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1. Introduction. In this paper we continue our study [10] of the Banach

lattice C of real continuous functions on a compact Hausdorff space, and of

its first and second duals, L and M. The principal new tool is the extensive

theory developed by Nakano [12 ] of the linear functionals on a vector lattice

which are continuous with respect to (order) convergence. Through them a

richer duality is obtained and a deeper analysis of the structure of the above

spaces. Because of the importance of Nakano's results, not only for the pres-

ent paper but also for a succeeding one on locally compact spaces, and be-

cause the particular results we want are interwoven over more than a hundred

pages of Nakano's book with a wealth of other material, we devote §3 to a

self-contained exposition of these results.

In §4 we present the applications of the Nakano theory to our spaces. An

immediate one is that the smallest subset of M containing C which is closed

under (order) convergence is M itself. This in turn gives us that C is dense in

M under | w\ iM, L), a result which required an involved proof in our first

paper. Other results: the duality of L and M with respect to the above dis-

cussed (order) continuity; the reflexivity with respect to this same (order)

continuity of every (order) closed sub-vector-lattice of L or M; the property

that every (order) closed sub-vector-lattice oi L or M is closed under the

weak topology defined by the other; the concrete realization as a sub-vector-

lattice in M oi the dual of any (order) closed sub-vector-lattice in L. Some of

the results are to be found in Nakamura's paper [ll]; he obtains them from

the properties of (L)-spaces, while we prefer the more general development of

Nakano.

In §5 we characterize intrinsically the subspaces in L of the form £'(m)

and the subspaces in If of the form £°°(m)> M a Radon measure. In §6 we char-

acterize the subsets of L relatively compact under wiL, M); and dual to this,

in §7, we describe the Mackey topology riM, L).

In §8, we study L in relation to U, Bo, and Ba rather than to M, and show

L is the set of regular measures on these spaces. Some insight is obtained into

the role of regularity.
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The full Banach lattice dual 12 (Af) of M is examined (mildly) in §9. This

is equivalent to studying the relations between Radon measures and various

families of finitely additive measures.

2. Preliminaries. We assume a knowledge of [10]. A set A in a vector

lattice P will be called order-bounded if there exist bEE, cEE such that

bgagc for all aEA. A will be called order-closed if an element b of P lies

in A whenever it is the infimum or supremum of some subset of A. Given

agb in P, the set {c|a^c^6| will be denoted by [a, b] and called an inter-

val.

The letters I and / will always denote ideals. The notation E — I®J

will mean that P is the direct sum of I and /. Given such a direct sum, ai will

denote the component of the element a in I and Ai will denote the projection

{ai\ aEA }, and similarly for aj and Aj. If E = I@J and K is an ideal, then

K = (K(~\I)@(Kr\J) (C\ denotes set-intersection).

A mapping of P into another vector lattice will be called an isomorphism

(into) if it is one-one, linear, and preserves the operations A and V- If it is

also onto, then the last condition can be replaced by the weaker one that it

preserves order.

We recall that 12(P) (the vector lattice of bounded linear functionals on

P) may be denoted by 12 when no confusion can result. If A is a subset of P,

then by the null-ideal of A in 12, we will mean the set

{<t> E n| |*| | a\ = 0for all aEA}.

It is clearly an ideal, and is the largest ideal in .d^-in-fl (the null-space of A

in 12). If I is the ideal in E generated by A, the null-ideal of A in 12 is pre-
cisely P-in-12; thus in particular, for an ideal, the null-space and null-ideal

coincide. The null-ideal in P of a subset of 12 is defined in the same way, and

the same remarks hold.

The following two properties are elementary, and we omit their proofs.

(2.1) The null-ideal in SI of a subset of E is order-closed.
(2.2) IfE = I®J, thenQ = (Ix-in-Q)®(Jx-in-Q).
A subset A of 12 will be called separating on E if Ax-in-P = 0; and similarly

with 12 and P interchanged. From (2.2) we obtain easily

(2.3) LetQ be separating on P. Thenif E = I@J, I and Jare w(E,£l)-closed.

In particular, if E is complete, every order-closed ideal in E is w(E, tt)-closed.

Remark. The above three theorems no longer necessarily hold, if we inter-

change P and 12.
(2.4) Let Fbea sub-vector-lattice of E, and ir: 12—>12(F) the (linear) mapping

defined by ir<p = <p\ F (the restriction of <p to F). Then

(1) 7rl2 is an ideal in 12(F).
(2) ir(12+) = (7rl2)+; in particular ir preserves order (however, it need not pre-

serve A and V).

(3) If F is separating on 12, w is an isomorphism (into).
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Proof.

Lemma. If wis a positive linear functional on E and p a positive linear func-

tional on F such that p(a) ^uia) for every aEF+, then p can be extended to a

positive linear functional on E which is ^w.

If we define the sublinear functional pia) =co(a+) on E, it clearly domi-

nates p on F, and the lemma then follows from the Hahn-Banach theorem.

We proceed to prove the theorem. That </>^0 implies 7r</>^0, and therefore it

preserves order, is trivial. Moreover,

(i) if <pE& and 0:Sp^7r$ in &iF), then p = Tnp for some ^£fi+. To show

this, we note that p^tt<p^tt\(J)\ and thus we need only let \4>\ be the w of the

lemma. (1) and (2) now follow directly from (i). If F is separating on Q, -it is

one-one and we oftain (3) (using (1)).

If F in (2.4) is actually an ideal/, then fi = /x®(/x)' (we write/-1 for I1-

in-S2), and it is one-one on il1)'. This gives

(2.5) If in (2.4), F is an ideal I, then tt maps (fx)' isomorphically onto ttQ,.

Thus we can identify (7X)' with an ideal in ii(7). If moreover E — I®J,

then clearly (7X)'=«(/).

If fi is separating on E, the definition ai<p)=<pia), aEE, <pEQ, gives a

natural imbedding of E in S2(fl) as a linear subspace. In fact, we have more.

(2.6) // Q, is separating on E, then under its natural imbedding in 0(12),

E is a sub-vector-lattice: for every aEE, bEE, aVb = aV'Zj-m-fi(fl).

Proofs of this can be found in [3, p. 39, Problem 6] and [16; Theorem

7.9]. (This theorem makes unnecessary the proof we gave for the special case

[10,(5.1)].)
3. Continuity. As we stated in the introduction, this section is devoted to

a self-contained exposition of the part of Nakano's theory of continuous linear

functionals which we will need. Let £ be a vector lattice. The notation {aa}

will always indicate a net, that is, the index system \a} is a directed set

under an order <. The notation aa | a will mean that aaSa$ whenever a<8,

and a = Vaaa; and similarly for aa I a. These are special cases of convergence.

We will say a net {aa} converges to a—in notation aa—>a—if there exists {ba}

such that ba i 0 and |aa — a\ ^ba for all a. Ii E is complete, this is equivalent

to the statement that ja„j is order-bounded and lim infa a„ = lim sup„ aa = a.

A subset will be called closed if it is closed under convergence. The closure

A of any subset A will be the intersection of the closed sets containing A.

A will be called dense in B, if A EB and every element of B is the limit of

some net in A. Unlike the situation in topology, a set A ma}' not be dense in

its closure, that is we cannot obtain A by simply adjoining to A all the limits

of nets of A.

Remark 1. The above definitions illustrate our general policy on notation.

Terms usually considered topological will be defined with respect to the above

convergence. If we want to use such a term in the usual sense with respect to
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some topology T, we will modify it with T, e.g. Pclosed, Pdense, etc.

Remark 2. Since convergence preserves the operations A and V, it is

easy to show, using Zorn's lemma, that the closure of a sub-vector-lattice is

also a sub-vector-lattice. A closed sub-vector-lattice is order-closed. If P is

complete, every order-closed subset is closed.

Remark 3. An ideal / is dense in its closure P In fact, I+ can be obtained

from 7+ by adjoining the suprema of all subsets of /+. In particular, an ideal is

closed if and only if it is order-closed.

