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1. There are two main problems connected with the notion of projections

in Banach spaces. The first, which grew out of attempts to generalize results

known to hold in Hilbert space, is the following: For a subspace X of a given

Banach space F, does there exist a (continuous) projection of F onto XI

Moreover, under what conditions is it possible to choose for each XEY a

projection Px: F—>X such that the norms |[Px|| are uniformly bounded for

all XEY- For results in this direction see, in particular, Kakutani [6],

Murray [8], and Sobczyk [ll].

The second problem is the following: Given a Banach space X, under

what conditions does there exist a projection onto X of any space Yff)Xl

Moreover, what may be said on the norms of such projections? An important

concept in this connection is that of the class ty\, for a fixed X ̂  1: A Banach

space X belongs to %l\ if, whenever X is imbedded in a space F, there exists

a projection of F onto X of norm less than or equal to X. Of particular interest

is class ^Ji which has been completely characterized (see Day [4] for a sum-

mary of known results on the classes ^J\ and for references to original papers),

but little of a positive nature is known about ty\ for X> 1.

In the hope that more precise knowledge of properties of Minkowski

spaces (i.e. Banach spaces of finite dimensions) will be helpful in solving

problems pertaining to projections in infinite dimensional Banach spaces, we

report in the present paper some results on projections onto Minkowski

spaces. We find it convenient to define, for any Banach space X, the projec-

tion constant (?iX) as the greatest lower bound of the numbers X such that

XG^P*. If, moreover I£?(pm, we say that (PiX) is exact.

It is well known [4] that any Banach space may be imbedded in a mem-

ber of $1, and that each XG^i has the following extension property: Given

any Banach spaces F and Zf)Y, and any linear transformation / from Y to

X, there exists a linear transformation P from Z to X coinciding on Y with /

such that || P||= ll/H.
These facts imply immediately that we can find the projection constant

(PiX) of a Banach space X by taking a member Y of <$i which contains X and

taking the greatest lower bound ior minimum, if exact) of the norms of all projec-
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tions from Y onto X. In some cases (see, e.g. Theorems 1 and 3) this char-

acterization allows the determination of (P(X) in a direct way.

In the present paper we shall determine the projection constants for some

particularly simple Minkowski spaces and obtain bounds for other Minkow-

ski spaces. Our results are in a certain sense complementary to those of Mur-

ray [8] and Sobczyk [ll].

2. Notation and statement of results. Throughout the paper the following

notation will be used:

n: a (fixed) natural number, N = 2n~1;

£": M-dimensional Euclidean space;

m", .": ^-dimensional Minkowski space with points x = (xi, • • • , xf) and

norm ||x|| = maxisisn |x.| resp. ||x|| = E"-i \x*\ ■

Rn: Minkowski plane whose unit cell is an affine-regular 2n-gon (i.e. the

transform of a regular 2n-gon under a nonsingular affine map).

Mn: any ^-dimensional Minkowski space.

The main results of the present paper are:

Theorem 1. (P(P„) =22-n ctg 2_"7r and is exact.

Theorem 2. 6>(E2) = \/ir.

Theorem 3.

<P(/») = 21-»» Cn_i, („_„/.

and is exact.

Theorem 4.

6>(E") < —-
/n+l\

""r(—)

Theorem 5.

<?(M") fg (2/tt)1/2« + 0(n-x);

<P(M2) < 3/2.

The following sections contain the proofs of the above results and some

additional remarks.

3. Proof of Theorems 1 and 2. The proof of Theorem 1 will be divided

into three parts:

(i) Applying an idea of Naumann [9] we shall represent Rn as a (2-

dimensional) subspace of the A^=2n_1 dimensional Minkowski space mN.
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(ii)  Next we shall exhibit a projection P: mN—>Rn such that

i.   ii        2           *■
P   = — ctg-" A7        2_V

(iii) We shall show that any projection P*: mN^Rn satisfies ||P*|| ^||P||-

Since ra^G^i, this will (according to the alternate definition of (P(X))

prove Theorem 1.

In order to establish (i), let the points of Rn he given by (x0, *i), where

the system of coordinates is chosen in such a fashion that Gn, the unit cell

of Rn, has the representation

(3.1) Gn =  \ (xa, xf);    max     | *0 cos 2id> + xx sin 2id> \   fg 1 > ,
(. o__i__tf-l )

with 4>=ir/2N. The vertices Aj, OfgjfgA7'—1, of Gn are then given by

/-cos (2/ + 1)0   sin (2j + 1)<^
(3.2) _4y — I ; —— 1.

