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Introduction. Let y be a differential indeterminate over the rational num-

ber field R, that is, we consider the polynomial ring P[yo, yi, y2, • • ■ ] in a

sequence of (algebraic) indeterminates yo=y, yi, y2, • • • together with the

mapping a—fa' of P[yo, yi, y2, • • • ] into itself which has the properties:

(1) ia+b)' =a'+b', (2) (at>)' =a'b+ab', (3) yi =yvfi; there is one and only one

such mapping, and the operation of passing from a to a' is called differentia-

tion. By a differential ideal in P[yo, yi, ya, • • • ] we mean an ideal in the ring-

theoretic sense which has the property that if a is in the ideal, then also a'

is in the ideal. Notationally, [yp] stands for the differential ideal generated

by yp, that is, for the ideal generated in the usual ring-theoretic sense by

y. iypY, ay)')'. ■•••
A study of the structure of differential ideals yields many unsolved prob-

lems even for the relatively simple ideal [yp]. It is shown from a simple cal-

culation that y?~1 = 0[yp], whence it follows that some power of each y< is in

[yp]. The following question was singled out for investigation by J. F. Ritt

[3]: what is the smallest q such that y< = 0[yp]? For i = l, q = 2p — l is stated

by him without proof to be the answer. In Part I we give a proof of this re-

sult, and in Part II we solve the problem for i = 2, p^2. For arbitrary i we

conjecture the answer to be q=ii+l)ip —1) + 1.

The following notation and results of H. Levi we use extensively. Let

P—y^yi1 • " • yB" be a power product (pp.) of degree

n

d =   ?. ai
>=o

and weight

n

w — 2~2 iai-
i-1

Write d = aip — l)+b where a and b are integers such that OSa, 0<bSp — l.

We let/(p, d) =aia — l)ip— 1) +2ab. It is helpful to note, as Levi has done,

that/(p, d) is the weight of the first d factors of the formal infinite product

yo-1yf_V4-1 • • • . A sufficient condition for P = 0[yp] is that the weight be

small with respect to the degree. More precisely, we have the following theo-

rem of H. Levi:
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Theorem 0.1. Let p>l and P be a pp. in the y, of degree d and weight w.

Phen ifw<f(p, d), P = 0[y*].

Levi's theorem may be restated in terms of the notion of weight sequence

introduced by D. G. Mead in [2],

Definition 0.2. // P=yilyti ■ • ■ yi„, where the ij are monotonically non-

decreasing, then (ai, • • ■ , an) is called the weight sequence of P and a„ the excess

weight of P, where

i

aj = E ** - fiP,J)-
*=i

There is a one-to-one correspondence between weight sequences and pp.

in the y„ therefore a pp. and its associated weight sequence may be used

interchangeably. Theorem 0.1 says that if one of the entries in the weight

sequence of P is negative, then P^=0[yp]. That this condition is not neces-

sary was shown by Mead in [2].

Another basic result of H. Levi concerns the so-called weak pp.

Definition 0.3. P=yo°yT • ■ • yt1 is called a weak pp. if, for i = 0, ■ • ■ ,

n — 1, one has ai+cti+i<p.

Theorem 0.4. No linear combination of weak pp. is in [yp], unless all the

coefficients are zero.

This theorem furnishes us with a starting point for our work. By a se-

quence of congruence relations we reduce a pp. to a linear combination of

weak pp., and then we have only to inspect the coefficients involved to

ascertain whether or not P = 0[yp]. In the reduction process used by Levi,

if £ is not weak, so that it contains a factor y?y?+i°, this factor is replaced

modulo [y] by the other terms in the [ia + (i + l)(p — a) ]th derivative of y",

that is by

- E cm n y/

where

E Bi = p,
E#y = *<* + (i+ l)(P - a)

and

P?(i+lYr-° a\(p- a)\

CW) ="   n U0*    WW "

This gives rise to a congruence relation £= — Ec«'0> where the Qi are pp. of

the same weight and degree as P, but less than P if the pp. in the yi are
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ordered lexicographically. The Qi may in turn be replaced by linear combina-

tions of pp. Rijt each £,,. being less than Qi, until P is written congruent to a

linear combination of weak pp. This process usually requires elaborate com-

putations which sometimes may be simplified by the notation of an M-

congruence [2].