An element 0 of 12 will be called continuous if lim„ <p(aa) =<b(a) whenever

aa-^>a (Nakano uses the term "universally continuous," Nakamura, the term

"order-continuous"). An equivalent condition, more convenient to apply, is

that lima \<p\ (aa) =0 whenever aa i 0. If P is archimedean—hence, a fortiori

if it is complete—we need not assume <p£12 (only that is it linear), since the

continuity condition then implies it is bounded.

(3.1) The continuous linear functionals on E constitute a closed ideal in 12

We denote it by 12(P), or simply 12.

Proof. That 12 is a linear subspace of 12 is trivial. That it is an ideal follows

from the equivalent definition of continuity above. That it is, finally, closed,

is shown by the

Lemma. Given <pa | <p in 12+, if the <pa's are all continuous, then <p is also.

We remark first that for each aEE+, lima <ba(b) =<p(b) uniformly on the

interval [ — a, a]. For, \(b(b) — <pa(b)\ g(<p — <ba)\b\ g(<p—<pa)(a), which con-

verges to zero independently of b. Now suppose apl 0; and we can assume

there is a first member Ci. Since Ogapgax for all P, it follows from the above

remark that lim„ <t>a(ap) =4>(ap) uniformly in /3. Since also lim^ <pa(ap) =0 for

each a, standard function theory gives us that limp (b(ap) =0. This proves the

lemma and the theorem.

It is immediate from the above theorem that (2.1), (2.2), and (2.3) remain

true if we replace 12 by 12. We show that now, moreover, the duals also hold

(cf. the Remark after (2.3)).

(3.2) The null-ideal in E of a subet A of SI is closed.
Proof. If A consists of a single element, the statement follows from the

definition of continuity. But the null-ideal of a general subset A is the inter-

section of the null-ideals of its elements, which completes the proof.

(3.3) // P is complete, every closed ideal I in SI is w(i1, E)-closed.

Proof. Since 12 is complete, 12 is also. Hence 12 = /©P (we write P for

P-in-12). It is sufficient to show that if <f>EI', <P^0, then <p is not a w(Q,, E)-

limit-point of I. The null-ideal J of <p in P is closed (3.2), hence E = J®J'.

This gives in turn, Q, = JX®J'L (writing J1 for /Mn-H and J'L for (P)±-in-12).

Since <j>EJL and J'1- is w(tl, P)-closed, we can complete the proof by showing

7C/'1, or equivalently that ir\Jx = Q.

Consider any \pEI,$>0. We have to show \p(a) 5^0 for some aEJ- Now
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'AA^I =0, hence [3, p. 36, Proposition 3] for every e>0 and bEE+, there

exists cEE such that O^c^b, \<p\ (c)+\p(b — c) = e. It follows readily that

there exists a sequence Ci = C2^ • • • 2i0 in E satisfying \<f>\ (cn) ^1/2" and

^(c„)^X>0 for all n. Taking a = A„c„, we have |^>|(a)=0 and (since \J/ is

continuous) \f/(a)>0.

(3.4) Let E be complete andtt separating on E. 7/12 = /©/, thenE = (Ii--in-E)
0(/x-in-£).

Proof. We omit all designations "in E" and "in 12," since the context will

be clear. We recall also that (2.1), (2.2), and (2.3) hold with 12 replaced by 12.

From (3.2), 7X is closed, hence £ = 7X©(/X)'. We show (7X)' = Jx. On the one

hand, since 12 is separating on E, I1r>\J1 = 0, hence 7XC(7J")'- On the other

hand, from (2.2) and (3.3), 12 = /x-Le(7x)'-L = /©(/x)'x, whence (7X)'X = 7 and

therefore iIL)'EJL-

Remark 1. It is not hard to show that (3.4) still holds if 12 is replaced by

any ideal in it which is also separating on E.

Remark 2. Given <££12, let I be the closed ideal generated by <p+, J that

generated by (p~, and K the (closed) ideal of elements disjoint from </>■ Then

12 = I® J®K, and the above theorem gives a decomposition E = Ii®Ji®K\

with the property that </>(a) >0 for all a>0 in Zi, <p(a) <0 for all a>0 in Ji,

and <j>(a) =0 for all aEK [13, Theorem l].

(3.5) Let F be a closed sub-vector-lattice of E and it the mapping of (2.4).

Then

(a) it carries 12 into 12(F) and (1), (2), (3) of (2.4) hold with 12,12(F) replaced
by 12,12(F).

(b) If E is complete and 12 is separating on E, then ir!2 is dense in 12(F).

Moreover, if F is an ideal, these statements hold with no assumption of closed-

ness on it.

Proof. Since F is closed, aa 1 0 in F implies aa 1 0 in E. Hence if tp is con-

tinuous on E, $| F is continuous on F. The rest of (a) is easily verified. To

prove (b), we note first that F, being closed, is complete. It follows from (3.3)

that the closure of xi2 in 12(F) is a w(fi(F), F)-closed ideal. But xi2 is separating

on F, hence w(Q(F), F)-dense in H(F), and therefore its closure is identical

with 12(F). The above argument holds for an arbitrary ideal in E, closed or

not (since every ideal in E is complete), which establishes the last statement.

(3.6) Let E be complete and 12 separating on E. If F is a sub-vector-lattice

of E, the following statements are equivalent:

1°. F = £.
2°. F is w(E, Q)-dense in E.

3°. F is separating on 12.

Proof. From the definition of 12, if a net in E converges, it w(E, ^-con-

verges. Thus 1° implies 2°. That 2° and 3° are equivalent is a standard prop-

erty of vector spaces. Now assume 3° (hence 2°) and consider F. As we have

remarked, it is a (closed) sub-vector-lattice. We show first,
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(i) if P = /©/, F=(ir\F) ®(JC\F).
From (2.2) 12 = Ix® Jx_ (we omit "in 12"). Now from (3.5) and_(2.4), 12 can be

considered an ideal in 12(F), hence (Remark 1 following (3.4)), ¥ — ((Ix)x-in-¥)

®((Jx)x-in-F). Since I_=(Ix)x-in-E and J=(Jx)x-in-E (3.3), this can be writ-

ten F=(ir\F)®(jr\F). We show next

(ii) F is an ideal in P.

Since F is a sub-vector-lattice, we need only show that Ogbga, aEF implies

bEF- Suppose we have such an a and b, but bEF. We can assume there is no

element of F properly between 0 and b. For, if there is, then there is a largest

one c; and we need only replace b hyb — c. Now (l/n)a [ 0, henceJ — (l/ra)a | b,

hence in turn (b— (l/n)a)+ | b. Since A>0, we must have (b — (l/n)a)+>0 for

some ra. Thus, denoting this 1/ra by X, we have that (b—Xa)+>0 for some

A>0.
Let I be the closed ideal in P generated by (b— Xa)+. Then E = I@I',

hence from (i), F = (ir\F)®(IT\F). Writing a = aI+ar=aICxf+arnf, the

uniqueness of components gives us ai = aic\fEF. We show 0<Xai<b, which

will contradict our assumption on b. bi—Xai = (b—Xa)i — (b—Xa)+>0, whence

bi>Xai and therefore b^bi>Xai. That Xaj>0 follows from the fact that

a^(o-Xa)+>0, hence a/^ [(b-Xa)+]i = (b-Xa)+>0, hence Xa/>0.

Thus (ii) is established, and F is a closed ideal in P. From (2.3) (with 12

replacing 12), F is w(E, 12)-closed. Since it is w(E, 12)-dense, it must coincide

with P. This completes the proof.

As we know (2.6), if 12 is separating on P, then under its natural imbedding

in 12(12), p is a sub-vector-lattice. Moreover, each element of P is clearly

continuous on 12 [10, (2.2) ], and thus PC12(12). We have in fact,
(3.7) Let 12 be separating on E. Then under the natural imbedding of E in

12(12), the closed ideal generated by E is 12(12).

