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If MCEN are subsets of a topological space X, we denote by HP(M) and

HP(N) the singular homology groups (with integer coefficients) of Af and N

respectively; the image of HV(M) in HP(N) (under the homomorphism in-

duced by inclusion MCEN) will be denoted by HP(M\N). The space X is

said to be p-lc, (i.e. p-locally connected in the sense of singular homology)

at the point xCEX if for every neighborhood U oi x there is a neighborhood V

of x, VQU, such that HP(V\ U)=0; if p = 0 augmented homology is used.

X is Icf at x if it is p-lc, at x, for all QSpSq. X is lc? if it is lef at all xCEX.
Replacing singular homology by Cech homology (arbitrary open coverings

and integer coefficients) and by homotopy, one obtains the definition of prop-

erties lc? and LC9 respectively.

These notions are well-known and have been studied by various authors.

In a recent paper [9], the present author has shown that for Hausdorff locally

paracompact spaces the property lcf implies Ic°(l). The implication lcj=>lc"

can not be reversed (not even in the category of metrizable compacta) as

has been shown by H. B. Griffiths [5, p. 477]. Griffiths has also proved [7]

that for locally compact metrizable spaces LC5=>lc*. However, the question

of the possibility of reversing this last implication has remained open and has

been pointed out by Griffiths in [5, p. 479] and in [6, 3, p. xi,]. The cor-

responding question with Cech homology has been settled previously (see

[1, p. 573]) by the well-known example of an "infinite bouquet" of Poincare

spaces, which is lc* but fails to be LC1 at the base point of the bouquet.

Griffiths has shown [5, p. 477] that an infinite bouquet of LC1 spaces can

never provide an example of an lc] space which would not be LC1 at the same

time. This different behavior is due to the fact that singular homology is not

continuous with respect to inverse limits.

In this paper we describe a whole category of 2-dimensional metrizable

compacta which are lcj but fail to be LC1 in certain points(2), proving thus

that the implication LC1=>lcJ can not be reversed (Theorem 7). If one admits

examples of infinite dimension, then the problem is easily settled by an in-

Received by the editors September 22, 1958.

0 The same result has also been obtained by H. B. Griffiths in an unpublished paper.

(') The case q = 1 is easier to handle because of the simple relation between the fundamental

group and Hi given by the Poincare theorem. This case deserves special attention due to the

fact that for locally compact metrizable spaces (lc* and LC')=>LC« (see [lO]).
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finite Cartesian product of Poincare spaces (Theorem 8). The main part of

the paper is concerned with a construction giving a 2-dimensional subset of

the infinite Cartesian product which, roughly speaking, in the neighborhood

of some points has the fundamental group of the entire infinite product (see

§3,1). We hope that the main Theorem 6 might prove useful in other connec-

tions too.

The author is much indebted to H. B. Griffiths and D. Puppe for many

helpful discussions concerning the subject of this paper.

1. Preliminaries. 1. The following four propositions will often be referred

to in the sequel. The proofs can be easily supplied and are omitted.

1.1. If 717 is a metric space with metric p and NCM, then U(N, e) will

denote the e-neighborhood around N, i.e. the set {x|x£il7, p(7V, x) <e}.

Let Co, Cx, • • • be a sequence of compact subsets of a metric space 717.

If there is a sequence of reals e„>0, lim e„ = 0, such that CnCU(Co, e„), then

U" Cn is compact.

1.2. Let 7 be the unit interval and let/p: 7—>M, p = l, 2, •••, be a se-

quence of loops in a metric space M, based at a point oCM. Let Fp p+1 he

homotopies in 717, connecting /" and fp+1, such that diam Fp p+1

= max, diam F" p+1(x, I)Scp, where   JZX cp is a convergent series. Then

f(x) =\impfp(x) exists and is a loop homotopic to all fp. One can choose the

homotopy F, connecting/1 and/, so as to take place in the union of images of

all Fp p+1.

F can be obtained by considering Fp p+1 as defined over IXIP, where

7p= [(P-1)IP, P/(P + 1)} and setting

(1) F(x, t) = Fp *+!(„, t), for x G I, t & IP, p € {1, 2, • • • },

and F(x, 1) =f(x).
Whenever we speak of homotopies of loops and paths we mean homo-

topies with fixed end-points.

1.3. Let M* be a metric space obtained from its closed subset 717 by at-

taching an re-cell e", re> 1. Every loop/ in 717* with base point in 717 can be

deformed (inside 717*) into a path g in 717 in such a way that the deformation

F(x, t)=f(x), whenever f(x)CM and F(x, t)C(e")~, whenever f(x)Ce".

IA. Let 717 be a metric space with a base point o and /: 7—>J17 a path.

Furthermore, let 77 be an open set of 7 such that /(U\ U) = o. U is obviously

the union of at most countably many disjoint open intervals VCI, which

are components of U; f\ V are loops in M, based on o.

If for every V, Fv: VXI—>M is a deformation of the loop f\ V and for

every e>0 there is a 5(e) >0 with the property that diam V<8 implies

diam Fv<e, then the following relations define a deformation F of the path /*:

(2) F(x, t) = Fr(x, I),        for x CV,

(3) F(x, I) = o, for x C TAU



1959] HOMOLOGY LOCAL CONNECTEDNESS 397

and

(4) F(x, t) = f(x), for xCEI\U.

2. By a finite cell complex K we mean in this paper a finite cell complex

which admits a simplicial subdivision (see e.g. [2, p. 152]). We use the same

letter to denote the complex and the underlying polyhedron. There is no loss

of generality in assuming that K is provided with a metric dSl and that

every point x of K has arbitrarily small 5-neighborhoods U(x) admitting a

cell-preserving contraction into x (with respect to K)(3). Moreover, if dim K

= « and Kp denotes the p-skeleton of K, we can assume that this contraction

is composed first of a cell-preserving deformation retraction of U onto

Uf~\Kn~l, then of a cell-preserving deformation retraction of lir\Kn~l onto

Ur\Kn~2, etc. Clearly, U(x) has to be contained in the open star Stx(x). We

shall often have the additional assumption that K has a single vertex o;

closed 1-cells will therefore be 1-spheres and thus never contained entirely

in such a neighborhood U(x).

3. Let Af be a metric space with a given metric dSl- The infinite Car-

tesian product of a sequence Afi, Af2, ■ ■ • of copies of Af will be denoted by

IXAf. If xGAf, we shall usually denote the reth coordinate of x by x„. We

shall consider Af as metrized by the metric

CO

(5) p(x, y) = E d(xn, yn)2~n.
i

If a = (ai, ■ ■ ■ , o„) =aiX • • • Xan is a point of the re-fold Cartesian product

AfX • • • X Af and b = (bx, ■ ■ -)=bxX • • • is a point of the infinite product

IJAf, we shall often denote the point (ax, • • • , a„, bx, ■ ■ ■ )CEYl_M simply
by aXb. If ^CAfX • • • XAf and FClT^> tne meaning of the notation

AXBCllM is clear.
2. Infinite Cartesian products of cell complexes. 1. Let K be a finite cell

complex(4) having a single vertex o. We can assume that dim KS2 (other-

wise we should replace K by the 2-skeleton AT2 in (4)). The infinite Cartesian

product JXK will be denoted hereafter by Po- All sets encountered through-

out §§2-4 will be subsets of F0. The cellular structure of K induces a de-

composition of Fo into disjoint "cells"

(1) CT = (71 X T2 X   •   •  • ,

where an are (open) cells of K. We define

(2) dim (7 = E dim an S °o.
i

Let Xo(Yo) denote the "2-skeleton" ("1-skeleton") of this decomposition of

(3) A deformation is said to be cell-preserving if, during the deformation, no point can

leave the closure of the cell containing that point at / = 0.