\        cos <f> cos d>      /

Yet D = (ci.y)5-o be an Af by N matrix with elements

Jcos 2i(j + 1)0, for 0 fg . fg N - 1  and j = 2/., 0 fg k fg tf/2 - 1,

" "'   (sin 2ij<b, for 0 fg . fg # - 1  and j = 2/. + 1, 0 fg k fg _V/2 - 1.

It is easily verified that 7>T>' = (1/2)NI??, where D' denotes the transpose of D

and In is the Af by N unit matrix. Therefore, in the ./V-dimensional vector

space with points (x0, • • • , Xn-i), a hypercube 27^ is given by

(3.3) HN = <(xo, ■ • ■ , xN-i);    max       zZ daxi   ^ l\ ■
( OSiSJV-l       y_0 )

Taking HN as the unit cell, we obtain mN. It is obvious that Rn is the sub-

space of mN consisting of points (x0, • • • , xjv_i) for which

Xi = 0, 2 _£ i fg JV - 1.

To establish (ii), let P: mN—*Rn he the projection defined by

P(*o, • • • , xn-i) = (xo, xi, 0, 0, • • • , 0) = (*0, Xi).

In other words, denoting by e,- the unit vector in the direction of the

positive x. axis, e. = (8?, • • • , 5f_1), we have

(ei,      for . = 0, 1,
P(fi<) = ".

lo,      for 2 _S * _S A7 - 1.

In order to compute the norm ||p|| of P it is obviously sufficient to find
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max{||P(s)||; xE mN, \\x\\ S l},

which, in turn, equals

max{||p(F)||; V a vertex of HN}.

Now, it follows from (3.3) that any vertex Fof HN is representable in the

form

2
V = (va, Vi, ■ ■ • , vn-i) = — («o, «i, • • • , err-i) • D,

N

where each e,- is either +1 or —1. In particular

2 N~1
vo = — £ «t cos 2i0,

A7 <-o
(3.4 2 n-i

Vi = —  >. et sin 2ic6.
N i=0

We are especially interested in those vertices   V(k), 0^fe^27V—1, for

which the corresponding ef' satisfy

<*>       f+1        for i ^ fe
e     =  <^ if 0 S k S N - 1,

X-1       iori<k

«.)       (+1        fori<fe-iV
e     =  <^ if 2V ̂  A £ 2iV - 1.

l-l        fori^fe-iV

It is obvious from (3.4) that ||P(F)||  is maximal for these and only these

vertices.

Now, as is easily computed,

m       2   sin(l - 2fe)(2i+ l)<t>
V2i   =->

N sin (2i + l)<j>
(3.5)

«)        2   cos(l - 2*)(2t + 1)4>
V2i+1   =-'

Af sin (2i + l)<t>

torOSiSN/2-1, 0SkS2N-l.
Therefore, assuming the convention ^4^+2^ = ^^ for the vertices of G„, we

see, on comparing (3.5) and (3.2), that

2
(3.6) P(F<*>) = — ctg 4>-Ak+Ni2~i,     for 0 S k S 2N - 1,

and thus max||P(F)|| =||p(7»>)|| =||P|| = (2/iV) ctgc/>= (2/N) ctg (ir/2N) as

claimed.
(iii)  Let us assume that there exists a projection P*: mN-^R„ such that
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(3.7) ||P*|| < ||P||.

We shall reach a contradiction in the following way:

Let P* be represented by

P*(ev) = (a2j sin (2j + 1)0; 6y sin (2j + 1)0) G Rn,
(3.8)

P*(e2y+i) = (a2y+i sin (2j + 1)0; 62.+i sin (2/ + 1)0) G Rn

for 0fgjfgA^/2 —1, where obviously (since P* is a projection onto R,i)

(3.9) ao = bi = 1/sin 0;        ai = 60 = 0.

By (3.7) we have

2
\\P*(VW)\\ < — ctg <t>, for 0 fg k g: 2N - 1,

and therefore, using (3.8) and (3.1), it follows that

/NI1-1 \

(   E   ["a an + vn+ian+i] sin (2. + 1)0 J cos (N + 2k)d>

(N/i-l \

E   [vn bn + vn+ibn+i] sin (2. + 1)0 J cos (A^ + 2£)0

2
< — ctg 0 for each k, 0 < k < 2N - 1.