Proof. Let / be this closed ideal. Since 12(12) is a closed ideal, we have

7C12(i2). From (3.3), it is w(12(12), 12)-closed in 12(12). But P is w(12(12), 12)-dense
in 12(12), hence I is also. It follows 1 = 1^(12).

Remark. We will give a considerably stronger theorem in (3.10) below.

Suppose now that 12 is separating on P. Then the above discussion can

all be carried out with 12 replacing 12: the definition a(<p) =<b(a) gives a natural

imbedding of P in 12(12); under this imbedding, P is a sub-vector-lattice; and

the closed ideal generated by P is 12(12). However, we can now say more.

(3.8) Let E be complete. If 12 is separating on E, then under the natural im-

bedding of E in 12(12), P is an ideal (which is dense in 12(12)).
Proof. Since PC12(12), we can confine our attention to the latter space

rather than 12(12). If we let 12(12), 12, P play the roles of P, 12, F respectively

in (3.6), some minor modification of the proof of (ii) there gives us the desired

result.

Corollary. If E is complete, the intervals of E are w(E, Sl)-compact.

Proof. Consider aEE, bEE, a<b. From the above theorem, the interval
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[a, b] in 12(12) is contained in E, hence is also the interval [a, b] in E. Since

intervals in 12(12) are k/(12(£2), 12)-compact [10, (10.3)], we are through.

We will say E is reflexive with respect to continuity if E = 12(H), that is, if its

natural imbedding in 12(12) is onto. (This definition implies of course that 12

is separating on E.) Although other kinds of reflexivity could be considered

—for example, E = 12(12)—the above is the only one we will need in this paper.

While a vector lattice is not in general reflexive with respect to continuity,

the following theorem gives a large class of vector lattices which are.

(3.9) 12 is reflexive with respect to continuity. More generally, this is true for

every closed sub-vector-lattice of 12, hence in particular for 12.

Proof. Since £c£2(12), the latter is separating on 12. It follows from (3.8)

that 12 is a dense ideal in 12(12(12)). This means that for each positive element

\j/ of £2(12(12)), there is some net \<pa} in 12 such that <f>a f^. We show ^£12.

<p«(f) ̂ $(f) for every a and every/=0 in 12(12), hence in particular for every

such/in E. Applying [10, (11.6)], there exists</> = Va <£«-in-12. Then0^g<£,

and since 12 is an ideal in 12(12(12)), ^£12.

Now suppose F is a closed sub-vector-lattice of 12. Then F also satisfies

the conditions of (3.8), that is, it is complete and 12(F) is separating on F

(since &(F)Z)irQ(Q) (3.5)). It follows F is a dense ideal in 12(12(F)). The argu-

ment used above for 12 now gives us that F = 12(£2(F)).

We can now state the promised strengthening of (3.7).

(3.10) Let 12 be separating on E. Then under the natural imbedding of E in

12(12), £ = l1(12).
Proof. Under the imbedding, £ is a sub-vector-lattice of £2(12). From (3.9),

12 = 12(£2(12)). Letting 12(12) be the £ of (3.6), we obtain the desired conclusion.

4. Applications to L and M. As we know, the dual M = 12(£) of L is also

its Banach space dual [10, (3.8)]. Now L, being an (Z)-space, has the prop-

erty that lima \\ua\\ =0 whenever p,a 1 0. It follows that every element of M is

continuous:

(4.1) M=12(L)=12(£).
This gives, via (3.9),

(4.2) Z=H(M),
and, via (3.10),

(4.3) The closure of C in M is M itself.
Remark 1. In [10 ] we showed that the set of elements of M which are

limits of nets of C is the sub-vector-lattice U. U is in general not all of M,

hence from the above, is not closed (although it is closed under sequential

convergence). By adjoining limits of nets of U, we could obtain a larger sub-

vector-lattice of M; and this process could be continued, in the same way as

the standard process for obtaining the Baire classes, until all of M is exhausted

(the resulting well-ordered family would presumably go beyond the first un-

countable ordinal).

Remark 2. If a net in Af converges, it | w\ (M, L)-converges [10, (11.7)];

hence (4.3) gives us immediately that C is |w| (M, L)-dense in M. We thus
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obtain the result [10, (11.9)] by a completely different proof than the one

used there.

From (3.2),

(4.4) The null-ideal in L or M of a subset of the other is closed.

From (3.4),

(4.5) If L or M is the direct sum of two ideals, the other is the direct sum of

their null-spaces.

It is also easily shown that

(4.6) The correspondence I<r+(IX)' is an isomorphism of the lattice of closed

ideals in L or M with that of closed ideals in the other.

We turn now to closed sub-vector-lattices of L and Af. The results are

still essentially due to Nakano. From (3.9) we have

(4.7) Every closed sub-vector-lattice of L or M is reflexive with respect to

continuity.

For closed ideals, this duality can even be obtained by concrete realiza-

tions. If I is a closed ideal in L, (P)'-in-Af can be identified with 12(7) =12(7);

if it is a closed ideal in Af, (7x)'-in-L can be identified with 12(7). We want to

know to what extent such realizations are obtainable for general closed sub-

vector-lattices.

We will need

(4.8) The mapping ir of (2.4) is continuous, that is, preserves convergence.

Proof. We have to show that <pa—^(j> in 12 implies ir<ba—*iri> in 12(F).  The

former means there exist xpa T<P and o)a i <p such that $ag<pag<>)a for all a.

Since w preserves order, we have mf/agm{/p whenever xpag\[/p, 7rwa ̂ irup when-

ever o)a^u>B, and irxpagTr<pagwcoa for all a. Hence it is enough to show that

irtp — Va ml/a = hamoa,or equivalently, that for every aEF+, <p(a) =supa\[/a(a)

= infa coa(a). Since this is true on P+, it is a fortiori true on F+.

Now in general iril is not all of 12(F). However,

(4.9) If F is a closed sub-vector-lattice of L, then wM=12(F) =12(F).

Proof. F is clearly a norm-closed linear subspace of L, and in fact an

(P)-space. It follows from Banach space theory that 7rAf = Af/FJ- = the Ban-

ach space dual of F; hence from Banach lattice theory that 7rAf = 12(F); finally

from the (L)-space property (cf. (4.1)), that 12(F) =i~2(F).

We can also obtain our concrete realization of 12(F):

(4.10) If F is a closed sub-vector-lattice of L, there is a uniquely determined

closed sub-vector-lattice E of M such that ir maps E isomorphically onto 12(F).

Proof. We will define a mapping p: 12(F)—>Af which is an isomorphism

into and whose inverse (on the image) is ir. Let 7 be the null-ideal of F in Af,

and J = I'. Then irJ = 12(F), and7r considered only on J has all the properties,

of (3.5) and (4.8). Moreover, clearly,

(i) iorfEJ+, t/=0 implies/=0.
This gives in turn,

(ii) for/e/+, gEJ+, t/A*S = 0 implies/Ag = 0.
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For, since w preserves order, 0^ir(/Ag) ^ir/A'Tg = 0, hence irifAg) = 0, and

the required conclusion follows from (i).

We remark that lj is a strong order unit for J, irl is one for 12(F), and

ttIj =tt1. We show now that for each component d of irl (that is, dA(t1 — d)

= 0), there is one and only one component e of 1/ such that ire = d; we will

then set this e = pd. Now 0^d = 7rl, hence from the lemma of (2.4), there

exists e satisfying Q^e^lj and ire = d. Since tt(Ij — e) =7rl— d, (ii) gives us

e/\(lj — e)=Q, and thus e is a component of \j. If ei is any component of

1/ such that rei—d, then by (ii) again, eA(l/ — «i)=0, hence e = «i and (i)

then gives e = ei. Thus e is unique and will be our pd.

Ii di^d2, then the above argument—with d2 replacing 7rl—gives us that

pdi ^pd2. We have even more:

(iii) For any two components di, d2 of 7rl, pidi/\d2)=pdi/\pd2.

