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0. Introduction. Let (QM, (B, p) be a probability space and let {xjft, co), tE T}

be a sequence, re = l, 2, • • • , of real stochastic processes defined thereon;

T is a real parameter set, and will usually here be taken to be the interval

[0, 1 ]. In [3], the convergence, as re—> oo, of such a sequence was investigated

for the case wherein the processes have independent increments, and a con-

vergence criterion was given that insured the convergence in distribution of

the sequence of random vectors

{sup{x„(/, co), tj-i < t S tj\, 1 S j S N,

inf {*»(*, co), tj-i < IS tj}, 1 S j S N}nii

for the case tj=j/N, 1 SjSN, T= [0, l], and t0 = 0. The question of the con-

vergence of these vectors is of the greatest importance in the consideration

of the general problem of the convergence of a sequence [p[x„], re^l} of

functionals defined on the processes {x„it, co), tET}. It is, accordingly, a

matter of some interest to determine minimal conditions under which the

sequence (1) will converge. It is the object of this paper to show some equiv-

alences of such convergence conditions.

The convergence in distribution of the finite-dimensional distribution or

characteristic functions of the process sequence {x„it, co), tET} determines,

uniquely in distribution only, a "limiting" process {xit, co), tET} whose

finite-dimensional distribution or characteristic functions are the limits of the

corresponding finite-dimensional distribution or characteristic functions of

the sequence {xnit, oo), tET}. This limiting process may without loss of

generality be assumed to be separable. The criterion of separability is dis-

cussed fully in [l], and the remarks above are dealt with in [3]. Of interest

here is the obvious implication that any stronger convergence condition on

the finite-dimensional analytics of the process sequence {xnit, co), tET} also

determines, uniquely in distribution at least, a (separable) limiting process.

In particular, a limiting process is so determined when the process sequence

converges "uniformly in distribution." This form of convergence is defined in

[3] (definition 2 of that reference) and is stated as follows: The sequence
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{xn(t, w), tQT] of stochastic processes converges uniformly in distribution

if and only if for every integer m^l and every positive M

lim £ < exp i zZ y-kXn(h, 03) >
»->*> \ k—l J

uniformly for (._, • • • , tn; p., ■ ■ ■ , um)QTm®[-M, M]m.

In the sequel, the first result exhibits the manner in which this uniformity

affects the finite-dimensional distributions of the process sequence. A more

satisfying "continuity" theorem for uniform convergence in distribution is

also established. It is then shown that the Theorem 7 of [3] dealing with the

convergence of the sequence (1) can be improved to render the convergence

uniform with respect of the partition (h, ■ ■ • , fa) of [0, l]; this in turn is

easily seen to imply the original hypothesis of uniform convergence in dis-

tribution. Finally, for processes constructed from "Poisson" arrays of row-

independent asymptotically infinitesimal random variables, these various

convergence phenomena are shown to be equivalent to the uniform con-

vergence with respect to tQT of the Levy-Khintchine representations of cer-

tain "accompanying distributions." This last supplies the necessity of the

conditions of Theorem 5 of [3], wherein only the sufficiency was shown. From

this series of theorems it therefore appears that the hypothesis of uniform

convergence in distribution is of much greater significance to the general

problem of the convergence of functionals on process sequences than is indi-

cated in [3]. It is one purpose of this paper to exhibit this point.

The notation of this paper will be that of [3 ]:

p{Xn(lj,0}) fg Xj, 1 fgj fg m]   = Fn(h, • •  • , tm\ Xl, ■  •  • , Xm),

£<exp i zZ ftkXn(lk, co) >• = <b„(ti, ■ • ■ , tm; pti, • ■ • , um)

and similarly for the "limiting process" {x(t, co), tQT], dropping the index

n throughout. The w-fold integral mean of an w-dimensional distribution

F(xx, • • ■ , xf) over the interval ®2-_ \xk — h,xk+h] will be denoted by

C h Ch P(xi + ui, ■ • ■ ,xn + uf)dui ■ ■ ■ dun

F<»(xi, -..,xf)=\     ...(»)..• -—-
J-h J-h (2h)n

and the corresponding characteristic functions by

("    sin Ukh\
II -— )<Kmi, • • • ,pf),
k-i    Hkh   /

where <p is the characteristic function of F.

The proofs of some of our results are at times quite tedious, and an effort

has been made to avoid details wherever the analysis was felt to be straight-
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forward enough to warrant it. A great many elementary details remain where

it seems needful to exercise some caution in the order in which things are done.

1. "Continuity" theorems. In this section some equivalences are estab-

lished between convergence of sequences of finite-dimensional distributions

and uniform convergence in distribution of the related stochastic processes.

The first result is obtained in the absence of any condition other than that of

uniform convergence in distribution.

Theorem 1. Let {x„it, co), tET} be a sequence of stochastic processes con-

verging uniformly in distribution. Then for every positive integer m and every

6>0 and h>0,

dF„  ih, ■ • • , lm; Xi, • • • , Xm)
.■Kj-\v\<lj-.lSism

uniformly   in    {h, • • • , tm} E Tn,   in    {§i, • • • , 8m} E (0, 5)m,   and   in

{Xoi, • • • , Xom} G (— °°i &)m- Moreover, the limit is given by

) dF^ih, ■ ■ • , tm; Xi, ■ ■ ■ , Xm)

where P(M(r; X) is the integral mean over [ — h,h]mofFit;X), this last being a

finite-dimensional distribution of the limiting process.