Let P= Ec(? De the congruence obtained after one step in Levi's reduc-

tion process. Let P = Hy*1 and let Q = Y[yik be the monomial on the right

side of the congruence. Placing m(P, Q) = (U(kl)a"]/[Yl(k\)^], m(P, Q) is
called the first factor of the step from P to Q, M(P, Q) =c/m(P, Q) the sec-

ond. Note that m(P, Q) depends only on P, Q, not on the step. After several

steps in the reduction, suppose we come to a congruence P= E^P- Calling

a sequence of successive steps a path, there may be several paths in the given

reduction leading from P to £. The first factor of a path from £ to £ is de-

fined to be the product of the first factors of the steps; clearly this is m(P, R)

and hence the first factor is the same for any path and can be designated with-

out confusion as m(P, P). If, quite generally, £= E^P, we also write

P = M^f](d/m(P, £))£ and call this an If-congruence. Because of the inde-

pendence of the first factor from the path joining P and £, the M-congruence

is what is obtained in the Levi reduction provided the first factors are sup-

pressed at each step of the reduction. As remarked by Mead, in testing

P = 0[yp], we may restrict the computations to M-congruences.

Part I. In this section we show that the smallest q such that yi = 0[yp] is

q = 2p — 1. This result was known to Ritt and a proof that yiP_1 = 0[yp] is

given in [3].

Lemma 1.0. y?~l = 0[y\.

Proof. P = yip_1 is of degree 2p-l and weight 2p-l. We find that

f(p, 2p-l) = 2p+2. Hence, by Theorem 0.1, P = 0[yp].

Lemma 1.1. If £ = y?y°13,2s is of degree 2p — 2 and has excess weight zero,

then

a0+l   ai—1   oj „r   Pi

Q = yo    yi    yi = 0[y J.

Proof. Since £ has excess weight zero, w(P)=f(p, 2p — 2)=ai+2a2.

w(Q)=ai-l+2cn. Therefore w(Q)-f(p, 2p-2) = -l, and hence, by Theo-
rem 0.1, Q = 0[y].

Lemma 1.2. Let £=y?'yi1 ■ ■ ■ yt', «8>0, be of degree 2p — 2 and have ex-

cess weight zero. Then if s>2 we have P = 0[yp].

Proof. We examine the weight of Q =y?y'i1y22 • • • yT~l- Since P has excess

weight zero, w(P)=f(p, 2p-2)=2p-2. Hence w(Q) =w(P)-s = 2p-2-s

<2p-i=f(p, 2p-3). By Theorem 0.1, Q = 0[y], and therefore also
P = 0[y"].
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Lemma 1.3. yT~2f^O[yp].

Proof. We show by induction on p-k that ylyi~2~2kylf^O\yp], O^Jfe

Sp — 1. For the case p — k = l, yo-1y2-1f^O[y] by Theorem 0.1. We assume

the lemma true for values less than p — k. By Lemma 1.1, we have

yo+1yiP~3~2y2^0[yp], whence iyl+1yf3~2tyl)'^0[yp]. Expanding and ap-

plying Lemma 1.2, we have

k   2p-2-2*   k 2p —  2k —  3     k+l   2p-4-2A:   k+1.   p.
y0yi y2 =-——-y0   yx y2   [y J.

k + 1

By our induction hypothesis, y^yf^'^yl^^Oly"], and (2p-2Jfe-3)
/ik + l)9*0 since 2p — 2k — 3 is an odd number. Therefore the induction holds

and our lemma follows by taking k = 0.

Corollary 1.4. yT^=dyVlyVlb'], d^°-

This follows from the proof of the lemma, or from it directly upon observ-

ing that there is only one weak pp. of the same degree and weight as yo_1y2_1-

(More generally, it is known, and easily proved, that there is only one weak

pp. of the same degree and weight as yo_1y2_1 " " " VzT1)-

Theorem 1.5. The smallest q such that y\=0[yp] is q = 2p — 1.

Proof. Lemmas 1.0 and 1.3.

Part II. In this section we find that the smallest q such that y2 = 0[yp] is

g = 3p-2.

Lemma 2.0. ylp~2 = 0[y].

Proof. P=yl"~2 has degree 3p — 2 and weight 6p-4. We find that

fip, 3p-2)=6p. Hence P = 0[yp] by Theorem 0.1.

Lemma 2.1. If P = yfyVyVyfyV is of degree 3p — 3 and excess weight zero,

then

(a) Qo = y0t°+1yil-1y?y?y?=-0[y»],

(b) Q^yVtf^yT^yfyV^Ob*],
(c) Q,=yoYiYt^yT^yr=o\y],
id) Q3=yl"yTy?y?+1yV-1 - 0 [y ].