Since dif\d2 is g both di and d2, p(diAd2) is = both pd\ and pd2; hence

pidiAd2)^spdiApd2, and therefore diAd2^Tr(pdiApd2). On the other hand,

since pdiApd2 is  =  both pdi and pd2, Tr(pdiApd2)^diAd2. We thus have

diAd2 = wipdiApd2), hence from uniqueness, pidiAd2)=pdiApd2.

Let us denote by [d] the linear subspace generated by the d's and by

[pd], that generated by the pd's. It follows easily from (iii) that [d] and [pd]

are sub-vector-lattices and that the extension of p to [d] by linearity gives an

isomorphism onto [pd] with inverse t.

Now from the Freudenthal integral representation [2, p. 231], for each

s£!2(F), there is a sequence {sn} E [d] such that sn f s. Since the set {sn} is

bounded above by some multiple of irl, {psn} is also bounded above (by the

same multiple of 1/), hence ps„ f/ for some/£/. We set ps=f. Since it pre-

serves convergence, 7r/ = s. Moreover, / is defined uniquely. For suppose

we also have tn f s, {tn} E[d]. Let £Z„ T g. Then pSnAptn^ fAg, hence

SnAtn = TTpsnA^ptn=TripsnAptn) IrifAg)- But snAtn1 s; therefore ir(fAg)

= s. It follows from (i) that/=/Ag = g-

We thus have extended p to all of 12(F), so that p~l=ir and

(iv) if sn t s in 12(F), {s„} C [d], then ps„ T ps.

We show that for any 5£!2(F), ps+= (ps)+, whence it will follow p preserves

the operations A, V- Let sn | s,  {s„} E[d]. Then also s£ f s+, hence from

(iv), ps„ | ps and p(s£) f p(s+). The first of these gives (psn)+ T (ps)+- Since

P(s«) - (psn)+, it follows p(s+) = (/»«)+.

This last result gives us that p£l(F) is a sub-vector-lattice £ of /, and that

p: 12(F)—>£ is an isomorphism. It remains only to show that £ is order-closed

(Remark 2 at the beginning of §3). Supposed C£ and/= V^4. Let 5 = V(t4).

Then ps^A, hence A ^f^ps, hence 7r^4 ̂7r/=^ = V(x.4), hence wf = s. Apply-

ing (i), we obtain f = psEE. This completes the proof of (4.10).

Now let us consider the case of a closed sub-vector-lattice F of M. Can

we obtain analogues of (4.9) and (4.10) for such an F? The argument used

in (4.9) would give us that 7ri2(M) = 12(F). However L = Q,(M), which is only a



338 SAMUEL KAPLAN [November

part of 12(Af), and we do not know whether irL is all of 12(F). To' partially

make up for this, we have a strengthening of (4.7) [12, Theorem 25.2].

(4.11) Let F be a closed sub-vector-lattice of M and ir: L—»12(F) defined by

■wp = p\F. Then F = tl(irL).
Proof. Since 7r7, is a dense ideal in 12(F) (3.5), it follows from (4.7) and the

last statement in (3.5) that F = 12(12(F)) is a dense ideal in U(irL). The same

argument we used (twice) in (3.9) then gives us that F = £l(irL).

Now what about an analogue of (4.10), at least for irL if not for 12(F)?

The procedure in (4.10) depended in an essential way on the existence of a

strong unit, hence cannot be applied here as such. We content ourselves with

stating the following realization theorem [12, Theorem 23.3], which we will

need in (4.13).

(4.12) Let F be a closed sub-vector-lattice of M. For each <f>EirL, there is a

sub-vector-lattice E in L such that

(a) ir maps E isomorphically onto the ideal I generated by <f>, and

(b) every interval of E is closed in L.

We prove, finally [12, Theorem 28.6],

(4.13) A closed sub-vector-lattice F of L or M is closed under the weak

topology defined by the other.

Proof. If FC7- there is nothing to prove, since F is also norm-closed and

Af is the norm-dual of L. Suppose FEM. From the isomorphism of (4.12),

we have

Lemma. If pa I 0 in irL, there exists pa | 0 in L such that irpa =pa for all a.

Now to prove F is w(M, L)-closed in Af, we show FXX = F. Consider

fEFxx. f, having value zero on Fx, defines a linear functional <j> on irL. Since

/ is continuous on L, it follows from the lemma that <b is continuous on

irL': <pE&(irL). Applying (4.11), <b coincides on irL with an element g of F.

But then/ coincides with g on all of L. It follows f = gEF.

5. Principal closed ideals in L. Given an element a of a vector lattice P,

we will call the ideal (the closed ideal) generated by a a principal ideal

(a principal closed ideal). In Af every closed ideal 7 is a principal ideal, being

generated by 1/. In L this is not the case.

Given pEL, we will denote by L„ the closed ideal generated by p, by

Vp the component in LM of an element v of L, and by Ay, the projection

{fM| vEA } in LM of a subset A of P. The dual closed ideal (Zx)'-in-Af will be

denoted by Af„; and for f EM, A EM, /„ and A? will be their component and

projection, respectively, in Af„. Pp is the set of measures which are absolutely

continuous with respect to p, hence can be identified with £l(p) (actually,

we should say "absolutely continuous with respect to |p| " and write £1(|m| ).

but we will retain the above abuse of language). Since Af„ = 12(Z„), it can

then be identified with £°°(p). Thus the principal closed ideals in L and their

dual ideals in Af are well-known objects, and a detailed study of them here
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is unnecessary. In the present section we give a few of their properties which

we will need explicitly or which are related to L and M in the large.

Given uEL, || ||„ will denote the semi-norm on M defined by ||/||^= |/| |m| ■

On M„, || ||„ becomes a norm. The set of components of 1 in Af will be denoted

by 8. It is clear that for any uEL, &li = Z(~\Mli. The usual definition of ab-

solute continuity is as follows; v is called absolutely continuous with respect to

u if v is || ^-continuous at 0 on S. This definition of course comes from the

standard development of integration theory via sets. In our present vector

space approach, a more intuitive form is the one given in [10, (12.1)], that

v is uniformly || ||„-continuous on S(M) (the unit ball [ — 1, l] of M). (In

this connection, cf. (10.2) in the Appendix.)

If one (hence both) of these statements hold for v, then it holds also for

|p|. We will need the following quantitative formulation of this last fact.

Given e>0, there exists, by the definition of absolute continuity, a 5>0 such

that | v(e) | =e whenever ||e||M^5, e£S; then for every such e, \ v\ (e) =2e. To

see this, write M = I®J such that p|/ = 0 and v\j^0 (cf. Remark 2 after

(3.4)). Then | p\ (e) = | v\ («7) + | v\ iej) = | K«/)| +1 "(o)| ^2e.
As with any Banach lattice, a countable set of elements {ju„J in L is

always contained in a principal ideal (e.g. the ideal generated by

u=^,i |/i„|/X„, where Xn = 2n||/i„||). Hence the union of a countable number

of principal closed ideals is always contained in a principal closed ideal. The

following characterization of principal closed ideals in L is easily proved

[18, Theorem 3].

(5.1) A closed ideal in L is an Z,„ for some uEL if and only if every set of

mutually disjoint nonzero elements is countable.

Now a natural problem is to characterize the M,/s among all the closed

ideals in M, or equivalently, to characterize the components of 1 of the form

1„. In this direction, we have the following (cf. [14, Theorem 6.1]):

(5.2) If I is a closed ideal in M, the following statements are equivalent:

1? 1= Mufor some uEL.

2°.  If fa i 0 in I, there exists a sequence ofa's, cei, a2, ■ ■ ■ , such thatfa„ I 0.

3? Every set of mutually disjoint nonzero elements of I is countable.