Proof. The Levy inversion formula for Fjp reads

/(h) dFn   iti, • • • , tm; Xi, • • • , Xm)

If00          .   ,           r         (    .A    x   \f\(siny.kbk sinwP\
= — I      ■ • • im) • • •   I    expl -i2-.ii.kXok 1111-— I

1Tm -J -oo J \ k=l / k-l \      MA Hkh    /

■<Pnih,   •   •   ■  , tm) Ul,   •   •   ■  , Um)dlJ.l   -   ■   ■  djlm.

Applying the estimate

I sin uA ■ sin nkh \        1 + hSk       1

li\h h        1 + u\

it is easily seen that

i^-^i s—(n-r-)(j^   l+fii   *)

where

[\<t>mit;y)-<t>ntit;u)\    ±^ ^ 1
PBl,ls = sup- :rG T™,VE (-», oo)- .

II(i+ \uk\y2
k-i
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The hypothesis of uniform convergence in distribution of the process sequence

{xn(t, co), tQT] and the presence of the factors (l + |pi| )1/2 in the denomi-

nator of the supremands of Bni,ni insure that Pni,„2—»0 as »_, n2—>«> inde-

pendently. The second factor in the estimate above of |^4ni —_4n2| is less

than or equal to

and the third factor in the same estimate is independent of. and Xo. The first

conclusion of Theorem 1 is then established. The second conclusion follows

immediately from the observations made in the introduction concerning the

relations between F, Fm, <j>, and 4>m and the remark that uniform convergence

in distribution implies ordinary convergence in distribution of stochastic

processes.

In order to augment the hypothesis of Theorem 1 to the point where an

equivalence theorem can be established, it is necessary to state a theorem of

the "Helly convergence" type dealing with convergence uniformly with re-

spect to parameters not involved in the Lebesgue-Stieltjes integration. We

will state without proof the theorem (which for lack of anything better we

have called the "Uniform Helly Convergence Theorem") in the multidi-

mensional form:

Uniform Helly Convergence Theorem. Let T and M be any two (ab-

stract) sets. Denote (— °° , oo )m (for m a positive integer) by R. Let {fn(t; x); n =5 0}

be a sequence of real functions defined on F(g)P, satisfying the following condi-

tions :

(a) 3 Vo > 0 such that for all «__; 0 and all tQT,

Var{fn(t;x);xQR] fg F0.

(b) For any e>0 there exists a positive number Ae>0, depending only on e,

so large that

Var{/n(.;x);xG R - [-A., Ae]} ^ e

for all n=±0 and all t Q T.
(c) For every h>0 and each xQR,

lim /„   (.; x) =/0   (t;x)
n—»oo

uniformly for tQT; the superscript denotes the integral mean of fn on [ — h, h]m

with respect to the second (vector) variable x, as defined in the introduction.

Then for any real or complex function g(p; x) defined and bounded on M®R,

and such that for each xQR,

lim g(p;x') = g(n;x)
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uniformly in p-QM, the relation

lim    I        g(u; x)dfn(l; x) =  I        g(u; x)df0(t; x)
n->»   J [xg/jj J [xsr]

holds uniformly in (p, t)QM®T.

Using this rather formidable result we can establish a direct generaliza-

tion of the "continuity" theorem for characteristic functions. The convergence

we are concerned with is, of course, uniform convergence in distribution of

sequences of stochastic processes, and the continuity condition of the limiting

characteristic function in the one-dimensional case carries over in an obvious

way; however, this continuity condition now imposes some uniformity con-

ditions on the finite-dimensional distributions of the limiting process.

Theorem 2. Let {xn(t, co), tQT] be a sequence of stochastic processes. Then

a necessary and sufficient condition that for each positive h

(i) lim,,^ Ff\ti, • • • , tm; Xi, • • • , Xm) exists for each integer ra_±l uni-

formly for (h, • • • , tm; Xi, • • • , \m)QPm® [- », oo ]» and

(ii) for each e>0 there exist Ae>0 independent of tQP such that

f        dFW(l; X) < e
J |X|>Ae

where

Fih\t; X) = lim Fn\l; X)
n

is that

(_') the processes {xn(t, oo), tQT} converge uniformly in distribution, and

(ii') lim|„i_ocp(.; pi) = 1 uniformly in tQT, where <j>(t; a) =limn $„(.; pi).

Proof. (ii)=>(ii'). If h/ir is not an odd multiple of u, then the definition of

4>m(t; p.) implies

, uh sin uh    . .
| l-<b(l;n)\  ^   1--—r + —— -|1 -*(«(/;m)   •

sin fih pth

The second factor in the second term can be estimated for any A > 0 by

| 1 - <j>W(t;p) |   =    f   (1-e ^)dF^(t, x)
I  J -oo

fg 2 f      dFW(t;x) + \pt\A.
J M>A

If then p is chosen so small that
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I ju | A <  f      dFW(t;x) S 1
J |i|>A

we find

| 1-*<««;„) |   <3 f      dF^it;u).
•J |x|>A

Since (ii) implies that the integral on the right in the last inequality can be

made small uniformly in / for sufficiently large A, and since

uh
lim-= 1
ln|-»o sin ixh

obviously independently of t, we conclude that (ii') holds whenever (ii)

holds.
(ii')=>(h). From I: (11.8) of [l] it follows that

//• l/A
dF^it; x) S (1 + 2*-)2A I       | 1 - <t>wil;u) | du

|i|>A J 0

which indicates that (ii')=>(ii), and hence (ii) and (ii') are equivalent inde-

pendently of the rest of the theorem.

The necessity of Theorem 2 follows now from the Uniform Helly Con-

vergence Theorem, while the sufficiency follows from Theorem 1.

The conditions (ii) and (ii') of Theorem 2 suggest that if the parameter

set T were compact, some form of stochastic continuity on the limiting proc-

ess might replace these uniformity requirements. Such a result is Theorem 3.