Proof, (a) w(Oo) = («i —l)+2a2+3a3+4o4. Since P has excess weight

zero, wiP)=fip, 3p-3)=ai + 2a2+3a3+4a4. Therefore w((?o)-/(/>, 3p-3)

= — 1 and (?o = 0[yp] by Theorem 0.1. The proofs for Parts b, c, and d are

similar.

Lemma 2.2. Let P = y^y^yTyfy? • ■ • yi', «.>0 be of degree 3p-3 and
have excess weight zero, then if s>4, P = 0[yp].

Proof. Assuming thatas>0, we compute the weight of Q = yfyTyZ'yt'yV
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• • • y°*_1. Since P has excess weight zero, w(P) =f(p, 3p — 3)=6p — 6. w(Q)

= w(P)-s = 6p-6-s<6p-10=f(p, 3p-4). By Theorem 0.1, Q = 0[yp],
and therefore also P = 0[yp].

Theorem 2.3. yf~3= E* ^M- where Pk = (y\yf)2k(yiyzYz"-u'z)'2, P

odd, 0^2k^p-l, or Pk = (y2iyi)2k+1(yiy3Y3p-ek~6)'2, p even, Og2Jfegp-2. Also

c(p-i)n^O for p odd and C(P-2)/2^0/or p even.

Proof. By Lemma 2.1b, we may write y\"~3 = -(3p-4\)yiy¥~by3[yp}-

Lemma 2.1b is applied again to obtain

Zp-i 1     r 2   3p-7   2 2    3j>-6     ..   p.
yryi    ys = —— L(3p — 6)yiy2    y3 + yiy2    y4jly J.

Now Lemmas 2.1b, 2.2 are applied repeatedly to eliminate the y2 factor.

Applying these lemmas to y'yZylyl (for appropriate a, b, c, d), we can write

this pp. congruent to a linear combination (with negative coefficients) of

yi+y2~2yc3+1yi and yo^yl^yr'yV'1. Thus repeated application of Lemmas 2.1b,

2.2 yields y\f~3 to be congruent to a linear combination of monomials

fiyfv~2')~x~vyl~zy\, x=y+z. By setting 3p-3-x-y = 0, we may write yf~z

congruent to a linear combination of monomials of the form yxyv3~lyl with (1)

3p — 3=x+y; (2) x=y-fz. We are interested only in those monomials with

non-negative weight sequences; hence (3) z^p — 1; also (4) x+3y+z = 6p — 6;

and (5) y^z so x^2z. From (3) and (4) we have

x   t-z   z 1        t x-lz 1        z Z(p-z-l)/2

yry* yi = (yiy*.) (yiya)      = (yiyi) (yry3)

In order to guarantee that the exponent 3(p — z—l)/2 he an integer, we set

z = 2k, 0^2k^p-l,ilpisodd,andz = 2k + l,0$2k^p-2, if pis even. Thus
yf-'m E* ckPk[yp] as stated.

The transition from y\?~3 to yiylP_5y3 is a step, or a path of length one,

and the transition from yf~3 to y\y\v~z~x~yyvfzy\ is by means of paths of

length x. The coefficient of yxy\\~i~x~vyvf~zy\ at the end of the path is positive

or negative according as x is even or odd; the total coefficient is the sum of the

coefficients for the separate paths, and since all the paths are the same

length, the total coefficient is positive or negative according as x is even or

odd. In particular the coefficient of (yiy4)p_1 is positive and this concludes

the proof of Theorem 2.3.

The following lemma is a generalization of a statement of Mead [2,

p. 430].

Lemma 2.4. // P=y%'yi1y?yl3y? = 0[yp] is of degree 3p-3 and excess

weight zero, then Q = yfyTyZ'yTy? = 0[yp].

Proof. In the reduction of P, by Lemma 2.2 we may simply neglect

modulo [yp] the terms having a factor yt, t>4. Also if P is of degree 3p — 3
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and excess weight zero, then Q is of degree 3p — 3 and excess weight zero, so

the same remark holds for Q. With this understanding, the mapping y,—»y«_<,

OSiS^, not only maps P into Q, but also maps a valid Af-congruence used in

the reduction of P into a valid Af-congruence for the reduction of Q.

Theorem 2.5.

.2        l      3   3s(p-l)/2 .   p+t.
(yiy 4) (yiyi) = o[y   ],      * ̂  o,  p odd,  p>\.