Proof. Suppose 1= M„ for some uEL, and let/« j 0 in M„. Then lim„ ||/0||„

= 0 [10, (11.4)], and we can obtain the required subsequence. Thus 1° implies

2°. Now assume 2° and let A be a set of mutually disjoint nonzero elements

of I. We can assume the elements of A are all >0; also that A is order-

bounded, since each/£.4 can be replaced by/AL We now take for an index

system {a} the set of finite subsets of A, ordered by inclusion; and for each

a, we set ga = V/e.4 ,/<£<*/. Then ga I 0. To show this, since clearly ga^g» when-

ever a<P, we need only show that Aag„ = 0. Let g = A„ga. For each/£^4, if

we take for a the single element/, then gAf^gaAf=0. It follows gA(V/G^/)

= 0. Since g = VfeA f, this gives g = 0. Now applying 2°, we have An g„„ = 0 for

some sequence {«„}. Let J3 = {/|/£a„ for some »}. Then for /£^4, fEB
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we have fggan for all ra, hence/ = 0. Thus A —B, and A is therefore countable.

Now assume 3°, and let J = (Ix)'-in-L. We show J = L„ for some p, which

will prove 1°. It is enough (5.1) to show that every set A of mutually disjoint

nonzero elements of J is countable. For each vEA, 1„ is in 7, and since the

v's are mutually disjoint, the 1,'s are also. Applying 3°, we have that A is

countable. This completes the proof of the theorem.

Corollary. A component e of 1 is a l„for somepEL if and only if e cannot

have an uncountable set of mutually disjoint nonzero components.

Remark. While 2° in the above theorem characterizes the Af„'s in Af,

the analogous property in L is always true, hence cannot characterize the

7,„'s there.

A bounded linear functional 0 on a vector lattice P will be called a-

continuous if lim„<M <p(an) =<p(a) whenever an—>a (that is, <b preserves sequen-

tial convergence). It can be shown by the same argument as was used to

prove (3.1) that

(5.3) The a-continuous linear functionals on E constitute a closed ideal in

12(F). We denote it by 12"(P), or simply 12'.

We have of course n(P)C12"(P)C12(P). For the case E = L, M = tl(L)
C12'(7,) C12(P) = Af, and we have equality. We need not have L =12"(Af). For

an L„, however, we have equality in both directions: Mli = t)(Lll) C12"(7/M)

C!2(7,„) = Af„, hence Af„ = Q'fP,,); and, conversely,

(5.4) Given pEL, LM = H(AfM) =12"(AfM).
Proof. That 7,M = 12(AfM) follows from the discussion following (4.7). To

complete the proof we need only show that every «r-continuous linear func-

tional on AfM is continuous. This follows from property 2° of (5.2).

A closed ideal in L is, as we know, w(L, Af)-closed. In general, of course,

it is not w(L, C)-closed; for example, L0 is w(L, C)-dense in L. What about

the intermediate topologies, w(L, 5), w(L, Ba), w(L, Bo), and w(L, U)? These

are no better, as the same closed ideal, La, shows. However,

(5.5) Given pEL, L„ is closed in L under all of the above intermediate

topologies.

Proof. Consider pEL and vEL?- We show there exists gES(~\Ba such

that g(7/M)=0, g(v)?*0, and this will prove the theorem. Let p=|p| + \v\ I

then pEL„, vELp. Moreover L„ is a closed ideal in L„, whence Lp = L^®Ll

and therefore MP=MIX®MX (we writeL„' for LM'-in-Pand Lx for (L„)x-in-M).

Since t>EL^ = L1L, there exists fELx, />0 such that f(v)^0. From [10,

(12.3)] there is a sequence {/„} EC+ such that (/„)?—*/• For each ra, let

gn = Am>„/m. Then (gn)„ = Am>„ (/m)P, hence (gn)p f/. It follows limn gn(v)

= lim„ (gn)P(v)—f(v), and therefore gn(v) ?^0 for some ra. Since 0<(g„)p^/,

we have also that gn(w) = (gn)P(w) =0 for all uEL^. Since, finally, gnESH\Ba,

it is the required g.

Remark 1. L„ need not be w(L, C)-closed. For example, if X is the real
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interval 0 = x = 1 and p. is the Lebesgue measure, then Z,M is separating on C,

hence w(L, C) -dense in L.

Remark 2. It follows trivially from [10, (6.8)] that £i is w(L, 5)-closed

in L, hence a fortiori w(L, JBo)-closed and w(L, ZJ)-closed.

6. The weakly compact subsets of L. In this section, we characterize the

sets in L which are relatively w(L, M)-compact. The material here is related

to the work of Nakano, Kothe, Dieudonn6, and Cooper [12; 6; 5]. We note

first that corresponding to the two formulations for absolute continuity of a

single element, we have the following for a set.

(6.1) Given uEL and A EL, A norm-bounded, the following statements are

equivalent:

1° The elements of A are equi-uniformly-\\  \\„-continuous on ~Z(M).

2° The elements of A are equi- \   \ ̂ -continuous at 0 on 8.

Moreover, in 1° and 2° it is enough to consider A EL„ and replace ~L(M),

8 by 2(AfM), SM respectively. Also if 1° and 2° hold, then they still hold when we

replace the elements in A by their absolute values.

Ii a set A satisfies condition 2°, we will say it is equi-absolutely-continuous

with respect to u.

Proof. We will assume for simplicity that the elements of A have norm

= 1. Also, given fEM, gEM, we will denote by /„ the component of / in

the closed ideal generated by g. The following elementary relations are easily

verified:

(i) If e = l/f, then/„=/+.

(ii) If e=lv_xi)+, then Xe£fe.
Turning now to the proof itself, 1° of course implies 2°. Suppose 2° holds.

That it then holds also for the absolute values of the elements of A follows

from the quantitative formulation given at the beginning of §5. We show next

that the absolute values of the elements of A are equi-|| ||„-continuous at 0

on 'L(M).

Suppose not; then there exist e>0, {/„} C2(M+), and {^{C^ such

that lim„ ||/„||„ = 0 while | vn\ |/„| =2eforallw. Let e„ = l(/„-xn+, »=1, 2, • • • .

Then from (ii), een^(fn)e„^fn, and therefore limn ||e„||M = 0. Since the l^l's

satisfy 2°, this gives lim„ |p„|(en)=0; and since (fn)en^le„ = en, this gives

in turn lim„ | vn\ ((fn)en) =0. Now /„-el g(/„-el)+ = (from (i)) (/„-el)e„

^(fn)en, orfn^el+(fn)en, whence

| vn | if.) £ «| r. | (1) +  | vn | ((fn)en) ^ e +  | vn \ ((/„K).

Thus for n large enough, | vn\ (f„)<2e, which gives a contradiction.

It is now an elementary operation to show that both the elements of A

and the absolute values of these elements constitute sets which are equi-

uniformly || ||„-continuous on S(M). The remainder of the theorem follows

easily.

We turn now to relative w(L, M)-compactness. For subsets of principal
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closed ideals, the following characterization is known [6, Theoreme 4].

(6.2) Given A EL^, A is relatively w(L^, M^-compact (= relatively w(L, M)-

compact) if and only if it is norm-bounded and equi-absolutely continuous with

respect to p.

Now consider any subset A of L. From the Eberlein Theorem [4, Chapter

IV, p. 83, Example 15b], A is relatively w(L, Af)-compact if and only if every

countable subset of A is. Since a countable set always lies in some LM, it fol-

lows A is relatively w(L, Af)-compact if and only if AC\Lp is for every pEL.

We show that A must actually be contained in some L„.

A set A in a vector lattice will be called normal [6] if bEA whenever

| b\ g\a\ and aEA. The normal envelope of a set A is the smallest normal set

containing A ; it is easily seen to be the set {b\ \b\ g\a\ for some aEA }.

(6.3) If a set A in L is relatively w(L, M)-compact, its normal envelope is

also.

Proof. Denote the normal envelope by B. We have to show that FP\L„

is relatively w(L, Af)-compact for every pEL. Now POT,,, is precisely the

normal envelope of Ar\L„. Since AC\LP is equi-absolutely continuous with

respect to p (6.2), it follows from the description of normal evenelope preced-

ing this theorem, that Br\L„ is also. Applying (6.2) again gives us the re-

quired result.