Theorem 3. Let {x„it, co), tET} be a sequence of stochastic processes with

compact parameter set T. Let {xit, co), tET} be a real stochastic process which

is continuous in distribution, i.e., such that

lim    Fit'; X) = Fit; X)
t'->t;t'€T

at continuity points X of the limit, for each tET. Then a necessary and sufficient

condition that {x„it, co), tET} converge uniformly in distribution to

{xit, co), tET} is that for each integer m^l and each h>0

lim Fn   ih, -  -  • ,tm',Xl, • • • ,Xm) = F    iti, • • • ,lm;Xi, ■ • • ,Xm)
n—>»

uniformly in ih, • • • , tm; Xi, • • • , Xm)GP<8>(— c0. 00)m.

Proof. The proof is immediate from Theorem 2 and the hypothesis of

compactness (sequential) of P. We omit the details.

The addition of an independence condition (in the form of the assumption

that the processes jx„(/, co), tE [0, 1 ]} have independent increments) reduces

the multidimensional convergence conditions of the preceding theorems to
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one-dimensional form. The reasons are obvious; by such an hypothesis we

impose an explicit analytic relation between joint and "marginal" distribu-

tions of the random variables of the relevant processes. It is an interesting,

and as yet open, question whether less stringent dependence relations will

still permit results like Theorem 4 following.

Theorem 4. Let {x„(t, a>), tQT] be a sequence of stochastic processes with

independent increments and let T be a compact set. Let {x(t, co), tQT] be a

stochastic process with independent increments which is stochastically continuous

in the sense of Theorem 3 above. Then a necessary and sufficient condition that

{xn(t, co), tQT] converge uniformly in distribution to {xn(t, co), tQT] is that

for each h>0

iimFnh)(f,\) =FW(t;X)
n—*w

uniformly for (t, X) G T® (— oo , co).

This last result is in essence Theorem 3 of [3], and for proof we refer

thereto. The present Theorem 4 is included primarily for continuity of ex-

position.

Before concluding §1, it will be convenient to establish two further results

dealing with uniform convergence in distribution. The first of these, Theorem

5 following, exhibits an alternative formulation of the uniform convergence

of smoothed distributions and holds quite generally. It is, moreover, clear

from Theorem 5 that the "Levy distance" between distributions could be

extended and used to obtain yet another formulation of this same property.

Theorem 5.

lim Fn  (h, • ■ ■ , lm; xi, • • • , xm) = F    (h, • ■ • , tm; xi, ■ ■ ■ , xm)

for every h>0 uniformly for (t; x)QTm®( — oo, cc)m if and only if for every

e > 0 there exists a positive integer N, depending only on m and e, so large that

n^N=$

F(h, • • • , tm; Xi — e, • • • , xm — e) — e fg Fn(h, • • ■ , tm; x_, • • • , xm)

fg F(/i, ■ • ■ ,tm)Xi + e, ■ ■ ■ , xm + e) + e

for all (t, x) QTm® (- oo, oo)»>.

Proof. The smoothed distributions Fcw satisfy the inequalities

F<A)(.l,   •   ■   ■   , tm; Xl  —   h,   ■   ■   ■ , Xm  —  k)   ^   F(h,   ■   ■   ■   , tm] Xl,   -   •   •  , Xm)

^ FM(h, ■ ■ ■ ,lm;xi + h,- • -,xm + h)

identically in h, t, and x, and similarly for F„. The required implications of

the theorem follow in the obvious way.
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The "stochastic continuity" needed in Theorems 3 and 4 is equivalent,

when the limiting process has independent increments, to the much stronger

condition of absence of fixed points of discontinuity. We refer to [l, III,

Theorem 2.8]. In the present circumstances it would be very convenient to

be able to replace this continuity condition on the limiting process by a con-

dition on the process sequence itself. As might be expected, the condition

that does this for us looks like an equicontinuity condition on the process

sequence {xnit, co), t E [0, 1}}, re ̂  1. Theorem 6 following makes this precise;

the corollary weakens the equicontinuity requirement in a very pleasant

way using, again, the hypothesis of independent increments in an essential

way.

Theorem 6. Let {xnit, co), iG[0, l]} be a sequence of stochastic processes

with independent increments converging uniformly in distribution. Then iany

separable version of) the limiting process has independent increments. Moreover,

iany separable version of) the limiting process has no fixed points of disconti-

nuity if and only if the following additional condition on the convergence of

{xnit, co), tE[0, l]} is satisfied: for each e>0 there exist a positive integer nt

and a positive number 5t such that if n}zne and 0=to<ti< ■ ■ ■ <tn = 1 is any

partition of [0, 1 ] such that

max {rk - Tk-i: 1 S k S N} < 5e

then

(6.1) SUp{/>{   |  Xnit, CO)   —   XniTk, CO) |     ^   t} \ Tk-l   S   t   S   Tk,   1   S   k   S   N}    <   €.

Proof. The first part of Theorem 6 is established (under the weaker

hypothesis of ordinary convergence in distribution) as the corollary of Theo-

rem 2 of [3]. From remarks made earlier it also follows that we need to show

that (6.1) is equivalent to the continuity of <f>it; u)=limn<pnit; u) ior it; p.)

E [0, l]<8> [ — M, M] ior any M>0. The proof proceeds, therefore, using the

characteristic functions of the various processes. The condition (6.1) has

the following analogue in terms of characteristic functions: for any e>0 and

M>0 there exist a positive integer re/ and a positive number 5/ (depending

in general on M) for which, for any ordered partition {rk} of [0, l] such that

maxJTt — Tk-i. 1 S k S N} < 5,,

we have, for re>ree,

(6.2) sup{ | <p„it;u) - 4>niTk-,u) | :t*_i S tS n, 1 S k S N, \ u |   S M} < e.