(4) See §1,2 and §1,3.
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Po. The "O-skeleton" consists of a single point O=(o, o, • ■ ■ ). Denoting by

L the l-skeleton of K and by o" the point (o, o, ■ ■ ■ , o) of the re-fold product

KX ■ • ■ XK (o° meaning the "empty symbol"), we have

00

(3) Yo = U o" X L X 0 = (7 X 0) W (o X L X 0) W (o X o X L X 0) KJ ■ ■ -,

(4) Xo = ( U o" X K X 0) U ( U o" X L X F„V
\n=0 / \n=0 /

Observing that(4) diam (o"XKXO) ^2-n-J and diam (o"X7X Fo) _>2-» we

conclude readily (by 1.1.1) that F0 and X0 are compacta. Notice also that a

point of F0(.X"o) can have at most one (two) coordinates different from o.

Although the described decomposition of P0 is not a complex, we shall

prove in this section

Theorem 1. The inclusion XoCPo induces an isomorphism of iri(Xj) onto

TTl(Po).

2. Definition 1. A loop /: 7—>P0 (based at 0) is said to be a standard

loop if /((re -l)/n)=0, for all re = 1, 2, • • • and if /(7„) Co"-1 XLXO (recall

that In= [(n-l)/n, re/(« + l)]).

Lemma 1. If f and g are standard loops, homotopic in P0, then they are

homotopic already in Xa.

Proof. Let F he a homotopy in P0 connecting/ and g and let F„, /„ and gn

he maps obtained from F, f and g respectively by composition with the natu-

ral projection Po= T[K^ro"~1XKXO. Fn is obviously a homotopy connect-

ing /„ and gn. However, fn(x)=f(x), g„(x)=g(x), for x£7„, otherwise /„(„)

= gn(x) =0, hence, the Ioops/| 7n and g| I„ are homotopic in o"~1XKXOCXo\

let G" be a connecting homotopy. Defining G by G(x, t)=G"(x, t), for (x, t)

CInXl, re=l, 2, • • • , and by G(l, t)=0, we obtain a homotopy in X0 con-

necting/and g.

ltfn and gn both lie in a subset of o"~1XKXO, which is contractible to 0

(0 fixed during contraction), then we can take for G" a connecting homotopy

contained in that subset. Using this remark we can prove

Lemma 2. For every e>0 there is a 8(e) >0 such that any two standard loops

f and g, homotopic in P0 and lying in U(0, 8), can be connected by a homotopy

inXoC\U(0, e).

Indeed, choose p so large that 2_p<e and 0<??<e such that U(o, rj) is

contractible to o in K. Let 8(e) = r\2~p. ll f, gCU(0, 5), then/„, gnCo"'1

XU(o, i))X0, for re = l, • • • , p. Choose now G", re = l, • • • , p, in o""1

XU(o, r,)X0 (no requirements on Gp+1, • ■ •). Clearly, G(x, t)CU(0, 5)

C U(0, e), for xCLKJ ■ ■ ■ VJ/,. For xCIn, n>p, we obtain G(x, t)CU(0, e)
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as a consequence of diam o"~1XKXOS2~" and of the choice of p. Lemma 2

will be used in §3.

Lemma 3. Every loop f in Pa (based at 0) can be deformed (in P0) into a

standard loop.

Proof. The reth coordinate /„ of/, being a loop in K, admits a deformation

F„ (in K) into a loop gn of the 1-skeleton L of K. One can easily achieve that

gn(I\In)=o. F=(Fi, Fi, • • • ) is then obviously a deformation of/ into a

standard loop g.

3. The main part of the proof of Theorem 1 is contained in the following

Lemma 4. Every loop f in X0 (based at 0) can be deformed, in X0, into a

standard loop.

Proof. Observe first that cell-preserving deformations of coordinates fn

of/give a deformation of/in P0 which actually takes place in the "2-skeleton"

Xo of Fo. Since the deformations occurring in the cell-approximation theorem

are cell-preserving, we can assume that/n are loops in the 1-skeleton L; and,

consequently, that/ is contained in the second summand of (4). Moreover,

we can achieve (say, by simplicial approximations with respect to some

simplicial subdivisions of L) that, for re = l, 2, • • • , the open set U„

= {x|/„(x) J£-o\ CEI is the union of finitely many disjoint open intervals.

Given a point aCEUn, it is clear that the particular open interval of Un

which contains a is mapped by/„ entirely into a l-cell of L. Therefore, it is

easy to define a cell-preserving deformation, affecting only that particular

interval (without changing the total number of components of (7„) and yield-

ing a new loop/n with/„(a) =o. In view of this remark we can assume from

now on that for every « = 1, 2, ■ • • , fn(I)CEL, that U„ consists of a finite

number of disjoint open intervals and that fr(Un\U„) =o, ior r^n; a loop

having the last two properties will be referred to as a "normal" loop.

Consider now the sets

(5) Sp= F0u(   U    o"XLX Fo).
\n-p-l /

All Sp are compact (by 1.1.1) and XoDSi_}S2D • • • DP>5P= F0. In view of
the above remarks, fCESx.

We shall now define, by induction, a sequence of loops f=f1,fi, • • ■ , fp,

• • • , withf"CESp, and a sequence of homotopies Fp p+1: IXI—*SP, connect-

ing fp and /p+1 and satisfying

(6) diam Fp "+1 S 2~p+1.

1.1.2 will then provide a limit loop/=lim/p, obviously contained in Y0 and

homotopic to/ in U"_i SPCEX0.

Suppose that f=f1, •••,/" and F12, • • • , Fp~l p have already been de-
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fined and satisfy the conditions of above; in order to carry through the induc-

tion, we assume in addition that/1, ■ ■ ■ , fp are "normal" loops. For p=l,

these conditions are verified as established in the preceding remarks concern-

ing/. Consider now Up= {x\fl(x) 9^o},fv denoting the pth coordinate of/p.

Since fpCSv, it follows immediately from (5) that

(7) f(UPp) C Z"1 X 7 X Yo.

Now let (a, b) be one of the finitely many components of 77'. In order to

define Fp p+1, choose a point c, a<c<b, and put

(8) ct = c+(l- l)(b - c),dt = a+ t(c -a), I C 7.

Furthermore, let at(x) be the transformation mapping [a,ct] linearly onto

[a, b] and sending [ct, b] into b; let Bt be the transformation mapping [a, dt]

into a and mapping [_,, b] linearly onto [a, b]. at(x) and |S((x) are mappings

of [a, b] XI into [a, b], leaving end-points a and b fixed.

Define now Fpp+1: [a, 6]X7->op"1X7X Y0CSP by

(9) F" P+\x, t) = cA1 X fPat(x) X (fP+i X fP+2 X ■ ■ ■ )pt(x).

Clearly,  Fp p+1(x, 0)=fp(x). As to fp+1(x) = FP p+l(x,  1), observe first that

fj(a) =f)(b) =o, for rSip (/» is "normal"). It now follows, from (9), that

(10) f*\x) = o1"1 X fpoti(x) X o X o X ■ ■ • , for x C [a, c],

(11) f*\x) = o" X (&i X &t X • • • )j8i(x), for x C [e, b],

showing that/p+1([a, b])CY0CSp+x.

We define Fp p+1 on other components of UP in exactly the same way (they

are in a finite number) and complete the definition by

(12) F ^ (x, I) = f(x),        for x C I\UPP.

Fp p+1 is continuous on 7X7, because (10), (11) and (12) give F" p+1(a, t)

= Fpp+1(b, t)=0. Moreover, for xCI\Up, fp(x)=o and thus fp+1(x) =fp(x)

belongs actually to SP+iCSp. (6) follows from diam op-lXLXYoS2~p+1.

Finally, it is readily checked that/p+1 is "normal." This completes the argu-

ment showing that every loop of X0 (based on 0) can be deformed, in X0,

into a loop of F0.