,   2     s!+l,   3   3V (p-2)/2 r   p+t,
(yiy*)    (yiy*) = 0[y    ],        t^O,   p even,   p > 2.

Proof. For p = 2, nothing is being asserted. For p even, p>2, write p+t

= ip — l) + it + l); the theorem for p = p then follows from the theorem for

p=p — l. So we may assume p odd, p^3. We prove the theorem first for

p = 3. For arbitrary p, replacing yjjyj"3 by the other terms in the (4p —3)rd

derivative of yp, we find

.„. 2p-3    3   p-3 l/-9(p — 3)!     2p-2   p-1 9(/> — 3)1       2p-3 p-2~|    rp,

(1) yi ™4 ■ l4(p-i)!yi yi -Tip-^i*   ymyi ryl

By Lemmas 2.1b, 2.2, we have

2p-3 p-2 —1 2p-2   p-1.   p-,

(2) yi    y2y3yi    =-- yi    y4    [y J.
2p — 2

Therefore, from (1) and (2) y^~zy\ft~z = 0\yv], p^3. Placing p-3=t, we

have y?y3(yiy4)' = 0[y3+'], which is the theorem for p = 3.

Letting P denote an odd integer such that 3ST<p, we have as our in-

duction hypothesis

I.H.2.5. (yry4) Viy3)<r_1)/2 - 0[yr+'],     I ^ 0.

Before proceeding with the proof of Theorem 2.5, we insert a number of

lemmas.

Lemma 2.6. If y\yfy\ is of degree 3p+3t — 3 and weight bp + bt — b, then

a = 2p+2t-k-2 and b=p+t-2k-l, so that y&ffyi=(ybu)»+|-**-1Cy!y5)*.

Proof. We obtain a and b by solving simultaneously a+3k+b = 3p+3t — 3

and a+9k+ib = bp+bt-b.

Lemma 2.7. If ylyfyl is of degree 3p+3t — 3 and weight bp+bt — b, and

0<k<ip-l)/2,theny1yfyl=O[yp+<].

Proof. By Lemma 2.6 and I.H.2.5

a   3*   b r    (2*+l)+(p+(-2*-l)1

yrysyi = OLy J.
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Lemma 2.8.

2 *     2       I     3   3   <r-l)/2 ,   T+k+l,
P = iyoyi) iyryi) iyiyi)        = o[y      J

if
(T - l)/2 + min (k, I) < (p - l)/2.

Proof. By Lemma 2.4, interchanging y0 and y4, yi and y3, we see that the

lemma is symmetric in k, I; hence we may, and will, assume that k^l and

(£-l)/2+/<(p-l)/2.
ToP=ySyf+3™yf+3myi, where m = (T-1)/2, we apply Lemmas 2.1d, 2.2

to eliminate the y4 factor. Applying these lemmas to yany\y\y%y\, (for appropriate

a, b, c, d, e,) we can write this pp. congruent to a linear combination of

yty^M^y'f1, ylyyyt'y^yV, yly\yVyl+2yV; and after repeated aP-
plications, the pp. will be congruent to a linear combination of monomials of

the form:

a—u   h+u—v   c+f—w  d+w+x   e—x

yo   yi     yi      y%     y*  ,     u + v + w = x.

Taking x = e, P can be written as congruent to a linear combination of

monomials of the form:

*—u   21+3m+u—v  v—w   1k+3m+w+l

yo   yi yi   y% ,      u + v + w = I.

We propose to show that each of these is congruent to zero, modulo [yr+*+(].

Applying Lemma 2.4, it is sufficient to see that

lk+3m+l+v!  v—w   1l+3m+u—v   k—u r   T+k+l-,

yi yi   yz yt    = 0[y       J.

We apply Lemmas 2.1b, 2.2 to eliminate the y2 factor. One application of these

lemmas to ylylylyi replaces the pp. by a linear combination of yi+1y2_2)'3+13'4

and yi+1y2_13'!r13'4+1; after repeated applications, by a linear combination of

pp. of the form

a+x   b—x—v   c+v—z   d+z
yi  yi     y%     yi   ,      x = y + z.

Taking v — w — x — y = 0, it will be sufficient to show that

1k+l+3m+t—y   1l+3m+u—t+v—z  k—u+v—w—ly r    T+k+l,

yi ys yi = 0[y       J.

Recalling that l = u+v+w, x = y+z, and v — w — x — y = 0, we see that

2l + 3m+u — v+y — z = 3(m+u+w+y), and since y = v — w — x^v, we have

3(m+u+w+y)^3(m+l)<(3/2)(p— 1). By Lemma 2.6, then, it remains to

see that
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2        k-u+z      3   3 m+u+w+V r    T+k+l.

