INFINITE CARTESIAN PRODUCTS AND A PROBLEM
CONCERNING HOMOLOGY LOCAL
CONNECTEDNESS

BY
SIBE MARDESIE

If M CN are subsets of a topological space X, we denote by H,(M) and
H,(N) the singular homology groups (with integer coefficients) of M and N
respectively; the image of H,(M) in H,(N) (under the homomorphism in-
duced by inclusion M CN) will be denoted by H,(M|N). The space X is
said to be p-lc, (i.e. p-locally connected in the sense of singular homology)
at the point xE€ X if for every neighborhood U of x there is a neighborhood V
of x, VCU, such that H,( V! U)=0; if p=0 augmented homology is used.
X is Ic? at x if it is p-lc,; at x, for all 0= p=<q. X is Ic? if it is Ic! at all xEX.
Replacing singular homology by Cech homology (arbitrary open coverings
and integer coefficients) and by homotopy, one obtains the definition of prop-
erties Ic? and LC? respectively.

These notions are well-known and have been studied by various authors.
In arecent paper [9], the present author has shown that for Hausdorff locally
paracompact spaces the property Ic? implies Ic(!). The implication Ic?=lc?
can not be reversed (not even in the category of metrizable compacta) as
has been shown by H. B. Griffiths [5, p. 477]. Griffiths has also proved [7]
that for locally compact metrizable spaces LC¢=lc?. However, the question
of the possibility of reversing this last implication has remained open and has
been pointed out by Griffiths in [5, p. 479] and in [6, 3, p. xi,]. The cor-
responding question with Cech homology has been settled previously (see
[1, p. 573]) by the well-known example of an “infinite bouquet” of Poincaré
spaces, which is Ic} but fails to be LC! at the base point of the bouquet.
Griffiths has shown [5, p. 477] that an infinite bouquet of LC! spaces can
never provide an example of an Ic} space which would not be LC! at the same
time. This different behavior is due to the fact that singular homology is not
continuous with respect to inverse limits.

In this paper we describe a whole category of 2-dimensional metrizable
compacta which are Ic} but fail to be LC! in certain points(2), proving thus
that the implication LC!=lc} can not be reversed (Theorem 7). If one admits
examples of infinite dimension, then the problem is easily settled by an in-

Received by the editors September 22, 1958.

(*) The same result has also been obtained by H. B. Griffiths in an unpublished paper.

(?) The case g=1 is easier to handle because of the simple relation between the fundamental
group and H, given by the Poincaré theorem. This case deserves special attention due to the
fact that for locally compact metrizable spaces (Ic] and LC)y=LC¢ (see [10]).
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finite Cartesian product of Poincaré spaces (Theorem 8). The main part of
the paper is concerned with a construction giving a 2-dimensional subset of
the infinite Cartesian product which, roughly speaking, in the neighborhood
of some points has the fundamental group of the entire infinite product (see
§3,1). We hope that the main Theorem 6 might prove useful in other connec-
tions too.

The author is much indebted to H. B. Griffiths and D. Puppe for many
helpful discussions concerning the subject of this paper.

1. Preliminaries. 1. The following four propositions will often be referred
to in the sequel. The proofs can be easily supplied and are omitted.

1.1. If M is a metric space with metric p and NCM, then U(N, €) will
denote the e-neighborhood around N, i.e. the set {x|x€M, p(N, x) <e}.

Let Cy, G, - - -+ be a sequence of compact subsets of a metric space M.
If there is a sequence of reals €,>0, lim €, =0, such that C, CU(Cy, €,), then
Ug C. is compact.

1.2. Let I be the unit interval and let fr: I—-M, p=1, 2, - - -, be a se-
quence of loops in a metric space M, based at a point 0&E M. Let F? »*! be
homotopies in M, connecting f? and f*P*!, such that diam Frr+!
=max, diam F? »*(x, I)=<c,, where D 1 ¢, is a convergent series. Then
f(x) =1lim,, f*(x) exists and is a loop homotopic to all f?. One can choose the
homotopy F, connecting f! and f, so as to take place in the union of images of
all Fr 2t

F can be obtained by considering F? ?*! as defined over IXI, where

I,=[(p—1)/p, p/(p+1)] and setting
1) F(x,t) = Froti(x, ), fora € 1,1 E T, p S {1,2,- -},

and F(x, 1) =f(x).

Whenever we speak of homotopies of loops and paths we mean homo-
topies with fixed end-points.

1.3. Let M* be a metric space obtained from its closed subset M by at-
taching an n-cell e*, n>1. Every loop f in M* with base point in M can be
deformed (inside M*) into a path g in M in such a way that the deformation
F(x, t) =f(x), whenever f(x) &M and F(x, t)E&(e")~, whenever f(x)Ee".

1.4. Let M be a metric space with a base point o and f: I—M a path.
Furthermore, let U be an open set of I such that f(U\U) =o. U is obviously
the union of at most countably many disjoint open intervals V' CI, which
are components of U; f| V are loops in M, based on o.

If for every V, Fy: VXI—M is a deformation of the loop f|V and for
every €>0 there is a 8(¢)>0 with the property that diam V<8 implies
diam Fy <e, then the following relations define a deformation F of the path f:

(2) F(x, t) = Fy(x, 1), forx €V,
3) F(x, t) = o, for x € U\U
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and
4 F(x, t) = f(x), forx € I\U.

2. By a finite cell complex K we mean in this paper a finite cell complex
which admits a simplicial subdivision (see e.g. [2, p. 152]). We use the same
letter to denote the complex and the underlying polyhedron. There is no loss
of generality in assuming that K is provided with a metric <1 and that
every point x of K has arbitrarily small 8-neighborhoods U(x) admitling a
cell-preserving contraction into x (with respect to K)(¥). Moreover, if dim K
=n and K? denotes the p-skeleton of K, we can assume that this contraction
is composed first of a cell-preserving deformation retraction of U onto
UNK™1, then of a cell-preserving deformation retraction of UNK"! onto
UNK"?, etc. Clearly, U(x) has to be contained in the open star Stx(x). We
shall often have the additional assumption that K has a single vertex o;
closed 1-cells will therefore be 1-spheres and thus never contained entirely
in such a neighborhood U(x).

3. Let M be a metric space with a given metric d<1. The infinite Car-
tesian product of a sequence Mi, My, « - - of copies of M will be denoted by
TIM. 1f x&E M, we shall usually denote the nth coordinate of x by x,. We
shall consider M as metrized by the metric

©) p(x, y) = E d(xa, yn)z_"-

1
Ifa=(ay, - - +,a,)=a1X - - - Xa, is a point of the n-fold Cartesian product
MX -+ XMand b=(by, - - - )=b X - - - is a point of the infinite product
[1 M, we shall often denote the point (a1, - - -, @, by, - - - )E [[ M simply

by aXb. If ACMX - -+ XM and BC [] M, the meaning of the notation
AXBC]]M is clear.