We can show that (6.1)<=>(6.2)<=>lim„ <pnit; u) is continuous.

In outline, we show that (6.1)=^(6.2)=^limn <£„(<; u) is continuous=^(6.2)

=>(6.1) in that order. Since for {rk} as defined above, we have

| <t>nit; m) — 4>nirk; u) I   < 2p{ | x„it; co) — x„(r*, co) I   > A} +  | u | A,
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for any k, t, p, n, A>0, the first implication, (6.1)=>(6.2) follows by suitable

choice of A small and n large. If (6.2) holds, limn c/>„(.; pi) is continuous, since

lim„ </>„(.; pi) =cb(t; p.) uniformly for (t, a) Q [0, 1 ] ® [ — M, M] by the hypoth-

esis of uniform convergence in distribution, (6.2) implies asymptotic equi-

continuity of c/>„(.; p), and <b(t; p.) is a characteristic function. If, conversely,

limn<bn(t; p) is continuous, the uniform convergence of <bn to <b implies (6.2)

immediately. Finally, (6.2)=>(6.1) since it is easily shown that if

0<Cg inf{ | <t>(l; u) | : (I; a) Q [0, l] ® [-M, M]}

then

p{ | xn(t, co) — x„(t„, co) I   __; e}

(M+2ir/e)2 ..
fg-C-sup{ | 4>n(l;p-) — <pn(Tk;u)   : rk~i fg / fg rk, 1 fg k fg n,

M2

\p\   fg If}.

That such a number C exists follows from (6.2), since (6.2) insures the con-

tinuity of <p; this, together with the conclusion that {x(t; co), /G[0, l]} has

independent increments implies that <j> is not only continuous but is an in-

finitely divisible characteristic function, and is therefore bounded away from

zero on sets [0, l]® [ — M, M]. Theorem 6 is established.

Theorem 6, Corollary. Theorem 6 holds with condition (6.1) replaced by

the following: there exists a sequence of numbers {tn, n =_; 1} such that

lim tn = 0
n—*»

and for every e > 0

,^   .v/   limsup{?{ | x„(/,co) - xn(5,co)|   ^e}:
(6. 1)       n~>»

\t- s\   < tn, 0 fg t, s fg 1} =0.

Proof. Since (6.1)=i"(6.1)" trivially, it is necessary to show only that under

the hypothesis of Theorem 6, (6.1)"=>(6.1). To see this we observe that since

the processes {xn(t, co), iG[0, l]} have independent increments

p{ | xH(l, co) — xn(s, co) I   __: e}

is a nondecreasing function of |j — s\, and

3 lim p{ | xn(t, 03) — xn(s, co) I   __; A
n—»w

at continuity points of the limit. In fact, the hypothesis of uniformity on

the convergence of {xn(t, co), /G[0, l]} permits the following assertion: for

any jj>0 there exists an integer Nv such that for all (., s)G[0, l]2, any e>0,

and all m, n^N^
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p{ | Xmit, co) — xmis, co) |   ^ « + 17}  — 17

g   />{   I  *„(/, CO)   -   X„(s, CO) I     ̂    €}
(o-3) . . .

g />{ I -rm(/, co) — Xmis, co) I   ^ e — 17} + 17;

this follows in the manner of Theorem 5. Let {rk, 1 SkSN} he any ordered

partition of [0, l]. Let e>0 be fixed and choose wi so large that re^rei=»

SUp{^{   I  Xnit, CO)   —   Xnis, CO) |     ̂    e/2} \   \  t  —  S \     <  5n}    <  t/2.

Let re2 = max {rei, iVe/2}; then (6.3) holds for 77 = e/2 and m, reSire2. We may

now write for re^w2 and Tk-iStSrk

p{ I Xnit, co) — X„in, co) I   ^ e}  S p{ I Xnirk, co) — Xnirk-i, co) I     ^ «}

S p{ I Xnjjk, co) — a;„,(Ti_i, co) I   ^ t/2} + e/2.

Upon setting 5e of Theorem 6 equal to c?„„ we find that if

maxjn — n-i; 1 S k S N} < $n2 = <5(

we have for re ̂  w2 that

sup{p{ I *„(/, co) - Xnirk, co) I   ^ e} ; t*:_i S t S rk, 1 S k S N}

S   max />{ I Xn^Jk, co) — Xn2irk-i,co) |   ^ e/2} + e/2
lStSAT

S sup{p{ I *„,(<, co) — xn2is, co) I   ^ e/2} ; \ I — s\   < t>„2} + e/2

< e.

This is (6.1) of Theorem 6, and the corollary follows.

2. Convergence properties of suprema and infima. As remarked in the

introduction, the notion of uniform convergence in distribution of sequences

of stochastic processes was formulated to obtain an extension of Donsker's

result for functionals defined on the Wiener process. The crux of such an

extension [3] was shown by Donsker (in the Gaussian case alluded to) to lie

in the convergence in distribution of vectors of suprema and infima of the

form

<    sup    xnih co),     inf    Xnit, co); 1 Sj S N>

where {/j}at is an ordered partition of the parameter set of the processes

{xnit, to), tET}. The joint distributions of these vectors are probabilities of

certain subsets of the function-space representation of these stochastic proc-

esses; these subsets are of the form

{aj S Xnit, co)  S Pj, tj-1 StSt„lSjSN}.

It should be remarked that these subsets resemble the "compact-open" sets

of the function-space. Theorem 7 following exhibits an equivalence between
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the convergence (with an accessory uniformity) of the probabilities of such

sets and uniform convergence in distribution of the underlying processes.

We quote first a lemma due in essence to Kolmogorov.