N

Taking into account (3.5) and (3.9) we obtain (after elementary simplifi-

cations),

/NI1-1 \

- (   E   [«2;sin (1 - 2k)(2i + 1)0 + a2j+i cos (1 - 2k)(2i + 1)0] J sin 2*0

/Nli-l \

+ (   E   [bn sin (1 - 2k)(2i + 1)0 + 62i+i cos (1 - 2k)(2i + 1)0] j cos 2*0 < 0,

for 0 fg k fg 2N - 1.

Adding these inequalities for all values of k we obtain

(3.10) IZ faa,-+ hjbj)< 0
3-1

where
2JV-1

gn =   E sin 2i0-sin (2j + 1)(2. - 1)0,
i=0

2iV-l

gii+i =   E sin 2.0-cos (2j + l)(2i — 1)0,
i=0
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2N-1

hj =   £  cos 2id>-sin (2j + l)(2i - l)<p,
1=0

2N-1

h2j+i =   £  cos 2icj>-cos (2j + l)(2i — l)<p,
t=0

for 1 Sj S N/2 - 1.

But, on evaluating the above sums, we find that gj = hj = 0 for all/; therefore

(3.10) reduces to 0<0. This contradiction proves assertion (iii) and thus also

Theorem 1.

Remarks, (i) It is easily seen that for «>2 there exist projections

P*: mN->Rn different from P but satisfying ||P*|| = ||p||.

(ii) Applying arguments of the same nature as those used in the above

proof the projection constant of any Minkowski plane whose unit cell is a

polygon may be determined. But even in the case of a regular fe-gon, if

fe^2n, the relation (3.6) fails and with it the estimate of the projection con-

stant given in Theorem 1. Thus, for fe = 6 the projection constant equals 4/3.

Theorem 2 follows easily from Theorem 1. In order to establish it we

need the following lemma, whose obvious proof we omit:

Lemma. Let X be a linear space in which two norms || \\i and || ||2 are de-

fined; let Xi and X2 denote the corresponding normed spaces. Then

\\x\\i S 11*|12 S u-\\x\\i, for all x E X,

implies

1
— (P(Xf) S (P(Xf) Su<PiXf).
a

Now, let P2 be the Euclidean plane with norm || || and unit cell S, and

let || ||„ denote another norm in the plane, according to which the unit cell

is a regular 2"-gon circumscribed to 5. It is evident that

Ml. S NI =       / ... NI., ^r all x E E2.
cos (ir/2n)

Therefore, by the lemma and Theorem 1, we have

22-" cos — ctg — < (P(P2) < 22-"/sin —
2"        2" - 2"

for any re ̂  2. Since both estimates of (P(E2) tend, as re—> <*>, to 4/-7T, this proves

Theorem 2.

4. Proof of Theorem 3. The proof of Theorem 3 parallels closely that of

Theorem 1, although in the present case the technical details are more com-
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plicated. The proof is again divided into the following three parts, which are

sufficient in view of the alternate definition of (P(X).

(i) We represent /" as a subspace of mN;

(ii) A projection P: mN—>lH is defined such that

II   II       n
\\P\\   = — Cn-l, (n-l)/2 5

(iii) We show that any projection P*: mN-^ln satisfies ||P*|| ^||P||-

In order to find the imbedding of ln in mN we need, let us assume that mN

is given in the usual representation, according to which the unit cell 72^ is

given by

HN = \(*o, • • • , xat_i);    max     \x,\   5. 1>.
( o__<__Ar-i )

Let {eAi-o1 denote the usual basis of mN, given by ei=(b\, ■ • ■ , of-1). The

vertices V of 27^ are obviously of the form V= (e0, • • • , e_/_i) = zZf^o1 e«e>>

where each e. is either +1 or — 1. We shall need another basis for mN, which

we proceed to define.

Let Ai denote the matrix

C-I)
and let _4„, k>2, be the matrix obtained from _4„_i by substituting _42 for

+ 1 and —Ai for —1. Thus, e.g.,

Till

1-1     1-1
A3 =

1      1-1-1

.1 -1 -1      1

Obviously ^4„+2 is an AT by A7 matrix with elements +1. It is well known

(see, e.g., Sobczyk [ll ] and the references given there) and easily proved that

An = Af and

(4.1) A„Af = N-IN.