(6.4) If a set A in L is relatively w(L, M)-compact, it lies in some L^.

Proof. From (6.3), we can assume A is normal. We show every subset B

of mutually disjoint nonzero elements of A is countable, whence the theorem

will follow easily. Assume A contains an uncountable subset B of mutually

disjoint nonzero elements. Then there is an infinite subset {p„} of B and a real

number X>0 such that ||p„|| =X for all ra. {pn} EL? for some p, hence it is

equi-absolutely-continuous with respect to p (6.2). Nowforra^raz, |p„| Al/M

= 0, hence 1m„A1m„ = 0 m M- It follows

k k k

,/Lr II lfj|0   =        2-1  l/»m        = "     Ifm        =   l|l||ci
m=X m=X it m—1 ft

and therefore limm ||l,,J|M = 0. Applying the equi-absolute-continuity of {pn},

we have that for m large enough,  \pn\ (1^„)<X for all ra. This contradicts

|p.m|(i„j=lkll=x.
With (6.2) and (6.4), we are now in possession of a characterization for

relatively w(L, Af)-compact sets. This is 1° in the theorem below. We also

give two others there. 2° is due to Nakano [12, (28.10); l]; it is obtained

also by Cooper [5].

(6.5) A set A in L is relatively w(L, M)-compact if and only if it satisfies

any one of the following conditions:

1. A is norm-bounded and equi-absolutely-continuous with respect to some

PEL.
2. If fn 1 0 in M, limn/„| v\ —0 uniformly on A.
3. A is norm-bounded, and any set B of mutually disjoint nonzero elements
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of the normal envelope of A is countable, B= \p„}, with limn \\un\\ =0.

Proof. The equivalence of 1° with relative w(L, M)-compactness follows

from (6.2) and (6.4). Now let 1° hold for A and suppose/„ | 0 in If. We can

assume {/„} CS(Af). Then since/„ | 0 implies lim„ ||/B||„ = 0, 2° follows from

(6.1). Let 2° hold. Since (1/»)1 i 0, there exists an n, by 2°, such that

\v\((l/n)l)^l for all vEA; hence \\v\\ = | v\ (1) = « for all k£,4, and A is

norm-bounded. To prove the second part of 3°, we note first that 2° clearly

holds also for the normal envelope of A. Now consider a set B of mutually

disjoint elements in this normal envelope, and suppose that for an infinite

number of these, {un}, \\un\\ =\>0. As in (6.4), {un} EL„ for some u and

limm ||l,,J|„ = 0. We can assume (since we can take a subsequence, if neces-

sary) that l?m—>0. Since 2° holds for \un], it follows easily that for m large

enough, \pn\ (ln„,)<X for all n. This contradicts |jum| (l„m) = ||m»>|| = X.

It remains to show that 3° implies 1°. Let 3° hold for A; we can assume

A is normal. It follows from 3° that A EL^ for some p.. Suppose A is not equi-

absolutely-continuous with respect to p.. Then there exists X > 0 and sequences

{e„}C8M, {un} EA such that lim„ ||e„||„ = 0, |ju»|(0=X for w = l, 2, • ■ • ,

and \un\ (em)<X/2m for m>n (this last from the individual absolute con-

tinuity oi ui, ■ ■ • , un). Let dn = en — enA0lm>n em), n = \, 2, ■ • • . Then the

d„'s are mutually disjoint components of 1 such that lim» ||d„|||l = 0 and

\un\(dn)^X/2 lorn = 1,2,

For each n, let /„ be the ideal in M generated by d„, and /„ the dual

ideal (Ix)'-in-L. Since InEM,,, JnELh for all n; moreover, since for n^m,

InC\Im = 0, we also have JnC\Jm = 0. Set vn = (un)jn, n = \, 2, ■ ■ ■ . Then the

vn's are mutually disjoint and | vn\ (dn) = |jun| (dn) ^X/2. Since ||j»„|| = \vn\ (cZn),

this says \\vn\\ ̂ X/2 for all n, which contradicts 3°. This completes the proof

of (6.5).

Each of the topologies w(L, U), wiL, Bo), w(Z, Ba), w(£, S), and w(£, C)

is coarser than w(L, M), and we would therefore expect them to give rise to

more relatively compact sets than the latter. And indeed this is true for

w(L, C), since the unit ball of L is w(L, C)-compact but is not relatively

w(L, M)-compact. Surprisingly, however,

(6.6) If a subset A of L is relatively compact under one of the topologies

wiL, M), wiL, U), wiL, Bo), or w(L, Ba), then it is relatively compact under all

of them.
Proof. It is of course sufficient to prove that if A is relatively w(L, Ba)-

compact, then it is relatively w(L, Af)-compact. From the discussion following

(6.2), we need only show that A(~\L^ is relatively w(L, lf)-compact for every

uEL. Since w(£^, M)=wiL„, Ba) [10, (12.4)], we are through.

7. The Mackey topology on M. The results of the last section of course

enable us to answer the dual problem of characterizing r(Jlf, L) [4, Chapter

IV, §2]. In the following, "topology" will always mean "locally convex

topology."

Given a vector lattice £, let us consider a topology T on £ such that
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(i) P has a neighborhood basis at 0 whose members are (convex and)

normal;

(ii) every convergent net also Pconverges (to the same limit).

If for each member V of this basis, we denote the semi-norm defined on

E by || ||v, the above conditions are easily shown to be equivalent to the

following: For every V in the basis,

(I) |a|^|o| implies ||a||y^||A \r;

(II) aa^a in P+ implies lima | aa||y = ||a||r;

(III) aa I 0 implies lima ||ao||r = 0.

While (II) is superfluous here, Nakano has shown [14, Theorem 6.2] that

if P is complete, then in the presence of (II), (III) can be replaced by the

weaker condition

(III') a„ i 0 implies limn ||aB||v = 0.

An example of a topology on Af satisfying the above conditions is

| w\ (Af, L). It is the coarsest "normal" (in the sense of (i)) topology which is

finer than w(M, L) [15, Theorem 6]. We show that the finest topology on Af

satisfying the conditions is precisely r(Af, 7.).

(7.1) T(Af, L) is identical with the topology defined on M by the set of all

semi-norms satisfying (I), (II), and (III').

Proof. Let us denote the latter topology by F0. From (ii), every linear

functional on Af which is Po-continuous is continuous, hence lies in L. Thus

FoO(Af, L). To show the converse, consider a relatively w(L, Af)-compact

set A in P. From (6.3), we can take A to be normal. We have to show that

the semi-norm || ||x° on Af defined by the polar A" of A satisfies (I), (II), and

(III'). We note first that for each/GAf, ll/H 4o = SUpMS4 \f(p)\ =sup„e4 |/||p|,
from the normality of A. That || ||a° satisfies (I) is then obvious. Now suppose

fa If in M+. Thenf(p)=supafa(p) for every pEL+; hence ||/|U° = sup„e.i/|p|

= supM<=4 sup„/a|p| =sup„ sup^e^ fa\p\ =sup« ||/a|U°. Thus || H^o satisfies

(II). That || ||,i» satisfies (III') is precisely the content of 2° in (6.5). This

completes the proof. (6.4) gives us

(7.2) Every normal, convex, and closed neighborhood V of 0 in t(M, L)

has the form V= (Vr\M„) ® AfM' for some pEL.
Thus r(Af, L) is determined by the Af„'s. Also, from (III'),

(7.3) Let V be a neighborhood of 0 in r(M, L). If B is any set of mutually

disjoint components of 1, then for only a countable number of these, {en}, do

we have ||e„||y>0; and lim„ ||e„||y = 0.

Remark 1. It follows from (ii) and Af =C, that C is r(Af, L)-dense in Af.

We also have, either from vector lattice considerations [18, §6] or purely

vector space properties [4, Chapter III, §3, Example 18], that Af is r(Af, L)-

complete.