2. Infinite Cartesian products of cell complexes. 1. Let K be a finite cell
complex(*) having a single vertex 0. We can assume that dim K<2 (other-
wise we should replace K by the 2-skeleton K2 in (4)). The infinite Cartesian
product J]K will be denoted hereafter by P,. All sets encountered through-
out §§2-4 will be subsets of Py. The cellular structure of K induces a de-
composition of P, into disjoint “cells”

1 c=0Xaa X *+-,

where ¢, are (open) cells of K. We define
©) dims = D dimg, < .
1

Let X(Yo) denote the “2-skeleton” (“1-skeleton”) of this decomposition of

(®) A deformation is said to be cell-preserving if, during the deformation, no point can
leave the closure of the cell containing that point at ¢=0.
(*) See §1,2 and §1,3.
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Py. The “O-skeleton” consists of a single point O=(o, 0, - - - ). Denoting by
L the 1-skeleton of K and by o the point (o, 0, - - -, 0) of the n-fold product
KX - -+ XK (0° meaning the “empty symbol”), we have

B) Yo=Uo"XLXO=LX0OU@OXLXO)U(@OXoXLX0O)\---

n=0

@) Xo=<Uo"><KXO)U(U0"XLX Yo).
n=0 n=0
Observing that(*) diam (0" XK X0) =271 and diam (0" XL X Yo) =2 we
conclude readily (by 1.1.1) that ¥, and X, are compacta. Notice also that a
point of Yo(X,) can have at most one (two) coordinates different from o.
Although the described decomposition of P, is not a complex, we shall
prove in this section

THEOREM 1. The inclusion X oC Py induces an isomorphism of mi(X,) onto
™ (Po)

2. DeFINITION 1. A loop f: I—P, (based at O) is said to be a standard
loop if f((n—1)/n)=0, for all n=1, 2, - - - and if f(I,) Co® XL XO (recall
that I,= [(n—1)/n, n/(n+1)]).

LemMmA 1. If f and g are standard loops, homotopic in P,, then they are
homotopic already in X,.

Proof. Let F be a homotopy in P, connecting f and g and let F,, f, and g»
be maps obtained from F, f and g respectively by composition with the natu-
ral projection Po= J[K—0" !X K XO. F, is obviously a homotopy connect-
ing f. and g.. However, f.(x) =f(x), g.(x) =g(x), for x&I,, otherwise f.(x)
=g.(x) =0, hence, the loopsf] I,and g| I, are homotopic in 01 X K X0 C X;
let G* be a connecting homotopy. Defining G by G(x, t) =G"(x, ¢), for (x, t)
EIL,XI, n=1,2,---,and by G(1, t) =0, we obtain a homotopy in X, con-
necting f and g.

If f, and g, both lie in a subset of 0"~!X K X O, which is contractible to O
(O fixed during contraction), then we can take for G* a connecting homotopy
contained in that subset. Using this remark we can prove

LEMMA 2. For every €>0 there is a 6(€) >0 such that any two standard loops
f and g, homotopic in Py and lying in U(O, 8), can be connected by a homotopy
in XoNU(O, e).

Indeed, choose p so large that 2-?<e and 0<7n<e such that U(o, 7) is
contractible to o in K. Let 8(¢) =52"7. If f, gC U(O, §), then f,, g.So"!
X U(o, 7)XO, for n=1, - - -, p. Choose now G*, n=1, -+, p, in o™!
X U(o, 1) XO (no requirements on G*+!, - - - ). Clearly, G(x, t)& U(O, 9)
CU(O, ¢, for xENL\J - - - UI,. For xE1,, n> p, we obtain G(x, t) € U(O, €)
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as a consequence of diam 0" ! XK X0 =2-" and of the choice of p. Lemma 2
will be used in §3.

LEMMA 3. Every loop f in P, (based at O) can be deformed (in P,) into a
standard loop.

Proof. The nth coordinate f, of f, being a loop in K, admits a deformation
F, (in K) into a loop g, of the 1-skeleton L of K. One can easily achieve that
2.(I\I,) =0. F=(F\, F,, - - - ) is then obviously a deformation of f into a
standard loop g.

3. The main part of the proof of Theorem 1 is contained in the following

LeEMMA 4. Every loop f in X, (based at O) can be deformed, in X,, into a
standard loop.

Proof. Observe first that cell-preserving deformations of coordinates f,
of f give a deformation of fin Py which actually takes place in the “2-skeleton”
X of Py. Since the deformations occurring in the cell-approximation theorem
are cell-preserving, we can assume that f, are loops in the 1-skeleton L; and,
consequently, that f is contained in the second summand of (4). Moreover,
we can achieve (say, by simplicial approximations with respect to some
simplicial subdivisions of L) that, for =1, 2, - .., the open set U,
= {x|fa(x) %0} CI is the union of finitely many disjoint open intervals.

Given a point a & U,, it is clear that the particular open interval of U,
which contains a is mapped by f, entirely into a 1-cell of L. Therefore, it is
easy to define a cell-preserving deformation, affecting only that particular
interval (without changing the total number of components of U,) and yield-
ing a new loop f, with f.(a) =0. In view of this remark we can assume from
now on that for every n=1, 2, - - -, fu(I) CL, that U, consists of a finite
number of disjoint open intervals and that f,(U,\U,) =0, for r=n; a loop
having the last two properties will be referred to as a “normal” loop.

Consider now the sets

0

5) S,,=Y0U( U o XLX Yo).
n=p—1
All S, are compact (by 1.1.1) and X, D81 DS5:D - - - DNSp=Y,. In view of
the above remarks, f C.S:.
We shall now define, by induction, a sequence of loops f=f!, /2, - - -, f?,
-, with fCS,, and a sequence of homotopies F? #+1; I X I—S,, connect-
ing f? and fr*! and satisfying

(6) diam Frr+l < 2771,
1.1.2 will then provide a limit loop f=1im f?, obviously contained in ¥, and

homotopic to f in U;-; S, CXo.
Suppose that f=f1, - - -, fand F!2, - - -, Fr~17 have already been de-
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fined and satisfy the conditions of above; in order to carry through the induc-
tion, we assume in addition that f, - - -, f* are “normal” loops. For p=1,
these conditions are verified as established in the preceding remarks concern-
ing f. Consider now U} = {xlf,’,’(x) #0}, f denoting the pth coordinate of f7.
Since fr CS,, it follows immediately from (5) that

) O C X LX Ve

Now let (a, b) be one of the finitely many components of U?. In order to
define F? »+1 choose a point ¢, a <c<b, and put

® c=c+ Q=00 —c),d=a+ tlc— a), & 1.

Furthermore, let a,(x) be the transformation mapping [a,c.] linearly onto
[a, ] and sending [c;, b] into b; let B, be the transformation mapping [a, d.]
into @ and mapping [d,, b] linearly onto [a, b]. a:(x) and B.(x) are mappings
of [a, ] XTI into [a, b], leaving end-points a and b fixed.

Define now F? »+1: [a, b] X [—0~* X L X ¥V, CS, by

PP+1( P—

©) F' 7, 1) = 0" X foa(®) X (fors X Sz X -+ )Bul2).

Clearly, F??*(x, 0)=f?(x). As to fr+!(x)=F? »*'(x, 1), observe first that
f2(a) =f7(b) =0, for r=p (f7 is “normal”). It now follows, from (9), that

(10) @) =" X flw@ X oX o X - - -, for x € [a, ¢,
(11) P = "X (P X e X - B,  forx € [c, b,

showing that f*+!([a, b]) C Yo CSps1.
We define F? »+1 on other components of U? in exactly the same way (they
are in a finite number) and complete the definition by

(12) F™ (1) = fx), forx & I\U..

Fr »+1 is continuous on I X I, because (10), (11) and (12) give F» r+1(a, ¢)
= Fr »+1(p, {)=0. Moreover, for x&I\ U}, f5(x) =0 and thus fr+!(x) =f*(x)
belongs actually to S,41CS,. (6) follows from diam oP~' XL X YVo=277+1
Finally, it is readily checked that f7*!is “normal.” This completes the argu-
ment showing that every loop of X, (based on O) can be deformed, in X,,
into a loop of Y.