(yiy 4)      (yiy 3) = 0[y      J,

and this follows from Lemma 2.7. This completes the proof of Lemma 2.8.

Returning to the proof of Theorem 2.5, we distinguish the cases p = im — 1

and p = 4m + l. The following lemmas are proved for p = 4m — 1. The cor-

responding results are stated for p = 4m+ 1 and are proved in a similar

fashion.

Lemma 2.9a. Let p = 4m — 1, then

6m-3+2(   6m-3   t ^-, ,   im-l+t,

P = yi       y3    y*= 2-, CkQk[y       J
*=0

where

2m—k—l 2        3m-l-k+t 2k   2k

Qk = (yoy3) (yiy*) (yiy3)  y2

Lemma 2.9b. Let p = 4m + l, then

P = yi     y3 y\ = 2-, dkSk[y        J
*=0

where

So = (yoy3) iyiy<) m

and

2  m-k      2        3m+l—*+( 2*— 1    2Jt—1

Sk = (yoy3)    (yiy*) (yry3)     y2

for k>0.

The exact values of the ck and dk will be given below.

Proof a. Replacing ytm~ly4 by the other terms in the (12m+U — 3)rd

derivative of yim-i+'t we write P congruent to a linear combination of pp,-of

the form:

6m-3+2(   2m-2   «'o   ti   «'j   t'j   «4

Q = yi       y3    yoyiy2y3y*

with (1) io+ii+i2+i3+ii = 4m — 1+t,

(2) 7.'i + 27'2+34+47.'4 = 127w-3+4L

We have 7i+272+373+474 = 4(37« —1+0+1. and moreover,

(3) i0<m, as 7o^tw implies 7\+72+73+74^3777 —1+J, whence 3*i + 2t2+i3

S — 1, a contradiction. We also note that

(4) h>t.
Using the relations (1) and (2), one verifies that Q can be written in the form:
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2  «0 2m-2—«o+i|.    2     ,»4   «2

0 = (yoy*) iyiyd iyiy*) y^ ■

We divide the Ointo three types: type iii, those for which 2m — 2—2io+i3 = i2,

types i and ii take up the rest, type i having 72 = 0 and type ii having i29*0.

For terms of type i we claim

(5) *'o + (2m-2-2*o+*3)/3^2m-2.

For if not, then *o+*a+3>4»» — 1, which with (1) gives 3 — *i — 72 — (74—2)>0,

and with (2) gives 9+3t<j — ii — 2i2 — 4(74 —1)>0, the first of which yields

n — t = l or 2. If 74 —1 = 2, then *i =72 = 0; and the last inequality makes 7o = 0.

Thus ia+iit — t)=4m — l and 373+474 —4/ = 127w —3, so that it—t = 0 contra-

dicting (4). Thus 74 — 2= 1. Recalling that 72 = 0, we have *'i =0 or 1. But there

are no terms of the form yo0y3y4+1 or yoy^y* of the desired degree and

weight. Hence (5) is established, and with it, from Lemma 2.8, we conclude

that pp. of type i are zero modulo [y4m~1+<].

We now assert, for all Q,

(6) 2»»-2-2*0+*'»£*,.
For if not, then 4i0 — 2i3+2i2+3>4m — l. From (1) and (2) we get

(7) 4*o+3«i+2*2+**=4«-l,
and   with   the   last   inequality,   3 — 37i — 373>0,   whence   7'i=*-3 = 0.   Hence

47o + 272 = 4tm —1, which is impossible, as an even number cannot be odd.

To take care of the other monomials we insert a lemma:

Lemma 2.10a. Let p = 4m-l. If a pp. Q = iyoya)a(yiyt)hiyiiy*)eyi has the

same degree and weight as P, awci if aSm — 1, b>d, and b + 2c^bm — 3 + 2t,

then Q = 0[yim~1+t].

Lemma 2.10b. Let p = 4m + l. If a pp. 5=(y0y3)°(yiy3)i,(3'?y4)cy2 has the

same degree and weight as P, and if aSm—1, b>d, and b + 2c^bm + 2t, then
SmO]y**1+t].

Proof a. Applying Lemmas 2.1b, 2.2 to Q, we can write Q congruent to a

linear combination of pp. of the same form and with smaller d, namely,

/ V~L ^Z    2       NC    d~1
(yoys)    (yiy3)    (yiy/) y2

(yoy3)    (yiy3)    (yiy4)cy2

(yoys)"   (yrys)    (yiy4)" y2   .