Lemma. If {y(t, co), tQ[0, l]} is a separable stochastic process with inde-

pendent increments and 0 = t0<h< ■ ■ ■ <tf/ = l and 0=t0<ti< • ■ ■ <tj_

are any two partitions of [0, 1 ] such that the second is a refinement of the first

(i.e., for each k there is a pk such that tk=Tvf), then for any e>0 and any real

numbers (cti, ■ ■ ■ , aw, ft, • • • , Bn), we have

p{otj + 6 ^ y(n, a) fg ft - e; k 3 tj-i < Tk fg tj, 1 fg j fg #}

fg p{aj fg y(t, co) fg ft; tj-i <tgt,,lgj& N]

+   max       sup    p{ | y(t,u) — y(rk, co) |   _S e}.
1 _______    tj^S.St,.

We omit proof of this result here; it is proved (in a trivially different

formulation) in Theorem 7 of [3].

Theorem 7. Let {xn(t, co), /G[0, l]} be a sequence of separable stochastic

processes with independent increments. Let {x(t, co), JG[0, l]} be a separable

stochastic process with independent increments and no fixed points of discon-

tinuity. The sequence {xn(t, co), tQ [0, l]} converges uniformly in distribution to

{x(t, co), /G[0, l]} if and only if for every positive integer N and every e>0

there exists a positive integer n(e, N) such that if n^n(e, N), then

p{otj + t ^ x(t, co) fg ft - e, tj-i <t^tj,l^j^N]  - e

(7.1) fg  p{aj  fg  xn(t, co)   fg  ft, lj-l  <  t  fg  tj, 1   fg j  fg   N]

_g p{otj - € fg x(t, co)  fg ft + e, tj-i < I fg tj, 1 fg j fg N] + e

for any partition 0 = to<h< • • • <fa = l of [0, l] and any 2N numbers

(au • • • , ajy, 0i, • • • , BN).

Proof. We establish first that condition (7.1) is a necessary consequence

of the convergence and continuity hypotheses. For notational convenience,

let

P(y, {TA , e) =   max        sup     p{ \ y(l, co) - y(rk, co) |   ^ e]
lSk^M    rk_1<t^Tt

for an stochastic process {y(t, co), iG[0, l]}, any e>0 and any partition

0=to<ti< • • • <tm=1 for [0, l]. Let also

A(T,e) = j/Gt-o^Flai-^/W ^ft + «

for all r G T 3 tj-i < t fg ry; 1 fg j ^ N]

for any real e and any subset P of [0, 1 ]; for the purposes of this proof the

dependence of the set A on the numbers {tj}, {a,}, {ft} need not be ex-

plicitly indicated. In this notation, (7.1) becomes
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p{xEAi[0,l],-e)} -eSp{xnEAi[0,l],0)}

<p{xEA[iO, l],e)} +e.

The proof proceeds easily, depending on the preceding lemma and Theo-

rem 6. From the lemma, we have for any ordered partition {rk} of [0, l]

which refines {tj, Kj<N} and any e>0

p{xn G Ai{rk}, -e/3)} - pixn, {rk}, e/3) S p{xn E Ai[0, l], 0)}

S p{xn E Ai{rk}, +e/3)} + piXn, {rk}, e/3).

From the corollary of Theorem 3, for each e>0 and each partition Wk}

there is an integer rei depending only on e and the number of points in {rk}

(i.e., independent of the values of the terms in each of the sequences {ay},

{/3j}, {h}, and {tj}) such that if re^«i

p{xEA ({rk}, ±j - y)j  - j S p{xn E A ({rk}, +y)|

(7-3) Sp\xE A({rk},±j + -^lj

e

Finally, from the lemma again, for any partition {rk} the limiting process

satisfies

(7.4)       p\xEA({rk},j^   Sp{xE Ai[0, l],e)} +p(x,{rk},^j,

and

P{X E   Ai[0, 1],  -  e)}   -  P(x, K4, y) S pixE A({Tk},  -y)j .

To assemble (7.2), (7.3), (7.4) into a proof of (7.1)' choose {rk} so fine

that (the limiting process having no fixed points of discontinuity)

Pix, {r*},e/3) < e/3

and for sufficiently large re, say re^«2,

Pixn, {rk}, e/3) < e/3.

The first choice is possible in view of the continuity properties of the limiting

stochastic process, and the second follows from Theorem 6. Let «o

= max {wi, re2}; then re^reo=>(7.3) holds for the partition {rk}. Since these

choices are made independent of the values of the terms in the sequences

{aj}, {j3j■}, {tj}, and {t3}, we have for each integer N and each e>0 that
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P{xEAi[0,l],-e)} -eSp^xEA^rk},-2^  -j

Sp{xnEA({rk},~)}-^

S p{xn E Ai[0, 1], 0)}

and similarly for

p{xE Ai[0, 1], e)} + e ^ p{xn E Ai[0, 1], 0))

for any partition to = 0 < h < • ■ ■ < fa = 1, and any 27V numbers

{«!,•••, aN, j8i, • ■ • , j3jv}. The necessity part of Theorem 7 is accordingly

proved.

The sufficiency follows by choosing N = 3, ao=ai=«2 = «3 = — °°, (80=183

= + °°, /Si = jS2 = X in (7.1), and applying monotone set convergence as h-^t

from below monotonically and h-^t from above monotonically; (7.1) holds

independent of the positions of h and /2, and hence for re large

p{xnit) ^ X - e} - e ^ p{xit) SX}  S p{xnit) S X + e} + e

independent of / (andX). From Theorems 4 and 5 this establishes the uniform

convergence in distribution of {x„it, co), /G[0, l]} to {xit, co), /G[0, l]}.

This completes the proof of Theorem 7.