To complete the proof of Lemma 4, we have to show now that every loop
f of Y, (based at O) can be deformed, in X,, into a standard loop. For that
purpose we shall define by induction a sequence of loops f=f° f!, - - -,
f?, - -+ in Y, and a sequence of homotopies FP P+ IXI—X,, connecting
f7 and f7*! and having diam F? »+!=27». For p>0, we require in addition

(13) frI) Cot X LXO, q=p
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(1 fp(qj— 1) -7 !

(15) fP([Pil, 1:|>Co”>< Y.

Once such a sequence is defined, 1.1.2 will yield a limit loop f=Ilim f?, homo-
topic to f in X, and actually a standard loop (due to (13) and (14)).

Assume that f, - - -, fPand F°!, . - ., FP~1 ? have already been defined
in accordance with the above requirements. Denote p/(p+1), (p+1)/(p+2)
and 1 by a, ¢ and b respectively and let ¢, d;, a.(x) and B.(x), for xE [a, b], be
defined as in the preceding argument; moreover, let a.(x)=p:(x)==x, for
xE1\(a, b). We define F? »*! by

A
>

14

(16)  Forti(s i) = fo(x), forx € [o, p_ﬁ] 1,
(17) F 7w, 1) = 0" X fonau(®) X (fore X fors X - - - )Bi(#),
]
f — 1, 1€ I,
orx€ [p +1

(18) frti(x) = Fr o4z, 1).

All the required properties are readily checked (notice that f78,(x) E Y, im-

plies (fp42Xfo4sX « + - )Bu(x) EYo).
4. The following lemma will be needed in §3.

LEMMA 5. For every €>0 there is a 6(e) >0 such that every loop f, lying in
U(O, 8) CPy (in XM U(O, 8)), can be deformed into a standard loop by a de-
formation lying in U(O, €) (in XoN\U(O, ¢€)).

Proof. Choose p, 7 and 8 as in the proof of Lemma 2 (with the additional
requirement that U(o, #) admits a cell-preserving contraction to o). If
fCU(O, ), then fi, - - -, frCU(o, n) CK. Composing these coordinates with
a (cell-preserving) contraction of U(o, 7) to o, while leaving f,41, - - - un-
changed, one obtains a deformation F of f, in Py (in X,), into a loop
g Cor X Py(g Co? X X,). Since p(F(x, t), F(x, 0)) <9+ - - - + 5277+
=29(1—277) and F(x, 0)=f(x)&EU(O, 9), it follows that p(0, F(x, t)) <29
<2e. Consequently, FCU(O, 2¢). Applying now Lemma 3 (Lemma 4) to g
and 0? X Po(0? X X,) we deform g further into a standard loop by a deforma-
tion of diameter lesser than diam (0? X Py) <277 <e. The total deformation is
thus contained in U(O, 2e).

5. Proof of Theorem 1. Lemma 3 proves that the homomorphism
1: M (X o) >m(Py), induced by X C P, is an epimorphism. Combining Lemmas
4 and 1, we conclude that 7 is a monomorphism (the constant loop g(x) =0
is a standard loop).
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REMARK. Theorem 1 holds also in the case of an infinite product of differ-
ent complexes K;, K, - - - (5).

3. Continuous curve X and its fundamental group.

1. Description of the basic construction. Let K be a finite cell complex
having one single vertex o and at least one 1-cell. Choose a sequence of finite
(nonempty) disjoint subsets Ay, + - -, Ak, - -+ - of the 1-skeleton'L of K in
such a way that o0& 4, and that

(1) 4 = U 4,

is dense in L; these sets will be considered as fixed throughout this section.
We define next, by induction on #, a finite subset B, of the #n-fold product
KX ct XK, by

(2 B, = U B,x X 4x X o*1,
k=1

By, as well as 4, 0° and o~* are considered to represent “empty symbols”;
e.g. Bi=A4,, Bo=A41XA,\UA,Xo. Notice that o®EB,, for all n=1. Let X,
and Y, be as in §2. Consider the following subsets of P,

3) X =UB, X X, and
n=0
n=0

Let ¥ and X be the closures of ¥ and X taken with respect to Pq.
In this section, and the following section, we are concerned with a proof
of the basic

THEOREM 2. X and ¥ are continuous curves(®) with dim X =2, dim ¥ =1.
Y CX and points of X\Y have 2-dimensional Euclidean neighborhoods (with
respect to X). The inclusion X C Py induces an isomorphism wi(X)=~m(Po).
Every xEY has a basis of connected (open) neighborhoods (with respect to X)
Ul(x), suchk that U(x) CX induces a monomorphism of m(U) into m(X) with
an image isomorphic to m(Po).

2. For purposes of proof we introduce certain subsets of Py approximating
X and 7. Let

) X, =U 4; X *1 X X,, Vi=U 4; X o#1 X Y,

k=0 k=0

(5) It seems likely that the restriction to complexes having a single vertex (imposed in view
of applications in forthcoming sections) should not be essential for the validity of Theorem 1.
(¢) I.e. metrizable compact connected and locally connected spaces.
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X, and Y; are compact (1.1.1) and connected. The same is true for

(©) Xy = X,V By X X1 = U B, X X,
and
) yp+1=YpUBpXX1=L?BnXY1, p=1,2, .
Denote by B, , the union of the last p terms in the expression (2), p <=,
©) Bup= U By X AiX 0.
k=n—p+1

Notice that B, ,=B,. One obtains new expressions for X, and X

=0 n=p

(10) x=UXx,

—1 ©

9) X,,=(UB,,><X0>U<UB,.,><X0),p=1,2,--~,

U

0
Analogous formulae hold for ¥, and Y. Notice that X,CX, 41, Y;C Vo,
Y11 CX,. We conclude from (10) that connectedness of X, and ¥, implies
that of X and Y as well as X and 7.

In order to obtain suitable approximations of X and ¥ “from outside” we

introduce

p—1 )

(11) P,,=<U BnXXo)U(UB,.pXPo)
n=0 n=p

and
p—1 )

(12) Qp=(UBn>< Yo)U(UB,,,,XPo>.
n=0 n=p

Notice that

(13) X, CPp Y,CQCP,
In order to prove
(14) PP+1 - Pp’ Qp+1 - QP»

it suffices to show that B, 11 X PoC (B X Po)\J(B, , X Py), n=p+1. All but
the first term of B, 41 X Py are contained in B, , X Py; however, this term is
By XAnpX0m P IXPo=B, X By 1 XPyCBypXPy.

A consequence of (13) and (14) is
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(13) Xp C Py Y C Qg

for arbitrary p, g.

Observe now that O& X, and B, ,X0,CB, ,XXoCX,, n=p; therefore,
diam (b X Po) £27", bEB, ,, implies P, CU(X,, 277+) CU(X, 2-7+). Firstly,
we conclude (1.1.1) that P, is compact because X, is compact. Secondly,
since X CN\P, (by (15)),

(16) X =0 P,
1
Analogous arguments show that Q, is compact and
17 Y = No,.
1

3. We list here several simple propositions needed in the sequel.

3.1. x=(x1, sty x,,)EB,. 1mp11es xkEA.lU LR UA,,_k_H, k=1, R (B
Proof immediate by induction on .

32, x=(x1, - -+, %,)EB, and x, #0, 2=5¢=<n, implies (x1, - - -, Xg-1)
EBg.

Proof of induction on n=¢q (¢ fixed). x can not belong to the last ¢—1
terms of (2) because the gth coordinate would be 0. Hence, x EB,_x X 4, X 0¥,

ke{1, - - -, n—q+1}. If n—k<q, then actually n—k=g—1 (otherwise we
would have x,=0). However, in this case x&B;1XA4,_¢+1X0" ¢ and
(%1, ++, %g1) € By, In  the remaining cases ¢ =<=#»n — %k and
(%1, * + +, Xg * * *y Xn—k)EB,_x so that the hypothesis of induction is ap-
plicable.