Thus we may assume d = 0. With d = 0 and b 2; 27W — 2, Q is of type i and hence

Q = 0[yim~1+t}. With d = 0, if 6<2tw-2, then a+b/3 <m-l+(2m-2)/3
= (5/3)(m-l)<(p-l)/2,so that by Lemma 2.8, Q = 0[y4m-1+l]. This com-

pletes the proof of Lemma 2.10.

Continuing the proof of Lemma 2.9, Lemma 2.10 shows that all Q of type
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ii are zero. Thus we are left with terms of type iii. Terms of type iii are of the

form:

1 m-k-l      2        3m-l-k-l+t .Ik+l   Ik+l

iyoyf)       iyiyf) (yiyi)    yi
6m-3+2(   lm-1  m-k-l   l-l   ik+l   I   %m—l-k-l+t

= yi       yi    yo     yi yi   yzyi ,

O^k^m — l, 1^0. One observes that 1^1 since the term is divisible by

^6m-3+2< gy j-jjg formula given in the introduction we note that the coefficient

for / = 0 is

3!*»-i4!'(4»» - 1)!/!

2»4!«"-1-*+<(2ifc)!(3m _ i _ k + ;)!(OT _ k _ j)!'

and the coefficient for 1=1 is

" 22*+13!4!3m-2-'fc+,(2A + l)!(3w - 2 - k + t)\(m - k - 1)1 '

Suppose 1=1. An application of Lemmas 2.1b, 2.2 to such a term yields it to

be congruent to a linear combination of three pp.:

2 m-k-1     2        3m-1-k+t .Ik+l   tk

(Ws)       (yi3'4) (yry3)     y2

2 m-k-l     2        3m-2-*+< ,2*+2   24-1

(yoys)       (yiy*) (yiys)    y2

2 m-k-l     1        3m-l-*+! 2*   Ik

(yayi)       (yiyi) (yiyz) yi ,

where the coefficient of the last term, Qk, is

2m - 1

6m - 2 + 21

The first two pp. are zero by Lemma 2.10. Thus we have P= E*=o c*0* as

stated.

Remark. By the last paragraph we see that

3!*»-i4|'(4» - 1)!/!

Ck~ ~ 22k4l3m-1-k+'(2k)l(3m - 1 - k + t)\(m - k - 1)1'

(2m - 1) 3\im-H\'(Am - l)\l\

(dm- 2 + 21) 22i+13!43m-2-*+<(2/fc + 1) \(3m - 2 - k + t) \(m - k - 1)1*

Similarly one finds

3\im+14\'(4m + l)!t!

° ~   ~ 3!4!3m+'(3w + 0!wl'
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3!4m+14!'(4»7+ 1) 1(2)1

" 2»-14l»—*+1+'(2* - l)l(3m -k+l + t)\im-k)\

i2m) 3!4m+14!<(4m + 1)!/!

(6m + 1 + 20 22*3!4!Sm-*+'(2£)!(37» -k + t)\im- k)\

when

k>0.

Lemma 2.11a. Let p = 4m — l, then for OSkSm — 1,

(2m - 2)!(6m - 2 + 2t)l

~ (2m - 2* - 2) !(6m - 2 + 2k + 2t)!

m—k—l   6m— 2+21+2*   2m— 2— 2k   3m—1+*+<    r    4m-l+l1

X yo      yi y2        y4 [y        J.

Lemma 2.11b. 7e/p = 47w + l, then for lSkSm,

(2m - l)!(6m+ 1 + 20!
Sk m i-l)2*-i--Ll- ;

(2«-2A)!(6w + 2i + 20!

m-k   6m+2*+2<   2m-2fc    3m+*+(f   4m+l+(n

X yo   yi        y3     y*       [y       J.

Proof a. Let

m-t-l   6m-2+2(+j   2k—j       2m—2j   3m-l—k+t+j

Qk.j = yo      yi y2    y3      y*

2 m-t-l      2        3m-t+(+y-l 2k-j   1k-j

= (yoyv      (yiy/) (yiys)    y2   .