In Theorem 9 of [3] a conclusion like that of Theorem 7 above was used

to deduce the convergence in distribution of {P[x„], re ̂  1} for a certain class

of functionals P. In view of this, it certainly seems reasonable that our Theo-

rem 7 could be used to obtain a restricted equivalence (at least) between

the condition of uniform convergence in distribution of {x„it, co), tE[0, l]}

and the convergence in distribution of F[xn] for all members of an appropriate

class of functionals F. This question remains open; it appears to involve

(considering the statement of Theorem 9 of [3]) some nontrivial topological

subtleties.

3. Generalization of the Gnedenko-Kolmogorov theorems. In the present

section the hypothesis of uniform convergence in distribution is used to ob-

tain an extension of the results of [2] for the limiting distributions of sums of

independent random variables. Partial results of this type were obtained in

Theorem 5 of [3].

Let {xnk, 1 S k S kn, « sJ 1} be a sequence of finite sequences of independent

random variables. Let Fnk and <pHk denote, respectively, the distribution and

characteristic functions of xnk- Let t>0 be chosen arbitrarily (and, once

chosen, fixed for the rest of the discussion) and let

ank  =    I xdFnkix).
•I M<t
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For each tQ[0, l], let

Xn(t, CO)   =   2Z   \Xnk-  1   <   k   <  tkn],

7n(t)   =   ZZ \ank +    I -" dFnk(x + Ctnk) I 1   <  k  <  tkn\  ,
\ J -x   1  + X2 )

Gn(t; x) = zZ{ f     .  U     dFnk(x + anf) :Kk < tkX
(J -x  1 + u2 )

where, in each case, zZ{ } denotes the sum of all members of the class

specified in the braces. Let <bn(t; p) denote the characteristic function of

x„(t, co). Assume that for any e>0

lim    max  p{ \ xnk\   ^ A = ®-
n->»    istg_„

This last is the requirement that {x„A be "infinitesimal" or, more descrip-

tively, "asymptotically infinitesimal." The random variables {x„A so con-

strained we shall call a "Poisson array." Finally, let, for any h>0

<h) 1      fx+h
Gn  (t;x) = — I      Gn(t; u)du.

2h J x—h

We remark, before proceeding with Theorem 8, that if {x(t, co), tQ [0, l]}

has independent increments and no fixed points of discontinuity, and if

x(0, co) =0, then the distribution of x(t, co) is for each t infinitely divisible and

can be represented by a real number y(t) and a bounded nondecreasing func-

tion of x G(t; x). This pair (y(t), G(t; x)) will be called the Levy-Khintchine

representation (pair) of x(t, co) (or of the distribution or characteristic func-

tion of x(t, co)). The representation is explicitly given by the Levy-Khintchine

formula

. . r °° ( ipx  \ 1 + x2
log E{ exp ipx(t, co)} = ipy(t) +        ( e*» - 1 - —-—-)-—- dG(t;x)

J -oo \ 1 + x2/      x2

wherein the integrand is assigned the value —p.2/2 at x = 0, by continuity.

Theorem 8. The following conditions on a process sequence

{xn(t, co), IQ [0, 1]}

constructed as above from a Poisson array are equivalent:

(A) (i)   3 limn^oo yn(t) uniformly in /G[0, l].

(ii)   3 lining Gf\t; x) for each  h>0, uniformly in  (t, x)G[0,   l]
Cg) [— oo,   oo ].

(B) There exist real functions y(t) and G(t; x) such that

(i') y(l) is continuous on  [0, l] and lim„_oo yn(t)=y(t) uniformly for

tQ[0, 1].
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(ii') Git; x) is jointly bounded and nondecreasing in  it, x)G[0,  l]

<g>(—co, oo), Git; oo) is continuous in /G[0, l], Tit, — co)=0, and

lim Gnil; x) = Git; x)
n—»w

for each x which is a continuity point of Gil; x), including x = + oo, uniformly

for tE [0, l] at each such x.

(C)   {x„it, co), ^G[0, l]} converges uniformly in distribution.

Moreover, under iany of) these conditions, the limiting process of (C) is a

iseparable) stochastic process with independent increments and no fixed points

of discontinuity; the limits in (i) and (ii) of (A) are given by

if") lim 7b(0 = yil),

(8.1)
(*) 1     C X+>> (h)

(ii")    lim GH  it; x) = — I       Git; u)du = G    it; x)
n—»°o 2h J x—h

in terms of the function-pair (7, G) of (B); and this function-pair is the Levy-

Khintchine representation pair for the limiting process of (C).

Proof. 1. (A)=>(B). (i) and (i') are clearly equivalent, so it is only neces-

sary to show that (ii)=>(ii'). Let Gmit; x) he the limit in (ii). Clearly

GW(t; -oo)=0. Let

G**il; x) = lim sup G„(/; x),

G*(/; x) =   lim inf G„it; x).
n—»w

Since for any h>0 and any it, x),

Gn\t; x) S Gnil; x + h)

we have always

(8.2) G**il; x-h) S G^it; x) S G*it; x + h).

Let e>0 be given. For each h>0 we can find «e so large that re^ree=> for all

it,x)E[0, l]®[-oo,  co],

(8.3) \Gn\t;x) - G(h\t;x)\   < e.

From (8.2) and (8.3) we conclude that for each h>0, n7>ne, and any it, x)

G[0, l]®[-oo, 00],

G**il; x - 2h) - e S G™it; x - h) - e S G„h\l; x - h) S G„il; x)

(8.4) SGn\f,x + h) SGWit;x + h) + e

S G*it; x+2h) + e.
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Hence for any h>0, e>0, (t, x)G[0, l]<8> [- oo, oo ],

G**(l; x - 2h) - e fg G*(t; x) fg G**(t; x) fg G*(t; x + 2h) + e.