3.3. For arbitrary ¢, n, B{X B, CBg4n. Proof by induction on ». Substitute
(2) for B,, apply the inductive hypothesis and notice that the resulting ex-
pression gives the first # terms of (2) for Bgyn.

3.4. If & denotes the empty set, then (B, XPo) (B, ,XPo) =, for
n>p, and (B, , XPo)N\(Bm pXPo) =, for n>m=p.

It suffices to prove the first assertion, because of B, ,CBy m, Bm »CBm.
Assume that xEB, , X Py; there exists then an s& {n—p-{-l, cee, n} (by
(8)) such that xEB,_;XA4,X0" X Py, hence x,_,11EA4,, n—s+1=p. If at
the same time x € B, X P,, then 3.1 would imply %, 1 EA:1\J - - - UAd_(aep)-
However, this set is disjoint with 4, (because of n>p and the definition of
sets Ay), which presents a contradiction.

3.5. If ¢>p, we have

p—1
(18) (UB,,X Yo)ﬂ(quXPo)=quX0

n=0

Indeed, if bEB, ,, it follows immediately (by (8)), that 6 X0O&B, X Y,, for
ann& {0, S ,p—l}.On the other hand, forn=<p—1, (B, X Yo)N\(Bgn X Po)
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= ¥ by 3.4,so that x & (B, X Vo) N\ (B p X Po) implies x EBy_x X A X 0¥ "1 X P,
with 2Sg—p+1=5k=qg—n. Since 0€A4; and %, 11 EA4r (AxNA1=), we

have x,_r41 #0, showing that at least one of the coordinates x,41, + * *, %p is
#“0. However, x€B, X Y, implies (xn41, * * *, %p, Xpt1, * * * )E ¥y and thus
(x%p41, + + - ) =0 (see 2.1); a fortiori (xg41, - - - ) =0.

3.6.
(19) Y,H.lf\ (Bp X Po) = Bp X Yl,
(20) Opi1 M (By X Po) = B, X Q1,  Ppr1M (B X Po) = B, X Py
Notice first that x & Y7 implies (x2, %3, - - + )& YV C V1. Therefore, x& Y,
implies (xp41, - + - )E Y1 (see (7)); this proves (19). In order to prove the

first relation in (20) (proof of the second relation is analogous), notice first
that, for = p+1, B, pp1 XPo=(Bn X Po)\ I (BpXA,_p,X0" P 1XPy). Using
3.4, we conclude that x& (B, p41 XPo)\(BpXPy) implies x&EB, X4,
Xom P IXPoCB,XQ:. If on the other hand x&(B.X Yo)N(B,XP,),
n=p, then (xp41, + - + )& Yy and thus x&B, X Y(CB,XQ1; this proves C in
(20). The other inclusion follows from the fact that, for =1, B, X B, 1X P,
=B,XA4,X0" 1 X P, is the first term of Byin p+1 XPoCQpi1.
3.7.

(21) Yp+l = (Yp\(Bp X PO)) \ (Bp X Yl):
Opt1 = (Qp\(Bo X Po)) U (B, X Qu),
Pp+l = (Pp\(Bp X PO)) \ (Bp X Pl)-

(21) is an immediate consequence of (7) and (19). To prove the first relation
of (22) (the second is proved analogously) notice that the first summand in
(12) is also contained in the expansion for Qp:1. Furthermore, for n=p+1,
B, yXPoCB, p11 XPyCQpr1. Since the only remaining term in (12) is
B, X Py, we conclude that Q,\(B, X P¢) CQps1. This and (20) prove D in (22).
The other inclusion follows from (14) and (20).

3.8. The following sets (23) and (24) are compact, ¢= p,

(23) (Qp\(Bq P X PO)) Y (Bq » X O)’
(24) (Y,\(Bg» X Po)) \J (By» X 0).

It suffices to prove that (23) is compact, the assertion for (24) will then follow
(using the fact that Y, is compact and Y,CQ,).

Given a sequence x!, - - -, x*, - - - of points of (Q,\(B, »XPs)) we can
assume that it converges towards a limit x&Q, (because Q, is compact); we
have to show that x belongs to the set (23). This is certainly the case if x is
not in By , X P,. Assume therefore that xEQ,MN(Bg », X Po). If x*CbXP,,
bE B, p, m= p,m g, replace x* (in the sequence) by y* =bXO0EU?ZL (B, X Yy)
(see (8)); notice also that 8 XOEB,, ,X P, and thius does not belong to
By s X Py (see 3.4). There can only be finitely many terms x* in a given

(22)
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B, p X Po, mZ p, m#£q, otherwise we would have x&B,, , X P, contradicting
the assumption x& B, , X P, (see 3.4). Since p(x*, 5X0)<2~™, the new se-
quence y*, obtained from «x* in the described way, converges to the same x
and is contained in (U223 (B, X Y0))\(B, »XPo); the first term of this ex-
pression being compact, we get

»—1
(25) LAS ( U (B. X Yo)) M (Bgp X Po), g 9.
n=0
If ¢>p, our assertion follows immediately from (25) and (18). In the case
g=1p, we have to prove that x,,1=x,,2= - - - =0. Suppose on the contrary
that there is an =1 with x,,, #0. Let k be so large that y},, #0, too. Since
Y*EB, X Yo, for some 0=n<p—1, it follows that (¥5,,, - -+, ¥5,,, - - - )E Y,
and thus §5,,= - -- =95, ,=0. Hence, y*EB,X0* "X 0" X PyCB,XP,,
contradicting the fact that ¥* does not belong to B, X P,.
3.9.
(26) (B,XP)NY=B,XT7.

Let x&(B,XPo)NY. Since YCQp1 we conclude (from (20)) that
xEB,X Q1. Hence, x is either in B,X Y,CB,X7Y or in (B, XBn.uXPo)NY,
for an m=1. Since also ¥ CQptn+1, We see that, in the second case,
xEB,XB,1 X1 (notice that, by 3.3, B, XBy1 CByXBa, CBpin,) and thus
either xEB,XB,u X YoCB, XY or xE(BpyXBnuXBry XPo)NY, for an
n22 1. Continuing this argument we conclude that either x©€B,NY or there

is a sequence ny, 7, + - -2 1, such that (xp41, * * |, %n,) EBayt- . .4n,. However,
in this last case, points (Xpt1, * * *, Xugy 0, 0, - * - YEBu 4.4, XOEY con-
verge to (xp41, + - - ), proving again that x&€B,X Y. In order to prove the

other inclusion in (26) it suffices to observe that B, X Y C (B, X Py)\Y is an
immediate consequence of (4) and 3.3.
3.10.

r—1 )
(27) I7=(UB,.>< Yo)U(UB,.pXI_’), for p = 1.

n=0 n=p

Immediate consequence of 3.9 and the fact that ¥ =7NQ,.

4. LEMMA 6. Every loop f in Y (based at O) can be deformed in X into a
standard loop (contained in VoCX,).

4.1. According to (17), f can be considered as a loop of Q,, for every
$=0,1, 2, - - - (Qo=P,). We shall define now deformations F? of f (in Q,)
such that

(1)p f(x)EOX Py, bEB, 5, n=p=1, implies Fr(x, {)&bX P, and f7(x)
=Fr(x, 1)EOX Y, C Yy,

(i) f(*) €EQo\(Unzp Bu » X Po), p2 1, implies Fr(x, t) =f(x) EY,, requir-
ing in addition that f° be standard. (i), and (ii), imply diam F? <2-? and thus
lim f»=f. The next step will consist in defining homotopies G? ?*!, connecting
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f? and fP+1, in X,, and satisfying diam G? »*1<2-?. An application of 1.1.2
will then prove that f is homotopic, in X, to f°C Y.