We will prove that

— (2m — 2 — j)

6m — 1 + 2/ + j

0Sj<2k. By Lemmas 2.1b, 2.2 we may write Qk,j congruent to a linear com-

bination of three monomials:

2 m-Jfc-2     2       Sm-l-i+l+i 2k+2-j   2*-j-l

iyoy/)       iyiyt) (yrys)       y2      ,

2 m-k-l     2       3m-l-t+I+y 2*+l-i   2k-j-2

(yoy3)       (yiy4) (yiy3)       y2      ,

2 m-fc-1      2        Sm-Jb+t+j 2fc-l-j    2Jb-i-l

(^oys)        (yiy 4) (yiy*)        y2

The first two pp. are zero modulo [y*»-i+«] by Lemma 2.10, and the third

pp. is Qk,j+\. Taking into account the coefficients, we have
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-(2m- 2 - j)

6w — 1 + 21 + j

and Lemma 2.11a follows.

Lemma 2.12a. Let p = 4m — 1, then for l^k^m, k^j^m,

m—lc   tm—l+lk+it   m—j   ij—ik   im—1+k+t—j

yo   yi yi   ys    yi

/     3 V-* (2j - 2k)l(4m + k - 2 + I - j)\

~\     2/ V~k(j - k)l(4m - 2 + 1)1

m-k   im—i+lk+it   m-k   im— 1+t.    4m-l+f1

X yo   yi y2   y4       [y        J.

Lemma 2.12b. Let p = 4m + l, then for Og,k^m, k^j^m,

m—k   6m+2<+2*   m-j   Ij-lk   im+t+k—j

yo   yi yi   y3    y4

/     3 V-* (2j - 2k)\(Am + t + k-j)\

\     2/ 2'-*(y-*)!(4w + /)!

m—k   6m+2(+24   m—k   4mf(r   4m+l+<i

X yo   yi yi   yi    [y        J.

Proof. Let

m-k   6m-4+2ifc+2<   m-j   1j—1k   im-1+k+t-j

Qi = yo   yi yi  ys    y4

We will show

/     3 \        2j - 2k - 1
Qi - ( --).   _/,_,,—-: Qi-Ayim-1+'].

\     2 /4m + k + t — 1 — j

Let Qj<^>Qj under the mapping yi<->y4-i, 0^f^4. By an application of

Lemmas 2.1a, 2.2 to

_ im-1+k+t-j   1j-1k   m-i   «m-4+2*+2(   m-k

Qi = yo yi    yi  ys yi   ,

we see that Qj is congruent to a linear combination of the following three pp.:

im-l+k+t-j   li-ik-1   m-j+1   6m-4+2*+2(   m-k

yo yi       yi     y3 yi   ,

im-l+k+t-i   ii-lk-l  m-i-1   6m-3+2t+2(   m-k

yo yi      yi     ys ys   ,

im-l+k+t-i   li-ik-1   m-i        Om-i+lk+lt   m-k+1

yo yi       yi     ys yi

Of these three terms, the first is (5/_i. By Lemma 2.4, the second two are in

[yp] if the following are:
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m—k   6m-3+2t+2«   m-j-1   2j-2k~l   4m-l+t+(-y

yo   yi y2     ys       y4 ,

m-*+l   6m-6+2i+2i   m-j   2j-2k—l   Km— l+*+l-j

yo      yi y2   y3       y4 ,

and this is so since

w(yTkyim~3+ik+U) <f(\m - 1 + I, lm - 3 + k + 2t) = 6m - 2 + 2k + 2t,

and

w(yri+1yin"6+2i+2') < /(4m - 1 + *, 7m - 4 + k + 2t) = 6m - 4 + 2k + 21.

Taking into account the coefficients, we have

2j -2k- 1        _    .

4m — 1 + k + t — j

Hence we have:

2j - 2k- 1 1 _    .

4m - 1 + k + t - j m(Qj, Qj-f)

2j -2k-l 1
& "    ~ 7-  i-l^i-'■     ,n   n    n ^-1 bim-l+' ,

4m - 1 + k + t - j m(Qh &-1)

(by Lemma 2.4), and

2j -2j-l m(QJt Qi-i)
q  E-_-___-Qj-_i[y4m-1+'].

4m-l + k + t-j miQj, &-0 ^

We also have

mjQj, Qj-i) =  3

MQj, Qj-i) "  2

and our lemma follows.

Lemma 2.13a. Pe2 p = 4m —1, then for ISkSm,

m—k   6m—4+21+2*   m—k   4m—2+J

yo   yi y2   y4

=  (-l)m-* -i-L-.-_
(8m - 5 + 20(8m - 7 + 2t) ■ ■ ■ ibm - 3 + 2k + 2t)

8m-4+2<   4m-2+f,   4m-l+<-.