If we allow e—>0 and fe—»0 we conclude that at every continuity point in x of

either G*(t; x) or G**(t; x) we have

(8.5) 3 lim Gn(t; x) = G*(t; x) = G**(t;x) = G(l; x),
n—*«>

the last member of (8.5) being a definition. Since G*(t; x) and G**(t; x) are

both nondecreasing in x for each t, so is G(t; x) on its range of definition by

(8.5). G(t; x) can therefore be defined for all real x (|x| < oo) by continuity

from the right in x, in which case (8.5) holds for all real continuity points x of

G(t; x), for each /.

From this last, it follows easily that G(t; x) is jointly bounded and non-

decreasing on   [0,  l]®(— o°,   oo).  Hence for any tQ[0,  l] and any real

Xi<X2,

(8.6) 0 fg G(t; Xi) - G(t; xi) fg G(l; xf) - G(l; xi).

Further, (8.4) can be rewritten as follows: for every «>0 and h>0, n^ne/i

=>for all (t, x)

(8.7) G(t;x- 2h) - — fg Gn(t;x) fg G(t;x+2h) +— ■

If x is a continuity point of G(l; x) and ho is chosen so small that

G(l;x+ 2h0) - G(l;x- 2h0) < —

then for this x, e, and ho, «___w./2=>for all t,

| Gn(t; x) - G(t; x) |   fg  | Gn(t; x) - G(l, x ± 2h0) \

+ | G(t; x + 2h0) - G(l; x - 2hf) \  <-1-= e.

Hence (8.5) holds uniformly in t tor each x which is a continuity point of

G(l;x).

From (8.7), letting x—>+ oo, it follows also that (8.5) holds uniformly in

t tor x = + oo.

It now remains to show that G(t; — co) =0 and G(t; + oo) is continuous

for tQ[0, l]. The first statement follows easily from (8.7) by allowing

x—->— oo. The second statement follows less easily from the infinitesimality of

the Poisson array [xn„}. It is known [2] that the condition of infinitesimality

on {xnk} implies that
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(8.8)    limsup \\Gnit;oo)-Gnis;°o)\ :\t-s\   S — > 0 S t,s S l\ = 0.
n-»»        v kn )

Let e>0 be given, and let wi be so large that for re ̂  rei, we have

\Gnit; •) -Gnis; »)|   < e/3

for all it, s)E [0, l]2 for which \t — s\ <l/kn- Choose re2 so large that if «^w2

we have

\Gnif, «>) -Git; oo)|   <e/3

for all <G[0, l] (since, as observed above, Gnit; °°) converges uniformly to

Git; oo)). Then if re3 = max {rei, «2}, we have for any t, s such that \t — s\ <kf/,

| Git; oo) - Gis; oo) |  S \ GH; oo) - G.,(«; oo) |

+ | Gniit; oo) - Gna(5; «) | + | G„(*; oo) - G(s; oo) ,

e e e
< — +— + — =e.

3        3        3

This establishes the continuity of Git; oo) on [0, l] and concludes the proof

that (A)=>(B).
2. (B)=>(A). We show that (ii')=>(ii). Since G»(/; x) for each re and

Git; x) are all jointly bounded and nondecreasing in it, x), given e>0 we

can find Ae>0 and a positive integer rei so large that if re ̂  rei,

I        dGnit;x)<-^-
d l*l>A, 4

and

/dGQ; x) < — ■
I*I>a, 4

Let Go be an upper bound on G„(/; x) and G(/; x), and let h>0 he given.

Without loss of generality we may take +Ae to be continuity points of

G(l; x). From Egoroff's theorem there exists a subset Ct of [— Ae, Ae], of

Lebesgue measure less than th/iAGf) tor which Gnit; x)—>G(<; x) uniformly on

[0, 1 ] ® ([—Ae, Ae] — Cf); the set Cc covers the discontinuity points of G(l; x)

in [—A„ A,]. Choose w2 so large that «^«2=>

| Gnit;x) - Gil;x)\   < 3e/4

for all it, x)G[0, l]® [(—Ae, Ae] — Cf). Let «3 be so large that «^re3=>

\Gnil; oo) - Git; oo)|   < e/4

for all /G[0, l]. Then if re4 = max {rei, re2, re3}, n^n^=> for all tE[0, l],
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| Gn(t; x) - G(t; x) |   < — if x Q [-A„ A.] - C,
4

fg f       dGn(t;x) + f       dG(/;*)
«/ |x|>A, J |*|>A,

+ |G„(/; oo) -G(/; oo)|

«        e        e       3e ,
< — + — + — = — if   *   > A,.

4        4        4        4 '    '

Hence if «__;«_, for any / we have

| Gn(l; x) - G(t; x) \   < — ilxQC,.
4

Let

1     px+h

Gw(f, *) = - I       G«; «)<*«;

we have then, for ra__:w.

| Gnh\t; x) - GW(t;x) \ £ — f'    | Gn(l; u) - G(t; u) \ du
2h J x-\

= — f I <?„(*; u) - G(/; «) | du
2hJ \u-z\sh;ueC,

+ 77 f I Gn(f, u) - G(l; u) | du
2hJ \n-x]&h;u<tCe

Go  r 3e
fg — |      du + —

fe Jt.ec, 4

< e

for any (f, x)G[0, l]® [— oo, oo ]. Accordingly (ii) holds, G(h)(t; x) being the

limit. (B)=>(A) is established.

3. (A) or (B)=»(i") and (ii') hold, (i") follows trivially, (ii") follows with

equal ease, since (A) or (B)=>(B)=>

a) 1   C x+h
lim G„   (/; x) = — I       G(t; u)du.
n-»oo 2hJ x—h

This is precisely (ii").