4.2. F° exists by Lemma 3. For p=1, let R,=(Q,\(BpXPo))J(B,XO0)
and let bEB,. Obviously Q,=[R,\J((B,\{b})XPs)]\U(b X Po); both sum-
mands are compact (see 3.8) and their intersection is the single point bXO0O.
Since fCQjp, the set U= {x|f(x) E(dXPo)\{6XO0}} CI is open and f(T\V)
=bXO0. If V is any one of the components of U, then V\VCTU\U, so that
f| V is a loop in bX Py, based at 56X 0. We can apply now Lemma 5 (the part
concerning Pg) to obtain homotopies deforming loops f| 7 into loops of b X Y,
in such a way that 1.1.4 is applicable and produces a deformation of f, de-
fined over the entire interval I. Repeating the process with all b of the finite
set B,, we arrive at a deformation, satisfying (i),, for n=p, and having the
following property (“approximating” property (ii),): for f(x) €Q,\(BpXPo),
the deformation equals f(x).

4.3. Now repeat the process described in 4.2, this time applied to the loop
we obtained in 4.2 and to all b€ B, 1 , (we consider Rpy1 p=(Qp\(Bp+1 p X Po))
\U(Bps1 ,pX0) and the decomposition Qp=[Rp1 ,\U((Bps1 p\{0})XPo)]
U(bXPy)). The resulting deformation affects only the set Byy1 p X Po (dis-
joint to B, X Py) and does not interfere with the gain (in the direction of ob-
taining (i), and (ii),) achieved in the preceding step. Defining in this manner
a sequence of deformations and passing finally to the limit (1.1.2), one arrives
at a deformation F?, satisfying (i), and (ii), (1.1.2 is applicable because the
diameter of the deformation in the step involving B, , X Py is =27").

4.4. We proceed now to define G? »*1. Consider again b& B, and the sets
R, and U, defined as above. Points of U\U can be approached arbitrarily
close from U as well as from I\U. Since F? maps U in bX Py and I\U in
(Q\(6X Py))\U(bX0) (due to (i), and (ii),), and these two sets are compact
(see 3.8), we conclude that Fr((U\U) X I) is contained in their intersection,
1.e.

(28) F?((U\U) X I) =4 X 0, b & B,.

In a similar way, using (i) p41 and (ii) p4+1, one can see that FPH(UXI) CbX P,
and FrH1((I\U) XI) C(Q,\(6 X Py))\U(bXO0) and therefore

(29) FrH((O\U) X I) = b X 0, b € B,.

Now let V be any one of the components of U. Then F”II_/XI and
F”“l V XI are homotopies in b X Py, connecting the loop fl V with the loops
f"l V and f”“l V respectively; these loops are therefore homotopic in b X P,.
Moreover, fP(V)CbX Y,CbXX,y, by (i),, while (i)py1 and (ii)pq1 imply
fPH(V) C Yps1. Applying (19) we conclude that actually f»+Y(V)CbX Vi
CbXX,. It follows (Theorem 1) that f7| V and f*+!| ¥ are homotopic already
in 5 X Xo.

Notice now that f? and f7+! are uniformly continuous on I and therefore,
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for every €>0, there is a >0 such that diam V=4 implies f»C(bXXo)
NUBXO, €) and fPHHC(BXXo)NUDXO, €). Now take into account Lemma
5 (the part concerning X,) and Lemma 2. It is clear that we can define homo-
topies Fy, connecting fP| V and f"+1| V in b X X,, for every V, in such a way
that 1.1.4 is applicable (with M =Y ,\J(b X X,), base point b X0, open set U,
mapping f?: I— M and homotopies Fy), producing a homotopy in Y,\J (b X X)
CX,, defined over I XI. Repeating the whole construction for every b&EB,,
we arrive at a homotopy contained in Y,\U(B,XX,) CX, and equal to
SfP(x) on {xlf(x) EQ,\(BpXPy) } ; f7 is deformed by this homotopy into a map
which coincides with f?*! on {x|f(x)E(B,,><Po) }

4.5. Repeat now the process described in 4.4 with all &€ B,11 , (R, has
to be replaced by Rpy1 5 U= {x|f(x)EBXPo)\{6XO0} }) and apply 1.1.4
to the loop obtained from f? as the result of the deformation described in 4.4.
Continue this process for Byy2 5, - - - . The step involving By ,, k= p, affects
only the set {xlf(x)E(Bk ,,XPO)} and has a diameter =<27*; the resulting
loop coincides with fr+i(x) on {x|f(x)EU:., (B. ,XPo)}. Applying 1.1.2
(and (i)p, (i1)p, (1)p+1, (ii)p+1) we conclude, finally, that there is a homotopy
G ! contained in X, and connecting f? with fP+1;if f(x) Eb X Po, b& B, , X Py,
n=p, then G #+1(x, ) EbXXoCX,, otherwise G? P*i(x, t) =fr(x) =fr+(x).
Consequently, diam G? 1 <277, so that 1.1.2 is applicable.

Notice that the deformation G®, that one obtains applying 1.1.2 to the
sequence G?#tl Grtlrz+2 ... has some special properties that we state
here (for future usage):

LEMMA 7. Given any loop f in Y (based at O) and any integer p 20, there is a
loop fr C Y, and a homotopy G» CX, connecting f* and f, and having the property
that, for f(x) EbX Py, bEB, », n2p, we have G*(x, t) EbX Py, while otherwise

Gr(x, £) =f7(x) =f(x).

5. If a sequence of (Euclidean) cells in a metric space has the property
that the diameters of the cells tend to zero, we shall speak of a 0-sequence of
cells.

LEMMA 8. X can be obtained from ¥ by attaching a 0-sequence of disjoint
2-dimenstonal cells.

We precede the proof by some consequences.

LeMMA 9. Every loop f in X (based at O) can be deformed in X into a loop
of Y.

A proof follows from Lemma 8 and Propositions 1.1.3 and 1.1.2.

THEOREM 3. X s an arcwise connected subset of Pi,. The inclusions
Xo CXCP, induce isomorphisms of the corresponding fundamental groups.

Proof follows from Lemmas 9 and 6 and Theorem 1.
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Proof of Lemma 8. If ¢ is a 2-cell (open) of K, then ¢ XO is a 2-cell im-
bedded in P, and contained in K XOCX,. Let L, be the subdivision of L
obtained by considering all points of 4,\J - - - \UA, as vertexes of L,, n=1.
If o is a 1-cell (open) of L, and 7 a 1-cell (open) of L, then o Xo* 1 X7XO is
a 2-cell imbedded in P, and contained in L X0* ' X L X0 CX,. The described
2-cells will be referred to in the sequel as 2-cells of the first and of the second
kind respectively. It is not difficult to see that these cells are disjoint one
from each other and from Q,, while their boundaries lie in ¥1 CQ;, e.g. in the
case of cells of the second kind, the boundary is lying in Uxg, (45X 0" 1 X L X 0)
U(L X 0) C Y1. Moreover, it is easy to see that all the described 2-cells can
be ordered in a sequence ey, ¢, + - - with lim diam e, =0. (Observe that the
set 4 from §3, (1) is dense in L and that there are only finitely many cells of
the first kind.) Finally,

(30) Py = Q01U U e,

n=1
showing that P, is obtained from Q; by attaching the described 0-sequence of
cells. We prove next

B Poi= 0yt U (Ue) U U B Xe)\U -+ -\U (U B, X e).

