) \/\D*+w-i*qh\x

AGS,.

Proof. By (3),

I DW-±«Qf\n g c\ DW-WQf, S9\  + c sup | (YQf, Zh)\/\ Dz^^"h |M

and by the density theorem the last term is majorized by the last term of (5)

so (5) follows. (4) is proved in the same way.

5. The Cauchy problem. The equation bu=f will be solved for a wide

class of/ and u\ So including the case when these are distributions. In order

to make this meaningful we write (bu, A) = (/, A) where A is any function in
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§< and integrate the left side by parts, throwing the derivatives on h and ob-

taining the adjoint of b plus some integrals on S0. It may not be necessary

to throw all the derivatives on h and this is why the partial adjoints of b are

considered. Corresponding to each of the inequalities in the preceding chapter

is a Cauchy problem. First the Cauchy problems arising from Theorem 4.2

are given and then the Cauchy problems coming from Theorem 4.3 are

stated (the proofs are the same). Finally the extreme cases when no integra-

tions by parts are made and when all of them are made are treated.

Theorem 5.1. Let A be a partial adjoint of the first kind satisfying the

hypotheses of Theorem 4.2 and let PA = MN*. Then the equations

(1) Au^fE L~N*q,

(2) M|So = gGP"-±3(So)

have a unique solution uELM<±q satisfying

(3) | DM-±qu\i g. c | DM*qg, So|  + c| D-N*qf\i.

Proof. Equations (1), (2) are meaningful for any uELM-±q- Let % = L-N-±q

®HM'±q(So). By Lemma 3.3 and the fact that the latter summand is a Hilbert

space, the dual of 21 is W = Bf-Tt®HM-±q(So). Define a map G: S->21 by

Gv = Av®v\So. (AvEL~N-±q by (3.7).) GS is dense in 21, for let A©gG2T and
suppose that (Av, h)=[v, g, S0} =0 for all z>GS where { } is the inner

product on HM-±q(S0). Picking i>GS0 and applying (4.2) to (Bh, v)* = (Av, h)

with the strip V reversed, | DN^qh\ M = 0 so h = 0. Therefore g = 0 too so GS

is dense in 21. Approximating the data/©g of (1), (2) by a sequence Gvj and

using (4.1), the Py converge to an uELM'±q which solves the Cauchy problem.

(3) and the uniqueness follow from (4.1).

Observe that the parameter q determines the regularity of the solution.

By choosing — q small enough the Cauchy data/, g may be taken as distribu-

tions and the solution u will be a distribution.

Theorem 5.2. Let B be a partial adjoint of the second kind satisfying the

hypotheses of Theorem 4.2, awd let PB = MN*. Then the equations

(4) Bu=fECTN-±q,

(5) «|S0 = gGP^±8(So)

have a unique solution uEBM-±q satisfying

(6) | DM*qu |. ^ c | DM-iqg, So |  + c | P-"-±8/|i.

If \ M\ = 0, the So term should be dropped.

Proof. Equations (4), (5) are meaningful for any uEBM'±q if (4) is inter-

preted to mean (Bu, h) = (/, h), hECf'Ta. Let 21 = Cf'^" ®HM'±q(S0) with dual
space 2T = Crw,±,'©PP''±8(So). A map G: S^2I' may be defined as follows.
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For hEC?-*°, z>GS, write (Bv, h) = (Bxh, v)* + (B2h, v, So)* where the partial

adjoint Pi is obtained from B by integration by parts, throwing one factor

of N onto Af. Then | (Bv, h)\ gc\DN,*llh\„ so Bv is a linear functional on

Cf,:ft. Define Gv = Bv®v\S0. GS is weakly dense in 21', for let A®gG2I and

suppose (Bv, h) + {v, g, S0} = 0, for all z>GS. Then (J5iA, v)=0 tor all z>GSo-

If PBx = MxN*, two distinct factors Ai and A2 are picked from Afi, Nx, and

Theorem 4.3 is applied with YZ* =AiA* and with the strip 7 reversed, one

obtains A = 0. Hence g = 0 so GS is weakly dense in 21'. Hence if/®g are the

data of (4), (5), there is a sequence d,GE such that for any AGS,, (Bv,-, A)

—>(/, A) and {»/, A, S0}—>{g, h> s°} and

| D-"-±'Bv,\i+ | DM-±qVj,S0\   g  | D-"-t'f\i+ | DM*qg,So\ .

By (4.2), Vj is a bounded sequence in BM-±q so by Lemma 3.2 there is a sub-

sequence converging weakly to an uEBMt±q which solves the Cauchy prob-

lem. Uniqueness and (6) follow from (4.2).