Before proceeding with the rest of the proof of Theorem 8 it is necessary

to introduce some further notation: for the Poisson array {x„i}, let
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Vn(t;p)   =   ZZ\ir"Xnk +   j      («*'"* -  l)dFnk(x + «„*) : 1  < k <  [tkn]>

/x(                       ipx   \ 1 + x2
( «<"* - 1 - —-—-)-—dxGn(t; x)

-x\                   1 + x2/     x2

where as usual the integrand in the last member of the equality is assigned the

value — p.2/2 at x = 0. Let also

A„(<; p) = | log 4>n(f, u) - vn(t; p) \ .

The rest of the proof of Theorem 8 follows the methods of [2 ] for the analo-

gous results for one-dimensional distributions, and we will regard these as

well enough known that we may dispense with those details that carry over

to the present case directly.

4. (B) or (C)=>for any Af>0, A„(/; p)^0 uniformly for (/; p)G[0, l]

®[-M, Af]:Let

<t>nk(p) =  I    e^dFnk(x),
7—oo

/00

e^dFn^x + otnf).
-oo

Then

$nk(p)   =   e-^Xqjnkdx)

and

<t>n(f,P)  =  II {<t>nk(p): i^k^  [tkn]}.

Expanding log d>n(t; p) in powers of $nk(p) — 1, we find that for large n we

have for any (t, p)Q[0, l]®[-M, M],

I $nk(p)   —   1 \ 4^.
(8.9) A„(/;M) ̂    max-p^—- Jf, I ̂ k(n) - 1 \ .

lgi__*»   1   —    | <j>nk(p)   ~   1 I  k-l

There exist positive constants C_ and C2 depending only on r (in the defini-

tion of the truncated means anf) and M, for which for large n

/co jj-2
——— dFnk(x + anf)

-00   1 + x2

(8-10) 1 M
1 c

fg Cr— I log I 4>nk(p) I I dp
M J 0

for all |p| fgAf and all k = l, 2, ■ ■ ■ , kn. (8.9) and (8.10) hold if either (B) or
(C) holds and {xBfc} is an infinitesimal array.
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If either

(8.11) t, C 7-7-T <**•*(* + «-*) = G.(l; 00)
t_i J _„ 1 + x2

or

(8.12) II<Mm)       =rT77-TT
t-i |0„(1;m)|

is bounded uniformly for \u\ SM for large re, the infinitesimality of the

Poisson array {x„k} enforces A„(/; p.)—*0 with the required uniformities.

If now (B) holds, (8.11) is bounded uniformly in re, from (ii'). If (C) holds,

6.(1; u) converges uniformly for \p\ SM for any Af>0 to c>(l; p.) which must

(again from the infinitesimality of {xnk}; see [2]) be the characteristic func-

tion of an infinitely divisible distribution. Hence on any finite interval,

0(1; p.) is bounded away from zero, and (8.12) is therefore bounded from

above uniformly in |ju.| SM for large re. In either case, An—>0 as required.

5. (A)=>(C), and the (separable) limiting process has independent incre-

ments and no fixed points of discontinuity; moreover, the limits (7, G) of

(B) constitute the Levy-Khintchine representation pair for the limiting proc-

ess.

6. (C)=>(B), and the (separable) limiting process has independent incre-

ments and no fixed points of discontinuity; the Levy-Khintchine representa-

tion for this limiting process is the pair (7, G) of (B): Let

6it;u) = lim 6nit; u);
n—*«

the hypothesis here (condition (C) of Theorem 8) is precisely that the limit

exists uniformly for it, u) E [0, 1 ] ® [ — M, M] for any M> 0. From the theory

of limiting distributions for sums of independent random variables (see [2])

it follows that <j>it; u) is for each t the characteristic function of an infinitely

divisible distribution; this (limiting) distribution is the distribution of the

random variable xit; co) from the limiting process. It has been shown that this

limiting process has independent increments (Theorem 5).

Let (G(/; x), yit)) be the Levy-Khintchine representation pair for the dis-

tribution of x(/, co). For each /, we then have

lim Cit; x) = Gil; x),
n—»«o

(8.16)
lim 7»W = 7(0,

n—*oo

the former relation holding for each x which is a continuity point of G(l; x)

and x= + 00. We require that these limits satisfy the conditions of (B).

First we recall that the limiting process has independent increments, so
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that G(t; x) is bounded and jointly nondecreasing in (t, x). Further the condi-

tion of infinitesimality on the Poisson array is precisely (6.1)" of the corollary

to Theorem 6. Here SH may be taken to be any sequence which is 0(kf1).

Hence the limiting process is without fixed points of discontinuity, and

G(t;x) must therefore satisfy the continuity conditions of (B). Clearly y(t) is

continuous, too.

Let x be a fixed continuity point of G(l; x), possibly + oo. Then x must

also be a continuity point of G(t; x) for every <G[0, l] and lim„ Gn(t; x)

= G(t; x) for all tQ [0, l], from (8.16). G(t; x) is continuous and nondecreasing

in / and for each n, Gn(t; x) is nondecreasing in t. From a theorem of Dini it

follows that lim„Gn(t; x)=G(t; x) uniformly for /G[0, l]. This completes

the proof of Part 6, since we have shown that (C)=>(B), and that

{x(/, co), tQ [0, l]}, the limiting process, has independent increments and no

fixed points of discontinuity with Levy-Khintchine representation pair (G, y).

This completes the proof of Theorem 8. The theorem can obviously be

restated in terms of the alternative Levy representations of the limiting

process; we omit this and bring this paper to its conclusion.
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