The inclusion D is immediate because of e, CX,. The inclusion C can be
proved by induction on p, using (30) and both relations in (22). Finally,

32) X=TUUe)UUB Xe)U---UMB,Xe)U:-+-.

Recall the relations (16) and (17). If x€X\7, let p+1 be the smallest integer
such that x does not belong to Q1. Since xEX C Py, it follows from (31)
that x belongs to the set on the right side of (32). The other inclusion is
obvious, since e, CX,.

Observe now that QiMNe, =& implies (by (20)) that YN(B,Xe,) CQOpu
MN(BpXen) =&. It implies also (BpXen) N (BgXem) =, for p>q. Indeed, if

x&(BgXem), then (xg441, - - - )Ee, and thus obviously (x442, - -+ )EY,.
Furthermore, p>¢ implies (xp41, -+ - )E Yo CQ1, while x&(B,Xe,) would
imply (€p41, * + + )Een. The boundary of e, lies in V7, therefore, the boundary

of B,Xe, lies in B,X Y, CY,C7. Finally, since diam e, tends towards
zero, the cells appearing in (32) can be ordered into a 0-sequence.

Notice that Lemma 8 proves also that points of X\¥ have Euclidean 2-
neighborhoods.

4. Local properties of X. 4.1. We shall now consider particular open sets
of X, referred to in the sequel as standard open sets. A standard open set of
X is the intersection of X and an open set U of P, of the form U=U; X - - -
X U;X Py, where U, are open in K, provided that one can find a point
bXO0, b& B, p=q, contained in U. Moreover, if b, denotes the nth coordinate
of 6 X0, U,NK should admit a cell-preserving (with respect to K) deforma-
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tion retraction to U,MNL and U,NL should be contractible to b,; for n<p,
this contraction should be cell-preserving with respect to the subdivision
L,_.. Notice that these requirements imply that, for b, ¥ 0, U, can not con-
tain o and that, for n <p, U, can not contain points of 4,\J - - - UA4,_, ex-
cept b,, which may belong to that set.

4.2. LEmMA 10. Standard open sets of X form a basis of neighborhoods at
every point x belonging to Y.

If x€7 and W is an open set of Py, x& W, we have to find a standard
open set UNX such that x&€ UCW. Clearly, we can find V=V, X - - - XV,
X Py, x€ VCW, such that V, is open and admits a cell-preserving deforma-
tion retraction of V,MNK to V,MNL and a contraction of V,MN\L into x,, =g
(see 1.2).

Assume now first that x&€ Y or more precisely that xEB,Xom XL X0
(see § 3, (4) and §2, (3)). We can also assume that ¢=p+m+1. Letr be such an
integer that (4:\J - - - UA )N Vpimp #J (4 is dense in L). If x5,my1 does
not belong to 4,U - - - \UA,, it belongs to a 1-cell of L, and one of the end-
points of that 1-cell has to be in V,im41; denote that end-point by a. If
Xprmn EAINY + + - UA,, put a=xpym41, thus, in all cases a& A4y, k=7, It is
now possible to choose a new neighborhood Upimi1 C Vpimsr around a, con-
taining x,4+m+1 and satisfying the requirements concerning retraction and con-
traction with respect to Li. Let b=(x1, - - -, %pim) XEX0* 1 CBpim X Ar
X0* 1 CBpimsr. Replace Vi, ) Vipim, Vpimis, + + +, Vo by smaller neigh-
borhoods Uy, * + +, Uptmy Upimiz, * + +, Uqg around x1=01, - * *, Xptm =bpim,
Xprmi2=DUpimia, - =+, Xg=0Dby; these neighborhoods should be chosen so as to
fulfil the requirements in the definition of a standard open set. If necessary,
one can replace a few terms K in V by similar neighborhoods in order to
achieve that U=U1X - - - XUy XPoand ¢’ Zp+m+k.

Assume now that x€YV\Y. Since YCQ,, it follows (by (12)) that
xEbX P,, where bEB, ;CB,, n=q. x and bXO coincide in the first # co-
ordinates, it is therefore easy to replace Vi, - - -, Vg, K, - - -, K by smaller
neighborhoods Ui, - - -, Uy, Ugy, + + -, U, (containing xy, - - -, X, respec-
tively) in such a way that XN\ (U1 X - - - X U, XPy) is a standard neighbor-
hood centered at X O and containing x.

Lemma 10 and the following Theorem 4 prove the assertions of Theorem 2
concerning neighborhoods of points in V:

THEOREM 4. A standard open set UNX is connected. The inclusion
UNX CX induces a monomorphism of corresponding fundamental groups. The
image of m(UNX) in m(X) under this monomorphism is isomorphic to
Tl(Po)%m(Y).

The proof is based on two lemmas.
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4.3. LEMMA 11. Consider all the cells(") bXe,, b&EB,, r=0, 1, - - -, which
have points in common with UNX, but UNX does not contain their entire
closure b X (e*)~. The set obtained from UNX by removing exactly these cells is a
deformation retract of UNX.

The fact that these cells are disjoint and can be ordered in a sequence
with diameters tending to zero, makes it sufficient (see 1.1.2) to prove the
corresponding proposition involving the removal of only one such cell, de-
noted henceforth by ¢Xe, cEB, (U and b& B, as in 4.1).

We assume that r <g, the other case being trivial. If e=0 X0, i.e. of the
first kind, we have (¢ Xe)N\U=¢X (6MU,41) XO. It suffices now to subject
Up+1 to a (cell-preserving) deformation retraction into (¢/\U,41), o being the
boundary of .

If e=0Xo0"1X7XO, i.e. of the second kind, we have either:

1) r+24+1=2¢Xe)NU=cX(@NUr1) X0 X (+ N Upnsr) X 0
or
2 r+un+1>qXe)NU=cX (@M Upy) Xom 1 X1 XO.

Observe that ¢N\U,41 and 7N\ U,4nq1 are simple arcs, while 7 is a simple
closed curve. Therefore, it is an elementary task to verify that if in the case
(1) 0&€ U, 4n4a, then (¢ Xe)N\ U admits a deformation retraction to (¢ Xé)NU,
where é is the boundary of e. Similarly, if U,;, contains exactly one end-point
of &, then (for (1) as well as for (2)), (¢ Xe)MN\ U admits a deformation retrac-
tion into (¢ Xé)MU. We shall show now that at least one of the two cases
described is always present.

Assume first (1). Let b; denote the sth coordinate of bX0E U, bEB,. If
bryny1=0, then 0& U, 41, because b,y 41 E Uy yni1. Suppose now that b,y,41 #o0
and thus r4+n+41=<p. By 3.3.2 we conclude that (b, * + +, b,4n) EB,tn, SO
that 3.3.1 gives b,.. €4,V - - - \UA,, showing that b,4, is a vertex of L,.
However, o is by supposition a 1-cell of L,, so that b,;1 does not belong to o.
Since b,41 &€ Urp1 and U,1Mo # &, U,41 contains at least one end-point of .
On the other hand, U, can contain at most one point of the set 4,\J - - -
UA 1 (see 4.1), while both end-points of & belong to its subset 4;,\U - - -
UA, mZp—r—1).

Assume now (2). If p<r, then b,1 =0 is disjoint with ¢, hence, U,,1 con-
tains at least one end-point of é. However, if U,;; would contain both end-
points, i.e. entire &, then U would contain entire ¢ X &, contrary to our as-
sumption. Suppose now that p>r. b,.1 is now the (r41)st coordinate of
b&eB, and thus 3.3.1 gives b,.€EA4:\J -+ - UA4,_.. Since, in this case,
n>q—r—1zZp—r—1or n=p—r, we see that b, is a vertex of L, and thus
disjoint with o. The rest of the argument is as above.