Remark 2. Since | w\ (M, L) clearly satisfies (i) and (ii), we have | w\ (M, L)

Et(M, L) (cf. also Remark 2 following (4.3)).
Remark 3. It is obvious that for every pEL, t(M, L) is identical on Af„
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with t(Mii, Z„), and that Remarks 1 and 2 remain true if we replace L, M, C

by £„, AfM, C„.

At this point we would like to comment on the role of \w\ (Z„, M„) (the

comments could also be made for t(M„, L„), but \w\ (£„, M„) has a simpler

structure). Let us consider the concrete case where X is the real interval

0 = x = l and u is the Lebesgue measure, and we can therefore write £* for

Z„ and £°° for AfM. Then the topology | w\ (£°°, £J) is defined by all the semi-

norms of the form ||/||» = /|/(*)|d»', where v is a positive measure absolutely

continuous with respect to u; or equivalently by all the semi-norms of the

form ||/||B = /|/(*0g(X)|<Z;u, where g££*. This topology is finer than that given

by the £1-norm and coarser than that given by the ess-sup norm. Since

under the former £w is not complete, and under the latter C is not dense in

£°°, while under \w\ (£°°, £') we have both £°° complete and C dense, this

topology might be a more useful tool for studying £°° than either of the

others.

8. Regular measures. Let F be a sub-vector-lattice of M (not necessarily

closed) which contains C, and 7r:£—>12(F) the mapping irp.=p\F. Since F

contains C, it is separating on L. A slight modification of the argument of

(2.4) then gives us that tt is an isomorphism of L onto an ideal in 12(F).

Finally, the same argument as was used in (3.9) gives us that it is closed.

Thus

(8.1) If F is any sub-vector-lattice of M which contains C, then L can be

identified with a closed ideal in 12(F). In particular, this is true for F=Ba, S, Bo,

or U.

We have characterized L in 12(M) as precisely Sl(M). We now want to

characterize L in 12(ZJ), 12(£o), and ti(Ba). Let us first confine our attention

to 12(ZJ). We cannot expect to have an element p. of L continuous on U, since

U is not closed and therefore it is possible to have/a—»/ in U and yet fd+rf in

M. All we can say is the if {/<»} C U, /£ U, and /„—»/ in M, then lim„ ju(/„)

=/*(/). It turns out (8.2) that this property does characterize L. As (8.2)

also shows, this property is equivalent to regularity of p, which throws some

light on the central role regularity has always played.

An element <j> of 12( U) will be called a regular U-measure, if for each /£ U,

U|(/)=     sup     \d>\(g) =     inf      |*| (A).
g uso, ?g/ ft l«c, »£/

(8.2) Given 0£!2([7), the following statements are equivalent:

1? <pEL.

2°.  For every {/„} C U, /£ U, /„-»/ in M implies lim. <£(/«) =<£(/)•
3? 4> is regular.

Proof. 1° of course implies 2°. That 2° implies 3° follows from the definition

of U. We show 3° implies 1°. We can assume $ = 0. Since 0 is a positive

linear functional on TJ, it is also one on C, hence coincides on C with an ele-
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ment p of L+. We show <f> coincides with p on all of U. Consider fE U. From

[10, (9.6)], there exist nets {ga}, {ha}, {fa}, the first consisting of all the

u.s.c. elements gf and the second of all the l.s.c. elements ^/, such that

ga T/i Aa J./, and for each a, fa is an element of C satisfying gagfagha. It

follows fa—>/ in Af, hence p(f) = lim« p(fa). Now <p is regular by hypothesis,

hence <£(/) =supa 0(g„)=infa (p(ha); and since <b(ga) g<p(fa) g<b(ha), we have

<p(f) =lima <p(fa). But </>(/«) = /*(/«) for all a, and thus <£(/) =/*(/)•
We modify the above argument slightly to obtain

(8.3) An equivalent definition for the regularity of <pESl(U) is the following:

For each l.s.c. element f, \<f>\ (/) =sup„ec,(;s/ \<?\ (g)-

Proof. That regularity of <p implies this condition follows from 1° in (8.2).

Now suppose<p satisfies the condition, and again we can assume <p^0.d> coin-

cides on C with an element p of L+. It follows immediately from the condition,

that d> coincides with p on every l.s.c. element, hence on all of 5. Now consider

fE U. We have of course,

(i) sup    p(g) = p(f) =      inf     p(h).
t u<c. s&j » Uc, »g/

Since for all such g, A, p(g) =<p(g) g<p(f) g(p(h) =p(A), (i) gives us

sup    <b(g) = <p(f) =      inf     <b(h).
g use, gSf h Isc, h£f

The major role of 5 in U is emphasized also in the following generalization

of the above (cf. [7, Proposition 6]).

(8.4) If an element <p of 12(P) coincides on 5 with an element p of L, and

\\<b\\ =||p||, then <p is identical with p.
Proof. We show first that the first condition implies \<f>\ ̂ |m| • Consider

fEU+ and €>0, and choose gES such that Ogggf, \p\(g)^\p\(f)-e.
Turning our attention for a moment to AfM, we can write Af„ = 7 © J such that

p|7^0 and p\ JgO (Remark 2 after (3.4)). Choose AG5, AG5 such that

0ghllg(glt)i, 0gkttg(gli)j, and p(K)^p((gli)i)-€, p(kli)gp((gtt)j)+e [10,

(12.3), (12.4)]. We can assume that Oghgg, Ogkgg, and AAA = 0, because

replacing A, A by AAgi AAg does not change A„, k„, and replacing A, A by

A-AAA, A-AAA also does not. Then |^| (/) ^ |^| (g) ^ \<f>\ (h V A)
= |0| (A + A) ̂  0(A - A) = p(h - A) = p.(A„) - p(K) ^ M((g„)x) - p((gll)j)
— 2e= |p| (git) — 2e= |p| (g) — 2ej£ |p| (/) — 3e. Since e was arbitrary, this gives

\<b\(f)^\p\(f). Thus |<£|^|p|. It now follows from \\<p\\ =\\p\\ that |^>|
= |p| ((L)-space property). Since L is an ideal in 12(P), we must have <j>EL,

whence <p =p.

Corollary. 7/ara element <b ofQ,(U)+ coincides on 5 with an element p of L,

then <b=p.

Remark. The above two theorems are related to the theory of content

[17, §§53,54].
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We can still ask, what are the continuous linear functionals on TJ: Since

continuity is stronger than regularity, we have 12(77) EL. We show

(8.5) Q(U) = L0.

Proof.

Lemma. Given A EUandfE U,f= VA-in-Uifand only iff(x)=supgeA g(x)
for every xEX.

Assume/(x) =supo£ji g(x) for every xEX. This says/o = V-^o-in-Mo, hence

/o = VAo-in-Uo, hence from the isomorphism of Z70 with ZJ,/=V.4-in-7_7. Con-

versely, assume /=V.4 -in- TJ, and suppose there is a yEX such that/(y)

— sup„GA g(y) =X>0. Let h be the element in M0 defined by h(y) =X, h(x) =0

for all x^y. Then hEU [10, (6.8)], hence/-A£ZJ. But clearly f-h^g for
all gEA, which contradicts/=V.4-in-TJ.

It follows from the lemma that

(i) if /„-»/ in TJ, then iimttfa(x) =f(x) for every xEX.
We proceed to prove the theorem. That every xEX is continuous on TJ

is precisely the statement (i). Thus LoE&(U)- We complete the proof by

showing that no nonzero element of Lx is continuous on TJ. Let {a} be the

set of finite subsets of X ordered by inclusion, and for each a, let /« be the

element of Mo which is the characteristic function of a. Then clearly/„ f 10

in Mo, hence /„ f 10 in Z70, hence /„ f 1 in TJ. However, for every uELi,

p^0,fa\p\ =0 for alia, while l| jt*| ̂ 0.

Since TJ is tr-closed in M, every element of L is <r-continuous on TJ, and

thusLEfi°(TJ). Summarizing: £2(7J)=Z,0C{regular {/-measures} =LC$F(U)

Cfi(ZJ).