To complete the proof of Lemma 4, we have to show now that every loop

/ of F0 (based at 0) can be deformed, in X0, into a standard loop. For that

purpose we shall define by induction a sequence of loops /=/°, /\ • • • ,

fp, • • • in F0 and a sequence of homotopies F"+1: 7X7—*.Y0, connecting

fp and/p+1 and having diam Fp p+1 S2~". For p>0, we require in addition

(13) /p(75) C o"-1 XLXO, qSp,
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(») Kttt)-'' ,s*
<1S) ,i[jh'l])Co'xr"

Once such a sequence is defined, 1.1.2 will yield a limit loop /=lim/p, homo-

topic to/ in Xo, and actually a standard loop (due to (13) and (14)).

Assume that/1, • • • , fp and F°1, ■ • ■ , Fp~1 p have already been defined

in accordance with the above requirements. Denote p/(p + l), (p + l)/(p+2)

and 1 by a, c and b respectively and let ct, dt, at(x) and /8((x), for xCE [a, b], be

defined as in the preceding argument; moreover, let at(x) =ftt(x) =x, for

xGI\(a, b). We define F" p+x by

(16) Fpp+Kx, t) = f(x),       forxG[o,—^-], t G /,

(17) FP "\x, t) = oPX fl+iatix) X ifl+i X fl+s X ■ ■ ■ )0t(x),

tesGk+T1]' tei>

(18) f+1ix) = Fpp+1(x, 1).

All the required properties are readily checked (notice that fpPt(x) G F0 im-

plies (fP+iXfv+3X ' ■ -)PM*)GF0).
4. The following lemma will be needed in §3.

Lemma 5. For every e>0 there is a 5(e) >0 such that every loop f, lying in

UiO, b) CEPo {in X0C\ 77(0, 5)), can be deformed into a standard loop by a de-

formation lying in UiO, e) (ire X0f~\U(O, e)).

Proof. Choose p, -n and 5 as in the proof of Lemma 2 (with the additional

requirement that U(o, rf) admits a cell-preserving contraction to 6). If

fCEUiO, b), then/, • • • ,fpCEUio, if)CEK. Composing these coordinates with

a (cell-preserving) contraction of U(o, n) to o, while leaving fp+x, ■ ■ ■ un-

changed, one obtains a deformation F of /, in P0 (in Xo), into a loop

g Co* X Poig Co" X Xo). Since piFix, t), Fix, 0)) < v + ■ ■ ■ + r,2-p+l

= 2-nil-2~p) and F(x, 0) =/(x) G (7(0, 5), it follows that piO, Fix, t))<2n

<2e. Consequently, FCEUiO, 2e). Applying now Lemma 3 (Lemma 4) to g

and opXPoiopXXo) we deform g further into a standard loop by a deforma-

tion of diameter lesser than diam (opXPo) S2~p<e. The total deformation is

thus contained in U(0, 2e).

5. Proof of Theorem 1. Lemma 3 proves that the homomorphism

i: irx(Xo)^>irx(Po), induced by X0CEPo, is an epimorphism. Combining Lemmas

4 and 1, we conclude that i is a monomorphism (the constant loop g(x) =0

is a standard loop).
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Remark. Theorem 1 holds also in the case of an infinite product of differ-

ent complexes Ki, K2, • • • (6).

3. Continuous curve X and its fundamental group.

1. Description of the basic construction. Let K he a finite cell complex

having one single vertex o and at least one 1-cell. Choose a sequence of finite

(nonempty) disjoint subsets Ai, • • • , Ak, • • • of the 1-skeleton 7 of K in

such a way that oCAi and that

(1) A = U Ak
*=i

is dense in L; these sets will be considered as fixed throughout this section.

We define next, by induction on re, a finite subset Bn of the re-fold product

KX ■ ■ ■ XK, by

(2) Bn = U Bn-k X Ak X a*"1.
k=l

Bo, as well as Ao, o° and o_1 are considered to represent "empty symbols";

e.g. Bi=Au B2 = AiXAiUA2Xo. Notice that o"CBn, tor all re^l. Let XQ

and F0 be as in §2. Consider the following subsets of Po

OO

(3) X = U Bn X X0 and
n=0

00

(4) F = U Bn X Yo.
n=0

Let Y and X he the closures of Y and X taken with respect to Po.

In this section, and the following section, we are concerned with a proof

of the basic

Theorem 2. X and Y are continuous curves^) with dim X = 2, dim Y =1.

YCX and points of X\Y have 2-dimensional Euclidean neighborhoods (with

respect to X). The inclusion XCPo induces an isomorphism iri(X)~iri(Pj).

Every xCY has a basis of connected (open) neighborhoods (with respect to X)

U(x), such that U(x)CX induces a monomorphism of iri(U) into iri(X) with

an image isomorphic to ttx(PJ).

2. For purposes of proof we introduce certain subsets of Po approximating

X and F. Let

00 QO

(5) Xi = U Ak X o"-1 X Xo,        Yi = U Ak X o^1 X F0.
*=o *=o

(6) It seems likely that the restriction to complexes having a single vertex (imposed in view

of applications in forthcoming sections) should not be essential for the validity of Theorem 1.

(') I.e. metrizable compact connected and locally connected spaces.
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Xx and Fi are compact (1.1.1) and connected. The same is true for

(6) Xp+X = Xp \J Bp X Xx = U F„ X Xx
0

and

(7) Fp+i = Yp U Bp X Xi = U Bn X Yx,        p = 1, 2, • • • .
o

Denote by Bn P the union of the last p terms in the expression (2), pSn,

n

(8) Bn p =      U     Bn-k X AkX o"-K
k=n—p+l

Notice that Bn „=Bn. One obtains new expressions for Xp and X

(9) Xp = ( U B„ X x\ U ( U F„ , X Xo),   p = 1, 2, • • •,

00

(10) X = U Xp.
o

Analogous formulae hold for Yp and Y. Notice that XpCEXp+i, YPCEYP+X,

YP+XCEXP. We conclude from (10) that connectedness of Xn and Y„ implies

that of X and Y as well as X and Y.

In order to obtain suitable approximations of X and Y "from outside" we

introduce

(11) PP = Ci)  Bn X Xo) U ( U Bn , X Po)
\n=0 / \n=p /

and

(12) QP = (*U Bn X Yo) VJ ( U Bn P X Po).
\n=0 / \n=P /

Notice that

(13) Xp C PP,        YPCQPC PP.

In order to prove

(14) Pp+i C PP,       QP+X C Qv,

it suffices to show that Bn P+xXPoC(BpXP0)^J(Bn PXP0), n^p + 1. All but

the first term of B„ P+xXPo are contained in Bn PXPo; however, this term is

BpXAn-PXo"-p-1XPo = BpXBn-pXXPoCBpXPo.
A consequence of (13) and (14) is
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(15) Xp C Pq, Yv C Qq,

for arbitrary p, q.

Observe now that OCX0 and Bn PXO,CBn PXX0CXP, n^p; therefore,

diam (6XP0) _?2-», bCBn „ implies PpC U(XP, 2~p+') C U(X, 2"p+1). Firstly,

we conclude (1.1.1) that Pp is compact because Xp is compact. Secondly,

since XC^Pp (by (15)),
co

(i6) x = n Pp.
i

Analogous arguments show that Qp is compact and

(17) F = n Qp.
i

3. We list here several simple propositions needed in the sequel.

3.1. x=(xx, ■ ■ ■ , x„)CBn implies XkCAiKJ ■ ■ ■ VJAn-k+i, k=l, ■ ■ ■ , re.
Proof immediate by induction on re.

3.2. x = (xi, • ■ • , xn)CBn and xq 5^0, 2SqSn, implies (xx, ■ ■ • , xq-j)

£-,-!■

Proof of induction on re^a (q fixed), x can not belong to the last q—1

terms of (2) because the gth coordinate would be 0. Hence, xGBn-kXAkXoh~l,

kC{l, ■ ■ ■ , « —g + l}. It n — k<q, then actually re — k = q — 1 (otherwise we

would have xq = o). However, in this case x£739_iX-4„_g+iXon_9 and

(xi, • ■ ■ , xq-j) C Pa-i. In the remaining cases q S n — k and

(xi, ■ ■ ■ , xq, ■ ■ • , x„_4)GPn-A so that the hypothesis of induction is ap-

plicable.