(") For the definition of cells e, see the proof of Lemma 8.
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4.4. LEMMA 12. If UNX is a standard open set, then UNY and UNX are
connected. Every loop f in XN U can be deformed, inside XN U, into a loop g
of bX097? X Yo, such that (ges1, + - + ) s a standard loop of Y.

Proof. In view of Lemma 11, it suffices to prove that YN\ U is connected
and that every loop f of YN U admits a deformation of the kind required by
Lemma 12 (in order to “push” the loop out of the cells ¢ Xe whose closure is
in XN\ U, apply 1.1.3 and 1.1.2). Observe now that ¥ CQ, and if f has points
in ¢ X Py, cEB, ¢ n=gq, then (¢, -+ +, ¢g) EULX - - - XU, hence, (¢XPy)
CU. By 3.3.9, we know that (¢XPo)NT¥=(cXY)CUNY is connected.
Since ¢XOE (Ungq1 B, X Yo)NU, the connectedness of YNU will follow
from that of (U,geu1 Ba X Yo)NU. As to the deformation of f, apply Lemma 7
to f and ¢; the resulting deformation G takes place in XN U (due to special
properties of G? listed in Lemma 7) and enables us to assume hereafter that
fCY,NU.

Assume now that b,=0 (gth coordinate of X0, b&B,). If c€B,_; and
(eX Yo)NU # &, then it follows easily that (¢X Yo)N\U=(c X (LN U, XO)
U(cXoXYy) (observe that 0=0,&E U, and ¢€U; X + + + X Ugi). Both of
the terms are, obviously, connected and have in common the point ¢XO
€U, <q—2 B, X Yy. The question is thus reduced to proving that (U, g2 B, X o)
MU is connected. We can continue this process one step further if b,_1=o0.
We now distinguish two cases. Either we meet a coordinate b, 0, r =2, and
have to prove that (U,<r1 B, X Yo)N\U is connected (obviously, r<p), or
we have to prove the obvious statement that Y\ U is connected (in the last
case bX0=bX0C€ U, b&€L).

In order to prove our assertion in the first case, let us prove that b, #o,
2=r=p, bEB,, implies

V. NUC(Ypur NO)J by X -+ X b)) X (LN U,) X O,

3

®) n=1--.-,r—1.
Indeed, let x& (Y. NU)\(YodU) C(Baa X Yi)NU (sece §3,(21)). Then

(x1, + + +, Xn1) EBy and thus (by 3.3.1) x,€4,J - - - U4,_,C4,/J - - -

UA s, s=n—1.Since x,E U,, it follows from 4.1 that x, =b,,s=1, - - -, n—1.

Assume now more precisely that

(4) xEBn_lekXO"_IXYO, kE{O,l,}

Since x,& U, and b, #0, 4.1 implies that x, 0. We infer from (4) that this is
possible only if n+k=<7 and that (xn41, - - -, %, - - - )&V, Therefore,
., EA,CANI - - - UA,_,CAN - - - UAd,_,. This fact, together with
x,& U, proves that x,=5, (by 4.1). Finally, x, #0 implies that all other co-
ordinates of (x,41, + + - ) equal 0. To ®ny1, - -+, %,—1, we apply again the
argument involving 4.1 and obtain (3). It is easy to see that (3) remains valid
for n=0 if we put Y_1=. Applying (3) subsequently with n=r—1, - - -,
1, 0, we obtain
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(5) V..iNUCbh X - Xb_1X(LNU,) XO.

Notice now that (X - - + Xb,_1) EB,_1 (see 3.3.2) so that the set on the
right side of (5) is contained in (U, ¢,—1 B, X Yo)NUC Y,.iMU and we obtain

(6) (U B, X Yo)f\U= VoaNU =5, X - X by X (LN U,) X 0

<r—1

the examined set is thus an arc and therefore is connected. This completes
the proof of the connectedness of YU and XN U.

Consider now the loop f C(V,N\U) and suppose that b,=o0. Observe that
for cEB,_1, (c X VI)NUCcX(LNU,) X Ypand that (¢ X V1)NU £ & implies
cX(LNUY X YVoC (e XXo)NUCXNU. Define now a deformation of the set
(Y \(eXPo))U(cX(LNU, X Yy) by taking identity on the first summand,
on the second summand we keep all the coordinates fixed except the gth
which we subject to a contraction of LM U, to the point b,=0, this point
being kept fixed during the deformation (¢ XO is the only common point of
the two summands). The described deformation induces a deformation of the
loop f, which takes place in XN\ U and brings finto (¥, \(c X Po))\U(c X0 X Yy).
Repeating the process for all ¢€ B,_1, we obtain a deformation of fin XN U,
giving a loop in Y,.1N U (see §3,(21)). We can continue this reducing process
one step further if b,y =0 (by similar arguments), etc. If there is no b, #o,
r=2, then we have only to see that a loop fC Yo\ U can be brought to the
required form. Suppose now that there is a b, #0, r 2 2. Then we can assume
that fC(Y,NU). Since

Q) Y. N\U = [(Yr\(Br—1 X Po)) N U]V [(Bioy X V) N\ U]

and in this case & X - - - Xb_ i X(LNU,) XOC(B,_1 X Yo) C(B,_1 XPy)
MY,_,, we infer from (6) that the first term in (7) is empty and thus Y,/"\U
=(B,.1 X Y1)NU. However, f being connected, it has to lie entirely in a set
¢ X Y1, ¢ & B,;. Since b X O is the base point of f we conclude that
c=(by, - -+, br), hence, fC1X ++ - XbaXVI)NUCHX -+ Xbra
XLNU) X (Vo (Ura X - -+ XUGXPo)) CXNU. A deformation of this
set, determined by a contraction of LN U, to by, induces a deformation of f,
in XN\ U, into a loop of

(B X - XbEXTY)NUC (byy - -+ ,b) X [(LN Uppa) X 0)
U@X(LNUpz) XOYUJ -+ -\U (071X (LN Uy X 0)\U (07 X Y¥y)].

All the terms of this set, except the last one, can be contracted to their only
common point & X -+ + + Xb,XO0. These contractions induce a deformation of
finto a loop in & X - -+ Xb, X0 "X Vo=bX07?X YV, Since bXo?XX,
CUNX, we can apply Lemma 4 to obtain, finally, a loop as required by
Lemma 12,

4.5. Proof of Theorem 4. Let f be a loop of UNX, which is homotopic to
bXO0 in P,. f can be deformed in UNX to a loop g as in Lemma 12. Clearly,
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(gq¢+1, * - ) is homotopic to O in Py and thus (by Theorem 1) homotopic to
O already in X, Consequently, f is homotopic to 8XO in (bX07?XX,)
NUCXNU. m(XNU)—m(Py) is thus a monomorphism.

Now associate with every loop of XN\ U a “standard” loop g of b X 07=? X P,.
Two loops, homotopic in XN U, give rise to loops which are homotopic in
bX09?XP,. This defines a monomorphism i (XNU)—m(bX09?XP,),
which is clearly an epimorphism, because every loop of bX0%?X P, can be
deformed, in 8 X077 ? X Py, into a “standard” loop g (see Lemma 3), which be-
longs to XN U. Since bX 07 ?X P, is homeomorphic to Py, we obtain

(8) n(X N U) = m(Po).

4.6. Dimension of X and Y. To complete the proof of Theorem 2, we now
prove

) dim 7 = 1,
(10) dim X = 2.