We turn to Bo. Defining a regular Borel measure in the same way as a

regular ZJ-measure, we verify easily that all of the above remains true if we

replace TJ by Bo. Thus

(8.6) Theorems (8.2)-(8.5) all hold for Bo.
And, as for TJ, &(Bo) =L0C {regular Borel measures} = LE®*(Bo) EMBo).

When we consider Ba, the definition of regularity has to be modified,

since not all l.s.c. elements and u.s.c. elements are in Ba. An element <p of Ba

will be called a regular Baire measure if for each fEBa,

\d>\(f)= sup \<b\(g)= inf |*|(*).
a use, jGBo, q&S n lac, *£b«, h^f

We can then obtain the same characterization of L (in 12(£a)) that we have

for TJ and Bo. However, in this case we have the additional characterization

that L=Qf(Ba).

(8.7) Given <^£12(5a), the following statements are equivalent:

1. <£££.

2. For every {/„} EBa and fEBa, fa—*f in M implies lima<p(fa) =<p(f).
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3. dt is regular.

4. <p is a-continuous on Ba.

The proof of this is straightforward once we have the following [17].

(8.8) (1) Every l.s.c. element in Ba is the supremum of a countable subset of

C, and similarly for every u.s.c. element in Ba.

(2) Every element of Ba is the supremum of the u.s.c. elements in Ba below

it and the infimum of the l.s.c. elements in Ba above it.

We prove (1). For each f'EC, let 1(f) be the closed ideal generated in Ba

by /. It is easily verified that U/ec 1(f) is a-closed in Ba (cf. the discussion

preceding (5.1)), hence in Af, hence coincides with Ba. Now consider an l.s.c.

element g in Ba; we can assume g^O. From the above, gEI(f) for some

fEC+. This says g= V„ (gA«f), and since g/\nf is in C for each ra, (1) is

proved. (2) can be proved by the standard type of argument showing that

the set of elements described in it is c-closed. We omit the details.

We do not go into an examination of L in 12(5). The principal reason (per-

haps extraneous) for this is that 5 is in general not norm-closed, and we have

not been able to determine what its norm-closure is.

9. The noncontinuous measures. Since P is a closed ideal in 12(Af), we can

write 12(Af) =L®L'. Every element of P, being continuous on Af, has its null-

ideal in Af closed. In contrast with this,

(9.1) If <j>EL', the null-ideal of <p in M is not closed.
Proof. An examination of (3.3) reveals that the following was actually

proved: If 0£12 (<j>^0) has a closed null-ideal in P and is disjoint from an

ideal 7 in 12, then <b is not in the w(Q, P)-closure of 7. Since the w(12(Af), Af)-

closure of L is all of 12(Af), it follows no nonzero element of L' can have a

closed null-ideal.

Remark. For a general element of 12(Af), the following can be shown:

(9.2) Given cpESi(M), the null-ideal of cp in M is closed if and only if <p lies

in the w(12(Af), M)-closure of the ideal generated by d>L-

While the w(12(Af), Af)-closure of P is all of 12(Af), we have

(9.3) The w(12(Af), M)-closure of L' is Lx®L'.
Proof. We will use the following easily verified property of an (L) -space

P: If E = I®J and aEE, then a is an extreme point of the unit ball of P if

and only if it is an extreme point of the unit ball of either 7 or J. Now con-

sider Afx-in-12(Af); we denote it simply by Mx. Mx = (Mxr\L)®(Mxr\L')

= Lx®(Mxr\L'). By the Krein-Milman theorem [4, Chapter II, §4], Mx is

the w(Q(M), Af)-closure of the linear subspace generated by the extreme

points of its unit ball. But from the property stated at the beginning of the

proof, all these extreme points lie in MXC\L'; for if any of them were in Lx,

they would also be extreme points of the unit ball of L, and all of the latter

lieinZCT-o [9, Theorem 8]. Thus Pi is in the w(Q(M), Af)-closure of MX(~\L',

hence of L'.

To complete the proof, we show Lx®L' is w(Q(M), Af)-closed. Consider
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uELo, M= Xa° X„xB [10, (4.6)], and let / be the element of Mo satisfying

f(xi) = l,f(x) =0 for all other xEX. Then p(f) 5^0, and—by a slight modifica-
tion of the proof of [10; (6.8)]—<p(f) =0 for all $£12(M) disjoint from u, in
particular, for all <pELi®L'.

We close with a determination of (L')L-in-M, which we denote simply by

(L')L. As the last part of the above proof shows, every fEMo which has value

1 on a single x and 0 on the rest of X lies in (L')lm, hence of course the norm-

closed linear subspace generated by such /'s does also. Now an element g of

Mo lies in this linear subspace if and only if for every e>0, |g(*)| i£e for

only a finite number of x's. Thus this linear subspace can be identified with

(co)-on-X; we will do this. Our result then is

(9.4) (L')1 = (co)-on-X.

Proof. For simplicity, we write (c0). We already have (c0)C(£')±; hence

£'C(co)x; hence from (9.3), LiffiL'C(c0)x. Since no element of L0 is in (c0)x,

this gives (co)x = Li®L'. Then (L')x = (Li®L')J- = (c0)LJ- = (co).

Remark. The property (c0)x = £i©Z/ and Banach space theory give us

that Zo can be identified with 12((c0)). Since Lo = l1-on-X, this is of course

well-known.

Appendix

10. Absolute continuity. Let £ be a vector lattice and A a subset of

12. As usual, for each $£12, we denote by || ||$ the semi-norm on £ defined

by ||a||*=|$| \a\. By |w|(£, A) we will mean the (not necessarily Haus-

dorff) topology determined on £ by the family of semi-norms {||  ||J</>£.4 }.

(10.1) The set of linear functionals on E which are \w\ (£, A)-continuous

is precisely the ideal I generated by A in 12.

Proof. Since <pEI means \<p = y]" |$,| for some finite set of elements

0i, • • • , 4>n of A, it is clear that w\ (£, A) = | w\ (£, /). This gives us, in the

first place, one half of our theorem, viz. every element of I is \w\ (E, A)-

continuous, and secondly, allows us to use \w\ (£, /) in the remainder of the

proof. Now suppose <f> is \w\ (£, /)-continuous on £. Then there exist ^£7

and X>0 such that \<t>(a)\ ̂X\\a\\t for all a££. It follows easily that $£12

and \<p\ \a\ ^X\\a\\i,=X\\p\ |a| for all a££. This last says \<p\ ̂ X|^| and

thus <t>EI-

(10.2) The set of linear functionals on E which are \w\ (£, A)-continuous

on every interval of E is precisely I.

Proof. As we noted in the previous theorem, | w\ (£, A) = | w\ (£, /), hence

we can assume A = I. We first consider the case where I is separating on £,

and hence \w\ (£, /) is Hausdorff. Now each interval [ — a, a](a>0) in £ is

\w\ (£, 7)-closed. Also 7 is the completion of / under \w\ (12, £) [10, (11.5)].

Since the latter is the topology of uniform convergence on intervals of £, the

Grothendieck theorem [4, Chapter IV, §3, Example 3b] gives us our desired

conclusion.
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Now suppose 7 is not separating on P. Ix (in P) is an ideal, hence P/7X

is a vector lattice under the usual definition: given BEE/IX, P^O if b^O for

some bEB. Since P/7X is separating on 7, 7 can be considered a subset of

12(P/7X). Moreover, each interval [-B, P](P>0) of P/7X has the form

[~b, b]+Ix. It follows \w\(I, F/7X) = H(7, P), and therefore 7 is the
|w|(7, P/7X)-completion of 7. The Grothendieck theorem then again con-

cludes the argument.

Corollary. Let E be a vector lattice and 12 be separating on E. Then the set

of linear functionals on 12 which are \w\ (12, E)-continuous on every interval of

12 is precisely 12(12).

Simply let 12,12(12), P be the P, 12, A of the above theorem and apply (3.7).
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