3.3. For arbitrary q, re, BqXB„ CBq+n. Proof by induction on re. Substitute

(2) for Bn, apply the inductive hypothesis and notice that the resulting ex-

pression gives the first re terms of (2) for Bq+n.

3.4. If 0 denotes the empty set, then (PpXPo)7^(73„ pXPo) =0, for

n>p, and (Bn PXPo)r\(Bm pXPo)=0, for n>m^p.

It suffices to prove the first assertion, because of B„ pCBn m, Bm pCBm.

Assume that xCBn pXPo', there exists then an sC{n — p + l, ■ • • , re} (by

(8)) such that xCBnsXA.Xo'^XPo, hence xn-s+iCAa, n-s + lSp. If at

the same time xCBpXPo, then 3.1 would imply Xn-s+iGAiKJ ■ ■ ■ LA4„_(„_,,).

However, this set is disjoint with As (because of w>p and the definition of

sets Aj), which presents a contradiction.

3.5. If q>p, we have

(18) ( 1) Bn X Yo) H (73, p X Po) = BqpXO.
\n=0 /

Indeed, if bCBqp, it follows immediately (by (8)), that 6XOGPnXF0, for
anreGJO, • • - ,p-l}.Ontheotherhand,forre^p-l,(P„XFo)n(5a„XPo)
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= 0 by 3.4, so that xG(F„XF0)n(F9PXPo) implies xGF^X^tXo^XPo,

with 2Sq — p + lSkSq — re. Since oG^i and Xg-jt+iG^t (AkC\Ax = 0), we

have xq-k+x j^o, showing that at least one of the coordinates x„+i, • ■ ■ , xp is

7^0. However, xCEBnXY0 implies (xn+i, • • • , xp, xp+i, ■ ■ ■ )GF0 and thus

(xp+i, • • • ) =0 (see 2.1); a fortiori (x8+i, • • • ) =0.

3.6.

(19) Fp+x n (Bp X Po) = Bp X Yu

(20) Qp+i C\ (Bp X Po) = Bp X Qi,       Pp+i r\ (Bp X Po) = Bp X Pi.

Notice first that xGFi implies (x2, x3, • • • )GF0CFi. Therefore, xCE Yp+X

implies (xp+i, ■ • • )GFi (see (7)); this proves (19). In order to prove the

first relation in (20) (proof of the second relation is analogous), notice first

that, for re^p + 1, Bn p+iXPo = (Bn PXPo)xJ(BpXAn-PXon-p-lXPo). Using

3.4, we conclude that xCE(Bn p+iXPo)C\(BpXPo) implies xG-F.pX.4n-p

Xon~p-lXPoCBPXQx. If on the other hand xCE(BnX Yo)C\(BpXPo),
nSp, then (xp+i, ■ ■ ■ )CEY0 and thus xCEBpX Y0CEBPXQX; this proves C in

(20). The other inclusion follows from the fact that, for re^l, BpXBnXXPo

= BpXAnXon~1XPo is the first term of Bp+n P+iXPoCQP+i-

3.7.

(21) Yp+X = (YP\(BP X Po)) \J (Bp X Yi),

Qp+i = iQAiBP X Po)) W (Bp X Qi),

P^i = (PP\(BP X Po)) W (Bp X Pi).

(21) is an immediate consequence of (7) and (19). To prove the first relation

of (22) (the second is proved analogously) notice that the first summand in

(12) is also contained in the expansion for QP+i. Furthermore, for re ̂  p + 1,

Bn PXPoCEBn P+iXPoCEQP+i- Since the only remaining term in (12) is

FpXFo, we conclude that QP\(BpXPo) C0p+i- This and (20) prove D in (22).
The other inclusion follows from (14) and (20).

3.8. The following sets (23) and (24) are compact, q^p,

(23) (QP\(Bq p X Fo)) \J (Bq p X O),

(24) (Yp\(Bq p X Po)) U (Bq p X O).

It suffices to prove that (23) is compact, the assertion for (24) will then follow

(using the fact that Yp is compact and FpC0p)-

Given a sequence x1, • • • , xk, • • • of points of (QP\(Bq pXPo)) we can

assume that it converges towards a limit xCEQP (because Qp is compact); we

have to show that x belongs to the set (23). This is certainly the case if x is

not in BqpXPo- Assume therefore that xCEQPC\(Bq pXPo). If x*G&XPo,

bCEBmp,m^p,m =Aq, replace x* (in the sequence) by y* = d>XOGU^li (F„X Yf)

(see (8)); notice also that bXOCEBmpXPo and thus does not belong to

BqpXPo (see 3.4). There can only be finitely many terms x* in a given
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Bm pXPo, m^p, rnj^q, otherwise we would have xCBm pXPo contradicting

the assumption xCBqvXPo (see 3.4). Since p(xk, bXO)S2~m, the new se-

quence y*, obtained from xk in the described way, converges to the same x

and is contained in (U^li (73„X Yj))\(Bq pXPj); the first term of this ex-

pression being compact, we get

(25) x C ( U (Bn X  Yo)) C\(BqpX Po), q = p.

If q>p, our assertion follows immediately from (25) and (18). In the case

q = p, we have to prove that xp+i=xp+2= ■ • ■ =o. Suppose on the contrary

that there is an r Si 1 with xp+r ;-o. Let k he so large that y*+r 7^0, too. Since

y*GPnXF0, for some OSnSp-1, it follows that (y*+1, • • • , y*+r, • • • )CY0

and thus y*+i= • • • =y*p+T_l = o. Hence, y*e73nXop-"X0rXPoCPpXPo,

contradicting the fact that y* does not belong to BpXPo-

3.9.

(26) (Bp X Po) n Y = Bp X Y.

Let xG(PPXPo)C\F. Since YCQp+i we conclude (from (20)) that

xCBpXQi. Hence, x is either in PPXF0CPPXF or in (BpXBniiXPo)r\Y,

for an rei^l. Since also YCQp+nx+i, we see that, in the second case,

xCBpXBniiXQi (notice that, by 3.3, PPX73niiCPPXPn1CPP+n1)_and thus

either xCBvXBniiX Y0CBPX Y or xC(BpXBniiXBn2iXPo)^Y, for an
«2^ 1. Continuing this argument we conclude that either xCBpf~\Y or there

is a sequence wi, n2, ■ ■ -Si 1, such that (xp+x, ■ ■ ■ , xnk)CBni+-.-+nk- However,

in this last case, points (xp+i, ■ ■ ■ , xnk, 0, 0, ■ ■ • )CB„1+...+nkXOC Y con-

verge to (*p+i, • • • ), proving again that xCBpXY. In order to prove the

other inclusion in (26) it suffices to observe that BPX YC(BpXPj)C\ Y is an

immediate consequence of (4) and 3.3.

3.10.

(27) F= (U 73„X Yo)Kj( U BnpX y\ forpSil.

Immediate consequence of 3.9 and the fact that Y = YC\QP.

4. Lemma 6. Every loop f in Y (based at 0) can be deformed in X into a

standard loop (contained in FoC-^o).

4.1. According to (17), / can be considered as a loop of Qp, for every

p = 0, 1, 2, - • • (C7o = Po). We shall define now deformations Fp of/ (in Qj)

such that

(i)P/(*)E&XPo, &-iPnp, n^p^l, implies Fp(x, t)CbXPo and fp(x)

= Fp(x, l)CbXYoCYp,
(ii)p f(x)GQp\(UmpBn pXPo), p_:l, implies Fp(x, t)=f(x)CYp, requir-

ing in addition that/0 be standard. (i)p and (ii),, imply diam Fp S 2~p and thus

lim/p=/. The next step will consist in defining homotopies Gp p+1, connecting
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f and/p+1, in Xp, and satisfying diam GPP+1S2~P. An application of 1.1.2

will then prove that/is homotopic, in X, to/°CF0.