X yi        y4       [y        J.

Lemma 2.13b. 7e2p = 4m + l, then for 0 S k S m,
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m-k   «m+2*+2l   m-k   im+t

yo   yi        yi   yt

(m - k)l= (-1)--*-i-1-
(8m - 1 + 2t)(8m - 3 + 2t) ■ ■ ■ (6m + 1 + 2k + 2t)

Sm+lt   im+t.   im+l+t,

Xyi     yi    [y        J.

Proof a. By Lemmas 1.1, 1.2 we have

tm—i+lt , 8m-6+2l      r   4m-l+<1
yi = — (8m — 5 + 2/)y0yi        y2[y        J.

A second application of Lemmas 1.1, 1.2 gives

8m-4+2t (8m  —5+2/)    (8m   —   7+2/)      2   8m-8+2<   2.   4m-l+«1

yi        =-yoyi       y2ly        J.

Repeated applications of Lemmas 1.1, 1.2 gives

8m_4+2(     ,    4 i (8m - 5 + 2t)(8m - 7 + 2/) • • • (8m - 3 + 2t - 2j)
yx = (-1)-—-

j   8m+2l-(2/+4)   if  4m-1+^
X yoyi yi[y        J.

Taking j = m — k and multiplying by y4m_2+' we have our lemma.

Lemma 2.14a. Let p = im — l, then for O^k^m — 1,

I 3 y»-*-i <2m - 2)!(6m - 2 + 2/)!   8m_4+2< 4m-2+,r 4m-i+<1
Qk — I — )       -yi       y4       Iy        1.
V       \2/ (8m-4+2/)!

Lemma 2.14b. Let p = 4m + l, then

( 3 \m (2m) !(6m + 2/)!   8m+2, im+tr im+i+t,

S—\T)       (8m+2/)!     yi      yi     b L

/ 3 y-k (2m - 1) !(6m + 2/ + 1)!   8m+21 tm+tr im+i+h

S*=-(V (8m+2/)l-yi      y*     [y l    l = k = m-

Proof a. Lemmas 2.11, 2.12 withj = m, and 2.13.

Continuing with the proof of Theorem 2.5, we have by Lemma 2.14, if

p=4m — 1,

6m-3+2(   6m—3   f

P = yi       ys    yi

»   22'-2{6m2 - 8m/ + 3j - 1 + (2m - 2j)t\
= Constant X E -;-

U (2j - l)\(m - j)\(3m - j + t)\

8m-4+2(   im-1+U   4m-l+(.

X yi        y4       [y        j;
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or if p = 47re+l,

6m+2f   6m   (

P = yi    yz y*

"   22>'+2(6m2 - 8m;- - 2jt + 2mt + 2m - j)   8m+2< 4m+«r 4m+i+«1

,_o (m - j) \i2j) \i3m - j + t + 1)!

Theorem 2.5 will follow from Lemma 2.15.

Lemma 2.15a. For p = 4m — l,

™   22>'-2(6m2 - 8m/ + 3j - 1 + 2m/ - 2jt)

h        i2j- l)!(m-i)!(3m-7 + 0!

Lemma 2.15b. Per p = 4m + l,

™   22'+2(6m2 - Smj - 2jt + 2mt + 2m - j)

h        (m-j)!(2i)!(3m-i + /+l)l

Proof a.

"   22'-2(6m2 - $mj + 3j - 1 + (2m - 2j)t)

h (27-l)!(m-i)!(3m-i + 0!

_ A      22i-1j3m - j + t)jm - j)

£i i2j - l)\im - j)\i3m - j + t)\

■g    • 22>(2/+l)(j)_

£j (2j + l)!(m -j- l)!(3m - j - 1 + t)\

_ A 2VJJ2J+1) j3m -j + t)jm-j) _ g 2*j(2j + 1) j3m -j + t)jm - j)

to i2j + 1) !(m - j) !(3m - j + t)\     jU (2j + 1) !(m - j) !(3m - j + t)l

= 0.

Theorem 2.16. The smallest q such that y2^0[yp] is q = 3p — 2.

Proof. By Lemma 2.0, yl'~2 = 0[yp]. By Theorems 2.3, 2.5 y\^3

-cy2v'2yr1[yp], C9*0. By Corollary 1.4, y^^dy^y^b"], d9*0. Hence

ylv'3 = cdyPr1yl-1yr1[yp], cdy*0 whence yf~s^O\yp] by Theorem 0.4.
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