Let the elements of _4„, w>0, be denoted by a.y, Ofgi, jfg/V— 1. Since A„ is

nonsingular, the vectors {&.} (which correspond to some of the vertices of

HN) given by
N—1

h = zZ a>H'h 0 fg i fg N - 1
3=0

form a basis for mN. (In the sequel we shall use the notation E;<w instead

of Ef^O
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Let / denote the set of re integers {0, 1, 2, 4, 8, • • • , 2n_2}. From the

definition of the matrices An it is immediate that the components of bo ac-

cording to the base {ej} are all +1, while for iEI, i^O, the components of

bi are i +l's alternating with the same number of —l's. Therefore (see the

more detailed discussion in the third part of the proof; see also Sobczyk

[10, p. 940], we have

(4.2) £*,-&<   = £ |*,|.
iel »e/

This relation implies that the re-dimensional subspace of mN spanned by the

vectors {bi, iEl} is the space /"; in the sequel we shall use this (and only

this) imbedding of /" in mN.

We define now the projection P: mN-*ln by

(bi       i E I,
P(bi) =  <

lo       iEI-

As in §3, ||P||=max{||P(F)||; V a vertex of HN}. By (4.1), obviously

£ djbi = £ Oj,b, = Nej
i<N i<N

and therefore, for any vertex V= £«jv «»«« («»= +1) we have

V = — £ (ey £ aijbi) = — £ (bi £ auey).
Al   y<JV  \       i<N / A    »<JV   \       j<N /

From the definition of P it follows that

P(V) = ^ £ (h £ a*)
A     iGl    \        j<N /

and thus, by (4.2),

(4.3) \\P(V)\\ =^-£   £a,yey .
Jy   iei   j<N

We are interested in max ||P(F)||. Since all the (re —l)-dimensional faces

of the unit cell of l" are equivalent, it is sufficient to determine max ||P(F)||

for vertices V such that P(V) belongs to the "first octant" of ln, i.e. to

{ £<er Xibi] Xi^zO tor all iEl}- For such vertices (4.3) reduces to

(4.4) ||P(F)||=^-£(£aAy
Al  j<N \ iel       /

which is maximal provided the ey's satisfy
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+ 1        if IZan^ 0,

(4.5) ey= ^
— 1       if E«« <°-

iei

Later, we shall have to determine explicitly those j for which the first, resp.

second, inequality holds. For the determination of max||P(F)||, however,

the following simple reasoning is sufficient.

Let A* denote the n by N matrix with elements a,-y, i(EI, OfS/'fgJV—1.

Then in the columns of A* occur all the N combinations of +l's and — l's

which have +1 in the first position. Therefore there are CH-i,k different

columns in which +1 occurs n — k times and —1 occurs k times, for 0fg&

fg» — 1. Therefore, if the ey's are determined according to (4.5), it follows

from (4.4) that

»--U'i--<A)-j,f"-<A)}
n

= "TZ Cn-l,(n-l)/2,
N

as claimed. In order to establish the last equality the following elementary

relations are used:

™ /2m\        2mi      1 /2m\

k-o\ k / 2 \m/'

™ (2m + 1\

™     (2m\
ZZkl       ) = m22m-\
k-i    \ k /

™     (2m + 1\ m+l (2m + 1\

E*(      ,      ) = (2^ +- 1)2^-^-f—(       X    ).
k-i    \     k     / 1      \    m    /

In the final part of the proof we shall need more precise information

about the matrix A* and about the vertices of 27^ which maximize ||P(F)||.

Let 5 = (50, 5i, 52, 54, • ■ • , 62", • • • , 52»-2) denote a sequence of n numbers,

each of which is either +1 or — 1; let D he the set of all such sequences 5,

and let 8+ denote the sequence consisting only of +l's. Then, for x = zZiei xibi

G^n we have

IMI = E I *i\   = max/8(x),
is/ teD

where /5 is the functional defined by
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fix) = £ SiXi.
iel

On the other hand, let j, denote the coefficient of 2" in the binary repre-

sentation £K>2" of j, so that> = 0 or 1. It is easily seen that the jth column

of the re by A7 matrix A* = iaif), iEI, OSjSN—1, consists of:

+ 1 in the row i = 0;

+ 1 (resp. —1) in the row i = 2k iijk = 0 (resp. jk = 1).

Therefore, when (on p. 458) we determined the maximum of

||P(F)|| =^-£   £a*i,
N  iel   j<N

we took €y= —1 for those j in whose binary representation more than [re/2]

of the jVs equal 1. With this determination of €y, let us denote

F    =   £ €y«y =   £ yk bk-
j<N k<N

We are interested in the vertices Vs of HN which maximize ||P(F)|| in

the other "octants" of ln, i.e. for which

(4.6) ||P|| =||P(FS)|| =/5(P(F5)).