4.2. F» exists by Lemma 3. For p^l, let Rp = (Qp\(BpXPo))V(BpXO)
and let bCEBp. Obviously Qp=[Rp[U((Bp\{b})XPo)]V(bXPo); both sum-
mands are compact (see 3.8) and their intersection is the single point bXO.

Since fCQp, the set U= {x|/(x)G(&XPo)\{&XO} } Cf js open_and/(7j\t7)

= bXO. If V is any one of the components of U, then F\FC U\U, so that

/| V is a loop in bXPo, based at bXO. We can apply now Lemma 5 (the part

concerning P0) to obtain homotopies deforming loops/| V into loops of bX Yo

in such a way that 1.1.4 is applicable and produces a deformation of/, de-

fined over the entire interval I. Repeating the process with all b of the finite

set BP, we arrive at a deformation, satisfying (i)p, for n = p, and having the

following property ("approximating" property (ii)p): for f(x)CEQP\(BpXPo),

the deformation equals/(x).

4.3. Now repeat the process described in 4.2, this time applied to the loop

we obtained in 4.2 and to all bCEBp+i p (we consider Rp+i p = (QP\(Bp+i pXPo))

VJ(Bp+XpXO) and the decomposition Qp= [Rp+X PVJ((BP+X p\{b}) XPo)]

U(d>XPo))- The resulting deformation affects only the set Bp+X pXPo (dis-

joint to BpXPo) and does not interfere with the gain (in the direction of ob-

taining (i)j, and (ii)p) achieved in the preceding step. Defining in this manner

a sequence of deformations and passing finally to the limit (1.1.2), one arrives

at a deformation Fp, satisfying (i)P and (ii)p (1.1.2 is applicable because the

diameter of the deformation in the step involving Bn PXPo is ^2_n).

4.4. We proceed now to define Gp p+l. Consider again bCEBp and the sets

Rp and U, defined as above. Points of U\U can be approached arbitrarily

close from U as well as from I\U. Since Fp maps U in bXPo and I\U in

(Qp\(bXPo))^J(bXO) (due to (i)pand (ii)p), and these two sets are compact

(see 3.8), we conclude that FP((U\U)XI) is contained in their intersection,

i.e.

(28) Fp((V\U) XI) =bXO, bGBp.

In a similar way, using (i)p+i and (ii)p+i, one can see that FP+1(UXI) CEbXPo

and Fp+1((/\[/)Xi)C(Op\(t>XPo))W(&XO) and therefore

(29) Fp+1((F\F) XI) =bXO, 6 G Fp.

Now let V be any one of the components of U. Then FP\VXI and

Fp+1| VXI are homotopies in bXPo, connecting the loop/| V with the loops

/p| V and/p+1| V respectively; these loops are therefore homotopic in bXPo-

Moreover, f(V) CbX YQCbXX0, by (i)P, while (i)p+1 and (ii)p+i imply

/p+1(F)CFp+i. Applying (19) we conclude that actually f+1(V)CbX Yx

CbXXo. It follows (Theorem 1) that/p| V andf+1\V are homotopic already
in bXX0.

Notice now that/p and/p+1 are uniformly continuous on I and therefore,
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for every e>0, there is a 8>0 such that diam VS& implies fpC(bXX0)

r\ U(b X0, e) and/p+1 C (b XXB)H U(b X0, e). Now take into account Lemma

5 (the part concerning Xj) and Lemma 2. It is clear that we can define homo-

topies Fv, connecting/p| V and/p+1| V in bXX0, tor every V, in such a way

that 1.1.4 is applicable (with M= Yp\J(bXXj), base point bXO, open set 77,

mapping/p: 7—*M and homotopies Fv), producing a homotopy in Ypyj(bXXo)

CXP, defined over 7X7. Repeating the whole construction for every bCBp,

we arrive at a homotopy contained in Yp\J(BpXXj) CXP and equal to

fp(x) on {x\f(x) CQj\(B PXP j) ] ;/» is deformed by this homotopy into a map

which coincides with/p+1 on {x\f(x)C(BpXPo)} ■

4.5. Repeat now the process described in 4.4 with all bCBp+x p (Rp has

to be replaced by Rp+X p, U= {x\f(x)C(bXPj)\{bXO} }) and apply 1.1.4
to the loop obtained from/p as the result of the deformation described in 4.4.

Continue this process for Bp+2 p, ■ ■ ■ . The step involving Bk P, k^p, affects

only the set {x\f(x)C(Bk PXPj)} and has a diameter ^2-*; the resulting

loop coincides with fp+1(x) on {x\f(x)E\J*-p (BH PXPo)} . Applying 1.1.2

(and (i),,, (ii)p, (i)P+i> (ii)p+i) we conclude, finally, that there is a homotopy

Gp p+1 contained in ATPand connecting/pwith/p+1;if/(x) GoXPo,6G73„pXPo,

reSip, then Gp p+1(x, t)CbXX0CXp, otherwise Gp p+1(x, t) =fp(x) =/"+!(*)•

Consequently, diam Gp p+1^2~p, so that 1.1.2 is applicable.

Notice that the deformation Gp, that one obtains applying 1.1.2 to the

sequence Gp p+1, Gp+1 p+2, • • • , has some special properties that we state

here (for future usage):

Lemma 7. Given any loop f in Y (based at 0) and any integer ps^O, there is a

loopfp C Yp and a homotopy GPCX, connectingfp andf, and having the property

that, for f(x)CbXPo, bCBn P, n^p, we have Gp(x, t)CbXPo, while otherwise

Gp(x,t)=f»(x)=f(x).

5. If a sequence of (Euclidean) cells in a metric space has the property

that the diameters of the cells tend to zero, we shall speak of a 0-sequence of

cells.

Lemma 8. X can be obtained from Y by attaching a 0-sequence of disjoint

2-dimensional cells.

We precede the proof by some consequences.

Lemma 9. Every loop f in X (based at 0) can be deformed in X into a loop

of 7.

A proof follows from Lemma 8 and Propositions 1.1.3 and 1.1.2.

Theorem 3. X is an arcwise connected subset of Po- The inclusions

Xo CXCPo induce isomorphisms of the corresponding fundamental groups.

Proof follows from Lemmas 9 and 6 and Theorem 1.
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Proof of Lemma 8. If cr is a 2-cell (open) of K, then crXO is a 2-cell im-

bedded in F0 and contained in i^XOC^o- Let Ln be the subdivision of L

obtained by considering all points of ^4iW • • • UAn as vertexes of Ln, reS: 1.

If cr is a 1-cell (open) of Ln and r a 1-cell (open) of L, then crXo"_1XrXO is

a 2-cell imbedded in F0 and contained in FXon_1XFXOC^o. The described

2-cells will be referred to in the sequel as 2-cells of the first and of the second

kind respectively. It is not difficult to see that these cells are disjoint one

from each other and from Qx, while their boundaries lie in Fi CEQi, e.g. in the

case of cells of the second kind, the boundary is lying in U*an (^4*Xo"~1XFXO)

W(FXO)CFi. Moreover, it is easy to see that all the described 2-cells can

be ordered in a sequence ex, e2, ■ • • with lim diam en = 0. (Observe that the

set A from §3, (1) is dense in L and that there are only finitely many cells of

the first kind.) Finally,

00

(30) Pi = Qi U U en,
n=l

showing that Pi is obtained from Qi by attaching the described O-sequence of

cells. We prove next

(31) Fp+i = Qp+i U (VJ en) VJ (W Bi X en) U • • • U (W Bp X en).

The inclusion D is immediate because of enCEXo. The inclusion C can be

proved by induction on p, using (30) and both relations in (22). Finally,

(32) X = Y KJ (\J en)\J (\J BiX en)\J ■ ■ ■ \J QJ BPX en)\J ■ ■ ■ .