Since K has at least one 1-cell and YD Y, DL X0, we have dim ¥ = 1. Simi-
larly, dim X =2, because of X DX, DLXLXO. dim X <2 is an easy conse-
quence of dim ¥ <1 and Lemma 8 (apply the sum theorem of dimension
theory). To prove that dim ¥ <1, consider open sets U=U; X - - - X U;X P,
of Py, where U, is open in K and (U,\U,) intersect L in a finite set, which is
disjoint with the countable set 4. Sets UNY, obviously, form a basis of open
sets for Y. Since the boundary of UNY (with respect to ¥) is contained in
(T\U)NY, it suffices to show that (U\U)NY is a finite set. Notice now that

q

(11) TNU=U [T X - X Tt X (Ua\Un) X U1 X+ -+ X Uy X Po].

n=1
It is clear that our assertion will follow from this proposition: given a fixed
point aEL\A and an integer p=1, the set of all x €Y with x,=a is a finite
set. In order to prove this proposition, observe that the pth coordinate of a
point from B, , XY, n=p, belongs to A. Therefore, our set has to be con-
tained in U323 B, X Y, (see §3,(27)). However, if cEB,, n<p—1,and xEcX Yo,
then (Xn41, * * *, Xp, - + + )E Yy, and since x,=a is not in 4, x, must be
different from o, hence, (Xpt1, * * *, Xp, + + = ) =07"""1Xa XO, showing that
there is only one such x. This proves the assertion.

5. First singular homology group of the infinite Cartesian product. 5.1.
The first singular homology group (with integer coefficients) Hi(X) of an arc-
wise connected space X is the factor group of m(X) by the commutator sub-
group (Theorem of Poincaré). Hi(X) is zero if and only if m(X) is a perfect
group(®). If Gy, Ge, - - - is a sequence of groups, let T1G. denote their (com-
plete) direct product(?); if Gi=G.= - - - =G, we use the notation IIG. 1f

(®) Le. a group coinciding with its commutator subgroup.

(®) Elements of the product are sequences (g1, g2, * * * ), gs& Ghn, all g can be different from
the unit; (g1, g2, + * + ) * (B, b, + + = ) =(g1hn, g2hs, - - - ) (see [8, p. 122]).
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X1, X,, - - - is a sequence of arcwise connected spaces, then HX,. is arcwise
connected and m( [[X,) = [[(m(X.)).

LEMMA 13. If G is a (nontrivial) perfect finite group, then ]G is also (non-
trivial) perfect.

Since G is finite and perfect, there is an integer p, such that every element
of G is a product of » commutators (some of which may be trivial, i.e. of type
eee~le~!, e being the unit of G). Let g=(g1, g2, - - - )EG and let

-1 -1 -1 -1
(1) &n = anlbnlanlbnl ttt anpbnpanpbnp, n = 1, 2, .

Furthermore, let

(2) ar = (aw, az, "~ ), b = (buk, boky, + -+ ), k=1,2,---,p.
Then
3) G = (@i, amy )y be o= (b, b, v ),

and it is readily verified that

4) §= alblaIlbfl s apbpa;lb;l;
every g&G is thus a product of p commutators.

Examples of nontrivial finite perfect groups are provided by the alternat-
ing group A, of degree n>4 (see [3, p. 38]); another example is the
“binary icosahedral group” (see [11, p. 218]) defined by two generators a, b
and relations a5=0*= (ab)2.

5.2. If G, is a sequence of perfect groups (possibly G, =G, for all n) and
G, has at least one element %,EG,, which is not a product of fewer than »
commutators, then HG,, is not perfect. It suffices to see that the element
h=(h1, ks, - - - YE ]G, is not a product of finitely many commutators. The
assumption that & is a product of, say, » commutators, would imply that &,
is a product of r commutators for all #. However, if #>7, this is in contradic-
tion with the choice of #,.

An example of such a situation is provided as follows. Let G be a perfect
nontrivial group (possibly finite); let G, be the n-fold free product G,
=G* - - %G and let 2, EG, be given by h,=gig; - - - ga, where ge€G and is
different from the unit of G, k=1, - - - , n. A theorem, due to H. B. Griffiths
[4, p. 245], asserts that %, is not a product of fewer than » commutators in
Gh.

Here is a geometric consequence.

THEOREM 5. There exists a sequence of (conmected 2-dimensional) finite
polyhedra P,, n=1, 2, - - -, with vanishing homology groups H,(P,)=0,
g=1, 2, - -, and such that the first singular homology group of the infinite
Cartesian product Hy([]P.) =0.
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Let P be the 2-skeleton of the well-known “Poincaré space” described in
[11, p. 216]. It is known that I7,(P) =0 and that m,(P) is the “binary icosa-
hedral group.” Take now for P, n copies of P attached at a single common
point. Obviously, m(P,) =m(P) * - - - « m(P); this group is perfect, because
m(P) is a perfect group. Moreover, Hy(P,) =0, so that all the hypotheses of
Theorem 5 are fulfilled. However, by the above remarks, i ([]P,)
= [I(m(P.)) is not perfect and thus H (]IP.) =o0.

It is well-known that the singular homology groups of the Cartesian prod-
uct of finitely many spaces are completely determined by the homology
groups of these spaces. Theorem 5 shows that this is not the case for infinite
products.

6. Main theorem and Ic; spaces which fail to be LC!. 6.1. Given any
finitely presented(!°) group G, there exists a finite (2-dimensional) cell com-
plex K, having a single vertex o and satisfying m(K) =G (see [12]). Assigning
to G such a K and to K the continuous curves X and Y described in 3.1, we
derive from Theorem 2 our main result:

THEOREM 6. Given any finitely presented group G, there exist a 2-dimensional
continuous curve C(G) and a 1-dimensional continuous curve D(G)C C(G),
having the following properties: m(C(G)) = [[G; every point x& C(G)\D(G) has
neighborhoods homeomorphic to the Euclidean plane and every point x&D(G)
has a basis of connected (open) neighborhoods U(x) in C(G) such that U(x)
C C(G) induces a monomorphism of mi(U(x)) into m(C(G)) with an image iso-
morphic to []G.

6.2. Now take for G a nontrivial perfect finite group. Then []G is non-
trivial and perfect (see Lemma 13). Therefore, every x & C(G) has a basis of
connected neighborhoods U(x) with II,(U(x)) =0, showing that C(G) is a
2-dimensional continuous curve, everywhere lc.. On the other hand, if
xED(G), m(U(x)) = [[G and thus nontrivial. Since m(U(x))—m(C(G)) is a
monomorphism it follows that the space is not semi-1-LC at the points of
D(G)(*Y); a fortiori it is not LC! in those points. This proves

THEOREM 7. Every nontrivial perfect finite group gives rise to a 2-dimensional
continuous curve which is Ic, but fails to be LC in a subset of dimension 1.

CONJECTURE. A continuous curve which is everywhere lc} can not fail to be
LC* in exactly one point.

This statement, if true, should explain why the examples exhibited in this
paper are of a rather involved nature.

6.3. We now state (proof is easily supplied using Lemma 13).

(10) I.e. group defined by a finite number of generators and relations.

(M) A space X is semi-1-L.C at x & X if there is a neighborhood V of x such that the image
of m (V) in m(X) (under the homomorphism induced by V(C X) is trivial, i.e. the unit subgroup
of m(X).
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THEOREM 8. If K is a finite complex with a single vertex o and m(K) is a
nontrivial finite perfect group, then [[K is an infinite dimensional continuous
curve, everywhere Ict and nowhere LC.
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