It is easy to see that the functions in C0'1 are all continuous, so/= 5G Gr0,_1

where 5 is the Dirac distribution at any x0 in 7. Hence if, in the above theo-

rem, the regularity parameter is — q= — 1, the equation Bu = 5 may be solved

for uEBM~l. u is then a Green's "function" for the operator b.

The other inequalities of §4 also give rise to Cauchy problems but as the

proofs are the same we merely state the results. Let A satisfy the hypotheses

of Theorem 4.3, PA = YQZ*R* with YZ* strictly hyperbolic. Then Au

=/GL-izi-'B-±',M|5o = gGPQ+|I'|-1':t8(5o)hasauniquesolutionMGl|F|+e'±8.

This is a stronger result than Theorem 5.1 but the same is not the case for the

following result about partial adjoints of the second kind. Let B be a partial

adjoint of the second kind satisfying the hypotheses of Theorem 4.3. Then

PM=/GCr^i+1-iS-±', M|5o = gGP"|y|-1+Q'1±8(5o) has a unique solution

uEB^rt+Q'±q. In both cases there are inequalities analogous to (3) and (6).

Finally two theorems are stated concerning the extreme cases for partial

adjoints of the first and second kinds. The proofs are the same as for Theo-

rems 5.1 and 5.2.

Theorem 5.3. If b is of class {p, q} the equations

(7) bu=fE Lp*q,

(8) u\ S0 = g E H°-p±q(So)

have a unique solution uELp+a-±q satisfying

(9) | o°+p*qu|i g c | D*-***g, So |  +c\ D^-tof, So|  + c\ Dp*qf\i.

Theorem 5.4. // b is of class {p, q} the equation

(10) b*u=fE CT*-p-±q

has a unique solution uEB~p-±q satisfying
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(11) | P-p'±8w|o= ^ e\ D-*-***f\x.

The proof of Theorem 5.1 involves the results of §3 for spaces defined

with respect to N. In Theorem 5.3, 7V= 1 and the results of §3 are used only

in the simplest case so Theorem 5.3 may be used in the proof of Lemma 3.1.

So „ Si

In solving a hyperbolic equation it is expected that the values of the

solution on a bounded interval of the line S< depend only on a bounded set of

values of the data,/and g. This expectation is fulfilled with the Cauchy prob-

lem considered here. With any factor A one associates characteristic curves

xi = <f>(x1) where <p is a solution of the differential equation d^>/dx1=\(x1, <p).

A characteristic curve of a hyperbolic operator b is a characteristic curve of

one of the factors of its principal part. If / is a connected interval of St, a

dependence domain PC V of b is the set of segments lying in F of all the char-

acteristic curves which pass through I. If £ is any measurable set in F, an £

placed in any of the norms with positive indices that have been defined will

indicate that the integrations used in defining the norm are to extend only

over £.

The proof of Theorem 2.1 actually proves the more precise inequality

(12) | D*+p-qf, R | . g c | P°+p-8/, R C\ So |  + c | Dp-qf, R \,

and similarly for the other versions of this inequality given in §2.

The density theorem may also be modified to include the dependence do-

main. If EEV, let S(£) be those functions in S whose supports are in £.

Then aS((P) is dense in LP'Q(R). This is proved by induction in the same

way as Theorem 4.1. To start the induction it is necessary to show that if R

is the dependence domain of a and if A is a factor of a, ASi(P) is dense in

Lf'iR). As in Theorem 4.1, let/GSt(P) and let Au = f, v = J~u, so A»-»/. H
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xGP, I, and R' are as in the figure, and if x is so close to the boundary of

R that/=0 in R', then an application of (12) with the strip reversed gives

M = 0 in R'. This argument may also be used on the lower boundary of R

and it follows that the support of u is contained in P and u vanishes in a

neighborhood of the boundary of P. Hence for small e, fGSi(P) so AS<(P) is

dense in a dense subspace of LPA(R).

These remarks show that P is indeed the dependence domain for the vari-

ous Cauchy problems considered. (12) shows that, in Theorem 5.3, if/=g = 0

in R, then w = 0 in R. When the regularity parameter q is negative or zero the

proof of Theorem 4.2 uses only the density theorem and the Friedrichs-Lewy

inequality and so may be carried through with the dependence domain. This

shows that in Theorems 5.1 and 5.2, if the regularity parameter is nonpositive

and if/=g = 0 in P, the solution u = 0 in P. Finally a solution for positive

regularity parameter is equally a solution for zero regularity parameter so in

all cases f—g = 0 in R implies m = 0 in P.

The proof, or validity, of Theorem 4.2 with positive q and a dependence

domain P seems to be more difficult.
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