Recall the relations (16) and (17). If xCEX\Y, let p + 1 be the smallest integer

such that x does not belong to 0p+i. Since xG-^CPp+i, it follows from (31)

that x belongs to the set on the right side of (32). The other inclusion is

obvious, since enCEXo.

Observe now that QxC\en = 0 implies (by (20)) that FPi(FpXe„) CQp+i

r\(BpXen) = 0. It implies also (BpXen)r\(BqXem) =0, ior p>q. Indeed, if

xCE(BqXem), then (xq+x, ■ • ■ )CEem and thus obviously (x<,+2, • • • )CEYo-

Furthermore, p>q implies (xp+i, ■ • • )GFoC(?i> while xCE(BpXen) would

imply (xp+i, • • • )CEen- The boundary of en lies in Yx, therefore, the boundary

of BpXen lies in FpXFiCFpCF. Finally, since diam en tends towards

zero, the cells appearing in (32) can be ordered into a 0-sequence.

Notice that Lemma 8 proves also that points of X\Y have Euclidean 2-

neighborhoods.

4. Local properties of X. 4.1. We shall now consider particular open sets

of X, referred to in the sequel as standard open sets. A standard open set of

X is the intersection of X and an open set U of P0 of the form U=UXX • • •

XUqXPo, where Un are open in K, provided that one can find a point

bXO, bCEBp, pSq, contained in U. Moreover, if b„ denotes the reth coordinate

of bXO, UnC\K should admit a cell-preserving (with respect to K) deforma-
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tion retraction to UnC\L and Unr\L should be contractible to bn; for n<p,

this contraction should be cell-preserving with respect to the subdivision

7p_n. Notice that these requirements imply that, for bn ?± o, [/„ can not con-

tain o and that, for n<p, Un can not contain points of AiVJ • • • KJAp-n ex-

cept b„, which may belong to that set.

4.2. Lemma 10. Standard open sets of X form a basis of neighborhoods at

every point x belonging to Y.

If xCY and W is an open set of Po, xCW, we have to find a standard

open set UC\X such that xC UCW. Clearly, we can find V = ViX ■ ■ ■ X Vq

XPo, xC VCjW, such that Vn is open and admits a cell-preserving deforma-

tion retraction of VnC\K to VnC\L and a contraction of VnC\L into x„, nSq

(see 1.2).

Assume now first that xC Y or more precisely that xCBpXomXLxO

(see §3, (4) and §2, (3)). We can also assume that q Sip +m + l. Let r he such an

integer that (AjU • • ■ KJAr)r\Vp+m+i 7^0 (A is dense in 7). If xp+m+i does

not belong to AjU ■ • • KJAr, it belongs to a 1-cell of Lr and one of the end-

points of that 1-cell has to be in Vp+m+i; denote that end-point by a. If

xp+m+iCAjU ■ ■ ■ KJAT, put a = xp+m+i, thus, in all cases aCAk, kSr. It is

now possible to choose a new neighborhood Up+m+i C Fp+m+i around a, con-

taining Xp+m+i and satisfying the requirements concerning retraction and con-

traction with respect to Lk. Let b = (xi, • • • , xp+m) XaXok~1CBP+mXAk

Xok~1CBp+m+k. Replace Vi, • • • , Vp+m, Vp+m+2, • • ■ , Vq by smaller neigh-

borhoods Ui, ■ ■ ■ , Up+m, 7/p+m_|2, • ■ ■ , Uq around xx = bi, • • ■ , xp+m = bp+m,

Xp+m+i = 0p+m+2, ■ ■ ■ , xq = bq; these neighborhoods should be chosen so as to

fulfil the requirements in the definition of a standard open set. If necessary,

one can replace a few terms K in V by similar neighborhoods in order to

achieve that U=UiX ■ ■ ■ X Uq, XPo andq'^p+m + k.

Assume now that xCY\Y. Since FC<2<„ it follows (by (12)) that

xCbXPo, where bCBn qCBn, n^q. x and 6X0 coincide in the first re co-

ordinates, it is therefore easy to replace Vi, • • • , Vq, K, ■ • • , K by smaller

neighborhoods 77i, • • • , Uq, Uq+X, ■ ■ ■ , Un (containing Xi, • ■ ■ , x„ respec-

tively) in such a way that XC\(UiX ■ ■ ■ X UnXPj) is a standard neighbor-

hood centered at 6X0 and containing x.

Lemma 10 and the following Theorem 4 prove the assertions of Theorem 2

concerning neighborhoods of points in F:

Theorem 4. A standard open set Ur\X is connected. The inclusion

Ur\XCX induces a monomorphism of corresponding fundamental groups. The

image of iri(Ur\X) in iri(X) under this monomorphism is isomorphic to

iri(Po)^Tri(X).

The proof is based on two lemmas.
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4.3. Lemma 11. Consider all the cells(7) bXe„, bCEBr, r = 0, 1, • • • , which

have points in common with UC\X, but UC\X does not contain their entire

closure bX(en)~. The set obtained from UC\X by removing exactly these cells is a

deformation retract of Uf\X.

The fact that these cells are disjoint and can be ordered in a sequence

with diameters tending to zero, makes it sufficient (see 1.1.2) to prove the

corresponding proposition involving the removal of only one such cell, de-

noted henceforth by cXe, cCEBr (U and bCEBp as in 4.1).

We assume that r<q, the other case being trivial. If e — aXO, i.e. of the

first kind, we have (cXe)C\U = cX(ar\Ur+i)XO. It suffices now to subject

C/p+i to a (cell-preserving) deformation retraction into (a(~\Ur+i), a being the

boundary of a.

If e = aXon~1XrXO, i.e. of the second kind, we have either:

(1) r + re + 1 S q, (c X e) n U = c X (<rH UT+i) X o""1 X (t (~\ Ur+n+i) X 0

or

(2) r + n + 1 > q, (c X e) (~\ U = c X (a f~\ Ur+X) X o"~l X t X 0.

Observe that aT\Ur+i and fC\UT+n+i are simple arcs, while f is a simple

closed curve. Therefore, it is an elementary task to verify that if in the case

(1) oGtfr+n+i, then (cXe)t~\ U admits a deformation retraction to (cXe)C\U,

where e is the boundary of e. Similarly, if Ur+i contains exactly one end-point

of a, then (for (1) as well as for (2)), (cXe)C\ U admits a deformation retrac-

tion into (cXe)f~\U. We shall show now that at least one of the two cases

described is always present.

Assume first (1). Let &,• denote the ith coordinate of bXOCEU, bCEBp. If

br+n+i = o, then oCE Ur+n+i, because br+„+xCEUr+n+i- Suppose now that br+n+x t^o

and thus r+n + lSp- By 3.3.2 we conclude that (bx, ■ ■ • , br+„)CEBr+n, so

that 3.3.1 gives br+xCEAx\J ■ ■ ■ \JAn, showing that br+x is a vertex of Ln.

However, cr is by supposition a 1-cell of Ln, so that bT+x does not belong to cr.

Since br+xCEUr+x and Ur+xC\a 9^0, Ur+i contains at least one end-point of a.

On the other hand, Ur+X can contain at most one point of the set A\KJ • ■ •

VJAp-r_i (see 4.1), while both end-points of a belong to its subset AiU • • ■

KJAn (nSp-r-1).

Assume now (2). If pSr, then br+i = o is disjoint with a, hence, UT+i con-

tains at least one end-point of a. However, if Ur+i would contain both end-

points, i.e. entire a, then U would contain entire cXe, contrary to our as-

sumption. Suppose now that p>r. br+i is now the (r + l)st coordinate of

bCEBp and thus 3.3.1 gives br+xCEAxVJ • • ■ \JAp_r. Since, in this case,

n>q — r— l^p — r— 1 or n}zp — r, we see that br+x is a vertex of Ln and thus

disjoint with cr. The rest of the argument is as above.

(') For the definition of cells em, see the proof of Lemma 8.
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4.4. Lemma 12. If Ur\X is a standard open set, then UC\Y and UC\X are

connected. Every loop f in X(~\ U can be deformed, inside XC\ U, into a loop g

of bXo"~pX Yo, such that (gq+i, ■ ■ • ) is a standard loop of F0.