In the sequel we shall deal only with those 8ED for which 50 = +1; we denote

this set by D*. For any 5ED* and any iEI let gii, 8) denote the number of

different v such that 52v= 1 while i, = l, where i, is the vth digit in the binary

representation of i. In other words, g(fe, S) =2_1£"Io fe»(l — o». As easily

verified we have for each iEI and each kEI

(4.7) £ (-l)"*^ = 0.
8SD*

Now, putting

s_   U-iy^yt tor iEI,

\yf for i E I,

and

(4.8) VS = £ ySfbi, ih = 1 for iEI),
i<N

it is immediate that (4.6) is satisfied.

We are now ready for the last step in the proof of Theorem 3, which

parallels closely the corresponding step in the proof of Theorem 1.

Let us assume that there exists a projection P*: mN-^>l" such that
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\\P*\\<\\P\\.

Let P* be represented by

P*(bf) = E PH 0 fg k fg N - 1
iei

where for k^I,

k       (1       for i = k,
pi= <

(0        for i ^ k.

Then, since ||P*(F)|| <||P|| for any vertex V of 72^ we have, in particular,

f(P*(Vs)) fg ||P*(F8)|| < ||P|| = ||P(F5)|| =f(P(V'))

for each 5G7>*, and thus by (4.8) and the linearity of f

f(p*(vs) - p(vs)) = f (p* ( zZ ylh\) < o.

Adding these inequalities for all SG25* we obtain

o> zZf(p*(Zylh))
sen*      \      \ k$i //

= T,f(lZ ylp*(h)) =zZZ(lZ 8iyi)pk,
SeD*      \ kil / iei kil \ SeD*        /

Now, for any i^I and *G7 we have by the definition of y\

E S,y' = yt zZSr(-l)^k'S).
8SD* SeD*

But, by (4.7), the last sum equals 0 and thus the contradiction 0>0 is reached,

which proves Theorem 3.

Remark. It is interesting to note that 6>(ln) has the same value for

n = 2m— 1 and for n = 2m. On the other hand it is easy to show that if

n = 2m — 1 there is only one vertex of 27^ maximizing ||P(F)|| in each "octant"

of /", while for n = 2m there are
lim—1\

\.m-l)

different vertices in each "octant" maximizing ||P(F)||.

5. Proof of Theorem 4. Let Bn denote the (solid) unit sphere of the

w-dimensional Euclidean space £". Since Bn may be inscribed in a hypercube

Kn in such a way that

n-niKn CBnCKn



462 B. GRUNBAUM [June

it follows from the lemma of §3 that <P(EB) ̂re1/2. We shall obtain the better

estimate given in Theorem 4 by using the same idea but, following a sugges-

tion of Professor A. Dvoretzky, averaging over all hypercubes Kn circum-

scribed about P".
Let Sn denote the boundary of Pn, and let S(A) denote the boundary of

the unit sphere of the subspace of E" orthogonal to the span of the set

A CP". Then each hypercube Kn circumscribed to B" may be determined by

(re —1) points of contact Xi, • • • , x„_i of Sn and Kn satisfying

Xi  E Sn,

x2 E S(xf),
(5.1) •

Xn-1 G S(*l,  •  •   • , Xn-2).

Obviously, different sets of points Xi, ■ ■ ■ , xn-i may determine the same

Kn. The hypercube Kn determined by a set of points satisfying (5.1) shall

be denoted by K(xi, • • • , x„-f). We are interested in the "average" set

An =- J  I    • • •   I Kixi, ■ ■ • , x„-i)do-2 • ■ ■ do-n,
S2' Si  '   '   ' Sn J   J                    J

/-\

(«1,- • '.^n-l)

where sk denotes the (fe — l)-dimensional volume of Sk (thus s* = 27r*/2/r(re/2)),

do-j tor j<n denotes the element of volume of S(xi, • • • , xn-f) and dan the

element of volume of Sn; the integration being extended over all sets

(xi, ■ • • , xn-f) satisfying (5.1). (Integrals of this type may be defined either

by reducing them to integrals of the support functions of the convex sets

concerned (see, e.g., [2, pp. 28-29]), or, equivalently, by appropriate Rie-

mann sums.)