Proof. In view of Lemma 11, it suffices to prove that Y(~\U is connected

and that every loop/ of Y(~\ U admits a deformation of the kind required by

Lemma 12 (in order to "push" the loop out of the cells cXe whose closure is

in XCMJ, apply 1.1.3 and 1.1.2). Observe now that Y CQq and if/has points

in cXPo, cCBn q, n^q, then (cx, ■ ■ • , cj)C UiX • • • X Uq, hence, (cXPo)

CU. By 3.3.9, we know that (cXPo)(AY = (cXY)CUC\Y is connected.

Since cXOG(U„3,..i 73„X Y«)r\U, the connectedness of YC\U will follow

from that of (Unsa_i 73„X F0)7A77. As to the deformation of/, apply Lemma 7

to/and g; the resulting deformation G" takes place in XC\U (due to special

properties of Gq listed in Lemma 7) and enables us to assume hereafter that

fQYf\U.
Assume now that 6, = a (gth coordinate of 6X0, bCBp). ll c£B,_i and

(cXFo)rW j-0, then it follows easily that (cX F0)CW = (cX(Ll~\ Uq) XO)
\J(cXoXYj) (observe that o = bqCUq and cCUxX • • • XUq-X). Both of

the terms are, obviously, connected and have in common the point cXO

G-ns,_2 Bn X Yo- The question is thus reduced to proving that (U„S3_2 Bn X Yj)

C\U is connected. We can continue this process one step further if 69_i=o.

We now distinguish two cases. Either we meet a coordinate br t^o, r^2, and

have to prove that (U„sr_i PnX F0)7A77 is connected (obviously, rSp), or

we have to prove the obvious statement that YoC\ U is connected (in the last

case6XO = 6iXOG7/, bxCL).
In order to prove our assertion in the first case, let us prove that 6r 7^0,

2SrSp, bCBp, implies

Ynn uc (Yn-Xr\u)KJ (bxx ■ ■ ■ x 6r_i) x (ln ur) x o,
(3) 1

re = 1, • • • , r — 1.

Indeed, let xG(F„H 7J)\(Fn_1D 77) C(73„_iXF1)n 77 (see §3,(21)). Then

(xx, • • • , xn-X)CBn-X and thus (by 3.3.1) xaG^4i^ ■ • ■ KJAn_sCAiVJ ■ ■ ■
KJAp-t, s^re —l.SincexsG Us, it follows from 4.1 thatx5 = 6s, s= 1, • - ■ ,n — 1.

Assume now more precisely that

(4) x C Bn-X X AkX o*-1 X Yo, k G {0, 1, • • • }.

Since xrC UT and br 7^0, 4.1 implies that xr 7^0. We infer from (4) that this is

possible only if n+kSr and that (xn+x, • • • , xr, ■ ■ • )CY0. Therefore,

x„GAkCAxVJ ■ ■ ■ yjAr-nCAiKJ • • ■ KJAp-n. This fact, together with
xnC U„, proves that xn = b„ (by 4.1). Finally, xr 7^0 implies that all other co-

ordinates of (xn+x, ■ ■ ■ ) equal 0. To ~„+i, • ■ • , xr-X, we apply again the

argument involving 4.1 and obtain (3). It is easy to see that (3) remains valid

for re = 0 if we put F_i = J_f. Applying (3) subsequently with n = r— 1, • • - ,

1, 0, we obtain
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(5) Fr_!nuCbxX ■ ■ ■ Xbr-XX(Lr\Ur) XO.

Notice now that (bx X ■ • ■ Xt>r-i)GFr_i (see 3.3.2) so that the set on the

right side of (5) is contained in (Unsr_i BnX F0)f~WC Yr_xC\U and we obtain

(6) (   U  Bn X Yo) (~\ U = Yr-X f~\U = bxX ■ ■ ■ X br-x X(LC\ Ur) X 0;

the examined set is thus an arc and therefore is connected. This completes

the proof of the connectedness of Y(~\U and X(~\U.

Consider now the loop f CE(YqC\U) and suppose that bq = o. Observe that

for cGF3_i, (cX Yx)r\UCcX(Lr\Uq)X F0 and that (cX YX)C\U 7^0 implies

cX(Lr\Uq)XYoC(cXX0)r\UCXnU. Define now a deformation of the set

(F,\(cXF0))U(cX(FPiF9)X F0) by taking identity on the first summand,

on the second summand we keep all the coordinates fixed except the gth

which we subject to a contraction of Lf~\Uq to the point bq = o, this point

being kept fixed during the deformation (cXO is the only common point of

the two summands). The described deformation induces a deformation of the

loop/, which takes place in XC\ Uand brings/into ( Yq\(c XF„)) W(c XoX F0).

Repeating the process for all cCEBq-X, we obtain a deformation of/in XC\U,

giving a loop in Yq-XC\U (see §3,(21)). We can continue this reducing process

one step further if bq-X=o (by similar arguments), etc. If there is no br 9^o,

r ^ 2, then we have only to see that a loop /C YaC\ U can be brought to the

required form. Suppose now that there is a br 9^0, r^2. Then we can assume

that/C(FrfW). Since

(7) Fr H U = [(Fr_i\(Fr_! X Fo)) C\ U] U [(Br-i X Yf) C\ U]

and in this case bxX ■ ■ ■ Xt.X(IDF)XOC(Br-XX Y0) CiBr-iXPo)
C\ Yr-i, we infer from (6) that the first term in (7) is empty and thus FrP\ U

= (Br-i X Yi)t~\ U. However, / being connected, it has to lie entirely in a set

c X Yx, c CE Fr_i. Since b X 0 is the base point of / we conclude that

c=(bx, ■ ■ ■ , K-i), hence, fCihX ■ • • Xlh-iXYi)r\UChX ■ ■ ■ Xbr-X
X(Lr\Ur)X(Y0r\(Ur+xX ■ ■ ■ XUqXPo))CXr\U. A deformation of this

set, determined by a contraction of LC\Ur to bq, induces a deformation of/,

in XC\ U, into a loop of

(ii X • • • X bT X Yo) r\ U C (bx, • • ■ , br) X [((L Pi Ur+i) X 0)

u (o x (lr\ ur+i) xo)yj ■ ■ • u (o*-^1 x(in uq) xo)yj (»«-' x f0)].

All the terms of this set, except the last one, can be contracted to their only

common point bxX • • ■ XbrXO. These contractions induce a deformation of

/ into £i_loop in 6iX •• • XhXo"-rX F0 = 6Xo?-pX F0. Since bXo«~pXX0

CEUC\X, we can apply Lemma 4 to obtain, finally, a loop as required by

Lemma 12.

4.5. Proof of Theorem 4. Let/ be a loop of UCXX, which is homotopic to

6X0 in P0- / can be deformed in UCXX to a loop g as in Lemma 12. Clearly,
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(_«+i» • • • ) is homotopic to 0 in P0 and thus (by Theorem 1) homotopic to

0 already in X0. Consequently, / is homotopic to 6X0 in (bXoq~pXXj)

C\UCXr\U. iri(Xr\U)—>irx(Po) is thus a monomorphism.

Now associate with every loop of XC\U a "standard" loop got bXoq~p XPo-

Two loops, homotopic in XC\U, give rise to loops which are homotopic in

bXo"-pXPo- This defines a monomorphism 7ri(ATW)—>7ri(6Xo«_pXPo),

which is clearly an epimorphism, because every loop of bXoq~pXPo can be

deformed, in bXoq~pXPo, into a "standard" loop g (see Lemma 3), which be-

longs to XC\U. Since bXoq~pXPo is homeomorphic to Po, we obtain

(8) Ti(X C\ U) ~ Tri(Po).

4.6. Dimension of X and Y. To complete the proof of Theorem 2, we now

prove

(9) dim 7=1,

(10) dim X = 2.

Since K has at least one 1-cell and Yjj) F02)7XO, we have dim FSt 1. Simi-

larly, dim XSi2, because of Xj)X0j)LXLXO. dim XS2 is an easy conse-

quence of dim F^l and Lemma 8 (apply the sum theorem of dimension

theory). To prove that dim YS 1, consider open sets U=UiX • • • XUqXPo

of Po, where Un is open in K and (Un\Un) intersect L in a finite set, which is

disjoint with the countable set A. Sets UC\ Y, obviously, form a basis of open

sets for F. Since the boundary of U(~\ Y (with respect to F) is contained in

(U\U)C\Y, it suffices to show that (U\U)r\Y is a finite set. Notice now that

(11) 77\C =  U  [Fi X  • • • X Un-l X (Un\Un) X Un+i X  ■ ■ • X Uq X Po]•
n=l

It is clear that our assertion will follow from this proposition: given a fixed

point aCL\A and an integer pSi 1, the set of all xC Y with xP = a is a finite

set. In order to prove this proposition, observe that the pth coordinate of a

point from Bn PXY, n^p, belongs to A. Therefore, our set has to be con-

tained in U*:i^„X F0 (see §3, (27)). However, if cG-L,, «;S£-1,and xGcX F0,

then (_„+i, ■ • • , Xp, • • - )G Fo, and since xp = a is not in A, xp must be

different from o, hence, (x„+i, • • • , xp, ■ ■ ■ ) =op_n_1XaXO, showing that

there is only one such x. This proves the assertion.

5. First singular homology group of the infinite Cartesian product. 5.1.

The first singular homology group (with integer coefficients) Hi(X) of an arc-

wise connected space X is the factor group of iri(X) by the commutator sub-

group (Theorem of Poincare). Hi(X) is zero if and only if iri(X) is a perfect

group(8). If Gi, G2, ■ ■ ■ is a sequence of groups, let HGn denote their (com-

plete) direct product(9); if Gi = G2= • • • =G, we use the notation J^G. If

(8) I.e. a group coinciding with its commutator subgroup.

(*) Elements of the product are sequences (gi, gi, • ■ ■ ), gnGGn, all g» can be different from

the unit; (gi, g2, • • • ) • (h, h2, • • • ) = (gA, g2ft2, • • • ) (see [8, p. 122]).
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Xi, Xi, • • •  is a sequence of arcwise connected spaces, then H-X^ is arcwise

connected and irx(Y\.Xn)~ Yl(trx(Xn)).

Lemma 13. If G is a (nontrivial) perfect finite group, then Y[G is also (non-

trivial) perfect.

Since G is finite and perfect, there is an integer p, such that every element

of G is a product of p commutators (some of which may be trivial, i.e. of type

eee~le~x, e being the unit of G). Let g = (gx, gi, • • • )GO and let

(1) gn = anXbnXa„xbnX • • ■ anpbnPa„pbnP, re = 1, 2, • • • .

Furthermore, let

(2) ak = (aik, a2k, ■ ■ • ), bk = (bu, bik, • • • ), k = 1, 2, • • • , p.

Then
—i -i-i -i -i    -i

(3) ak   = (a-ik , aik , • • • ),        bk   = (bu,, bu, • • • ),

and it is readily verified that

(4) g = aibiai bi   ■ ■ ■ apbpap bp ;

every gCEG is thus a product of p commutators.

Examples of nontrivial finite perfect groups are provided by the alternat-

ing group An of degree re>4 (see [3, p. 38]); another example is the

"binary icosahedral group" (see [ll, p. 218]) defined by two generators a, b

and relations ab = bz=(ab)2.

5.2. If Gn is a sequence of perfect groups (possibly Gn = G, for all re) and

Gn has at least one element hnCEGn, which is not a product of fewer than re

commutators, then HG„ is not perfect. It suffices to see that the element

h = (hx, hi, • ■ ■ )GlXOn is not a product of finitely many commutators. The

assumption that A is a product of, say, r commutators, would imply that hn

is a product of r commutators for all re. However, if re>r, this is in contradic-

tion with the choice of hn.

An example of such a situation is provided as follows. Let G be a perfect

nontrivial group (possibly finite); let Gn be the re-fold free product Gn

= G * ■ ■ - * G and let hnCEGn be given by hn = gigi • ■ • gn, where gkCEG and is

different from the unit of G, k = 1, ■ • ■ , re. A theorem, due to H. B. Griffiths

[4, p. 245], asserts that hn is not a product of fewer than re commutators in

G„.
Here is a geometric consequence.

Theorem 5. There exists a sequence of (connected 2-dimensional) finite

polyhedra Pn, re = l, 2, • • • , with vanishing homology groups Hq(Pn) =0,

2=1, 2, • • • , and such that the first singular homology group of the infinite

Cartesian product Hx(Y[Pn) 9^0.
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Let P be the 2-skeleton of the well-known "Poincare space" described in

[11, p. 216]. It is known that 772(P) =0 and that tti(P) is the "binary icosa-

hedral group." Take now for P„ re copies of P attached at a single common

point. Obviously, Ti(P„) =7n(P) * • • - * iri(P); this group is perfect, because

xi(P) is a perfect group. Moreover, H2(Pj) =0, so that all the hypotheses of

Theorem 5 are fulfilled. However, by the above remarks, iri(T\Pn)

= IKtiCPO) is not perfect and thus 77i(IJP») ^°-
It is well-known that the singular homology groups of the Cartesian prod-

uct of finitely many spaces are completely determined by the homology

groups of these spaces. Theorem 5 shows that this is not the case for infinite

products.

6. Main theorem and \c\ spaces which fail to be LC1. 6.1. Given any

finitely presented(10) group G, there exists a finite (2-dimensional) cell com-

plex AT, having a single vertex o and satisfying iri(K) =G (see [12]). Assigning

to G such a K and to K the continuous curves X and F described in 3.1, we

derive from Theorem 2 our main result:

Theorem 6. Given any finitely presented group G, there exist a 2-dimensional

continuous curve C(G) and a 1-dimensional continuous curve D(G)CC(G),

having the following properties: iri(C(G)) ~ WjG; every point xCC(G)\D(G) has

neighborhoods homeomorphic to the Euclidean plane and every point xCD(G)

has a basis of connected (open) neighborhoods U(x) in C(G) such that U(x)

CC(G) induces a monomorphism of irx(U(x)) into irx(C(G)) with an image iso-

morphic to Hg.

6.2. Now take for G a nontrivial perfect finite group. Then JJG 1S non"

trivial and perfect (see Lemma 13). Therefore, every xGC(G) has a basis of

connected neighborhoods U(x) with Hx(U(x)) =0, showing that C(G) is a

2-dimensional continuous curve, everywhere lcj. On the other hand, if

xCD(G), 7ri(U(x)) ~ JTg a°d thus nontrivial. Since 7Ti(77(x))—>7n(C(G)) is a

monomorphism it follows that the space is not semi-1-LC at the points of

7>(G)(n); a fortiori it is not LC1 in those points. This proves

Theorem 7. Every nontrivial perfect finite group gives rise to a 2-dimensional

continuous curve which is \c\, but fails to be LC1 in a subset of dimension 1.

Conjecture. A continuous curve which is everywhere \c] can not fail to be

LC1 in exactly one point.

This statement, if true, should explain why the examples exhibited in this

paper are of a rather involved nature.

6.3. We now state (proof is easily supplied using Lemma 13).

(10) I.e. group denned by a finite number of generators and relations.

(") A space X is semi-1-LC at xCX if there is a neighborhood V of x such that the image

of iri(F) in in(X) (under the homomorphism induced by VCX) is trivial, i.e. the unit subgroup

of n(X).
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Theorem 8. If K is a finite complex with a single vertex o and irx(K) is a

nontrivial finite perfect group, then IIFT is an infinite dimensional continuous

curve, everywhere lcj and nowhere LC1.
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