By reasons of symmetry it is obvious that An is a sphere. Denoting its

radius by rn we shall establish that

n \l)

tt1'2      /n+ 1\

This statement being obvious for w = l, we proceed by induction. Sub-

stituting repeated integration for the multiple integral we have

A„+i = rn+iB^1 =- f      {— f f f        K^ •••>*»)
Sn+lJ Sn+i   \S2,   ■   ■   ■ ,S„ J  J J

■do-2, ■ ■ ■ , d<rn>d<rn+i.
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The interior integral represents an orthogonal hypercylinder C(xf),

whose bases are translates of r„S(x„) and are tangent to Sn+i at x„ and — xn.

Thus An+i = l/s„+ifs„+lC(Xn)dan+i-

Passing over to the support functions we have

1        f It      ** x f x    *% r/2 n

rn+i =- I        I     • • •   j      I       (cos .i + rn sin ti) JJ sin "-• Udh.
Sn+l J <„-0 J 0 J 0    J (_=0 i-l

Since

A1)
rT                        CT'2                                  \2/
I    sin*"1 /ci. = 2 I       sin*-1 tdt = tt1'2-■-;

Jo Jo (k+1\

there results

,   r(T) [ <^)|
>"n+l   =  -TT-1 + W1'2-    ,

Kt) I        AA
and by using the inductive assumption on rn, we obtain

n+1       V    2    /

"+1 ~    tt1'2 /w + 2\

which establishes (5.2).

Theorem 4 now follows immediately from the obvious remarks:

(i)  If the unit cell B of a Banach space X satisfies

k

SQzZ <nKi C nS
i-l

where a.^0, Ki is the unit cell of a Banach space X{ and K~iif)S, then

<K*) ̂  M E a&(Xt).
i-l

(ii) _4„ may be approximated with any desired degree of accuracy by

finite sums of cubes K(xi, ■ • ■ , xn-f) with appropriate weights a..

Thus (P(£n) fgr„ as asserted in Theorem 4.

Remark. As it is easily shown, there exists a relationship between the

numbers rn and the projection constants of ." spaces:
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r2m > r2m-i = <P(l2m) = (P^2™-1).

This would be especially remarkable if (as we conjecture) (P(En) =rn were

true.

6. Proof of Theorem 5. Suppose K and 5 are two re-dimensional convex

bodies in E", each having 0 as center of symmetry. Let u(K, S) he the mini-

mum of positive numbers u having the following property: There exists an

affine transform K* of K such that

K* ES E uK*.

Obviously, n(K, S)=niS, K)^l, and uiKu Kf)SixiKi, Kf)aiK,, Kf).
The lemma of §3 may clearly be formulated in the following way: If P,- is

the unit cell of the re-dimensional Minkowski space Xt, i=l, 2, then

(P(Xi) S niKi, Kf)(PiX2).

Now, a result of John [5] may be stated as uiK, Bn)Sn112, where K is

any centrally symmetric re-dimensional convex body, and P" is the unit cell

of Pn. (This result may also be proved by considering the ellipsoid of minimal

volume circumscribed to K.) Therefore, we have (see §5)

/re3\1/2          \2/
(P(M") S «1/2(P(Pn) SI—)--W   ^

Applying well-known expansions of the gamma function there results (P(Mn)

^(2/7r)1'2re + 0(l/«).

On the other hand, Asplund [l] has recently proved that if K is any

centrally symmetric convex body in the plane and 5 a square, then ju(P, S)

S3/2, with equality sign applying only if K is an affine-regular hexagon.

Since the projection constant of a Minkowski plane whose unit cell is an

affine-regular hexagon is 4/3, this immediately establishes the second part of

Theorem 5.

Remarks, (i) If Hn denotes a hypercube of re dimensions and K any

re-dimensional centrally symmetric convex body, a theorem of Taylor [12 ]

and Day [3] may be formulated as

uiK, Hn) S re.

This immediately implies the estimate (P(M") Sn, slightly weaker than Theo-

rem 5.

(ii) The determination of max {uiK, Hn), KEEn} seems to be extremely

difficult, even in the three-dimensional case, where it possibly equals 2 (if K



1960] PROJECTION CONSTANTS 465

is a regular octahedron, p.(K, LP) =2). Still more difficult seems to be the

determination of max G>(Mn). Probably max (P(A22) =4/3.

(iii) There are many interesting questions connected with p(£i, Kf).

E.g., it follows from John's theorem that max {p.(Ki, Kf); Ki, KiCfE™} fgw,

but the correct upper bound seems to be appreciably lower; even for n = 2 no

precise result is known. The analogy of these problems with those treated and

raised by Levi [7] should be mentioned.
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