
NONLINEAR VOLTERRA FUNCTIONAL EQUATIONS AND
LINEAR PARABOLIC DIFFERENTIAL SYSTEMS^)

BY

J. YEH

1. Introduction. In his recent paper [l](2) Professor R. H. Cameron

pointed out that there exists a certain duality between almost everywhere(3)

type existence problems for solutions of nonlinear Volterra functional equa-

tions and minimality problems of positive solutions for certain linear para-

bolic differential systems. At the conclusion of that paper he stated that he

expected to follow it with another paper where the duality principle is put to

work and that he expected to prove at least one theorem of each type without

using the duality principle, and then prove an equal number of corresponding

theorems of opposite types by using the duality principle. The nonlinear

Volterra functional equations that were studied were, for the two-dimensional

case, functional equations of the type

y(l) = x(t)+ f F2(s, x(s),   f Fl[r,x(r)]dr\ds.

The definition of the functional equations in the general ^-dimensional case

will be given in §2. The related linear parabolic differential systems were, in

the general w-dimensional case,

1    d26      dd dd dd
-+ P(t, u)-h J2(t, u,vi) —- + • • .
4    du2        dt clDi d»2

dd
+ J"-l(t, U,VU ■ ■ ■ , Vn-i)-

(1.1) dD„_i

+ In(l,  U, Vl,   ■   •   ■   , Vn~i)d  =   0,

(1.2) d(0,  U, Vl,   ■   ■   ■   , Vn-l)   =   L(U,  Vl,   ■   •   •   , Vn-l).

The task of proving theorems of the above mentioned nature was then

handed over to the present author. Since then two everywhere-type existence
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(2) Numbers in square brackets refer to bibliography.

(3) "Almost everywhere" means all except for a set of Wiener measure zero. See for in-

stance [2]. In this paper Wiener measure and integral will be denoted by mw and f ■ ■ ■ dwX

respectively.
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theorems, namely, Theorems I, II, and then by applying the duality principle

on them, three corresponding minimality theorems, namely Theorems III,

IV, V have been proved. On the other hand a uniqueness theorem for solu-

tions of the differential system, namely Theorem VI, has been found.

The proofs of these theorems constitute this paper. Theorems I, II were

derived by classical methods in the sense that no knowledge of Wiener meas-

ure was assumed in the proof. Theorems III, IV, V were derived from Theo-

rems I, II by means of Theorems 1, 4, 6 of [l]. Theorem VI is based on

Theorem 8 of [l].

2. The general Volterra functional. Throughout this paper the letter I

denotes the interval OStSl, Io the interval OStSto, Rn the w-dimensional

Euclidean space. The symbol Cw[a, b] denotes the Wiener space on the inter-

val aStSb, namely the space of continuous functions on aStSb which

vanish at t = a. In particular Cw[0, l] is often abbreviated as Cw. In order to

shorten the notation for functions and functionals of several variables, we

adopt the following notational convention which was introduced in [l].

Notation. When a functional depends on a function and several numer-

ical variables, the function will be written first, followed by a bar. The nota-

tion for functionals and also for functions may be abbreviated by dropping

the function or some or all of the numerical variables, but we stipulate that

if the function is dropped, the bar must also be dropped, and if a numerical

variable is dropped, all those that follow it must also be dropped. Moreover,

whenever a function or variable is dropped, it is understood that the sup-

pressed arguments are the letters which originally stood in the function or

functional when it was first introduced, with no substitutions. We also stipu-

late that if a numerical variable is replaced by some other letter, or by a num-

ber it will not be suppressed and none of the numerical variables preceding it

will be suppressed.

Thus, for example, the functional ^[xi-)\t, u, vi, ■ • ■ , vn] could be ab-

breviated as SP, SP(;t| ), -^it), *(*, u), Vix\t, u, vf) etc. but could not be ab-

breviated as SPfx), SP(w), SP(w, Vi, vf) etc. The symbol SP(0) means that t has

been replaced by zero while other arguments are left alone, Sf'(w) would mean

that / has been replaced by u and would be the same as ^(m, u).

With the above notational convention, we now give our formal definition

of the Volterra functional.

Definition. Consider a finite sequence of real continuous functions

P1^, u), F2it, u, vf), • • ■ , Fnit, u, Vi, • • • , vn-/) defined for tEI and other

variables unrestricted. From these construct inductively two sequences of

functionals $kix\t), A*(x|/) depending on the function xi-) and the real

variable / as follows:

(2.0) A°(*|/) = xil), onCw ® I,

(2.1) $*(*| t) = Fkit, A°, • • • , A*-1),        (k = 1, 2, • • • , n) on Cw ® /,
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(2.2) A*(*| t) =   f  $k(r)dr, (k = 1, 2, ■ ■ ■ , n) on Cw ® 2.
•J o

Then the functionals $* and A* will be called "Volterra functionals" and $n

and A" will be called Volterra functionals of order n if no shorter string of

functions could be used to define them.

Now to come to our problem, let Fl, F2, • ■ • , F" he defined and continu-

ous on I®Rn and consider the Volterra functional equation

(2.3) y(l) = x(t) + A"(x\ I)

or with f=Fn(i)

(2.4) y(l) = x(t) +  f f[s, A°(x\ s), ■ ■ ■ , A""1^! s)]ds.
J o

Then for any given iGC, y defined by (2.3) belongs to Cw. The question

here is under what restrictions on F1, F2, ■ ■ • , F" the equation (2.3) has a

solution xGC_ for every or for almost every yG.Cw. Before we answer this

question we quote a uniqueness theorem for solutions of (2.3) in the following

remark. For the proof, the reader is referred to [l, p. 145].

Remark 1. Let Fl(t, u), F2(t, u, vf), • • • , Fn(t, u,vx, - • ■ , _>„__) and their

first derivatives with respect to u, Vi, ■ ■ ■ , vn-i be continuous on 20®P„.

Then if Xi and Xi both belong to CB[0, to] and satisfy (2.3) for a given

yGCy,[0, to], Xi=Xi.
3. An everywhere-type existence theorem for solutions of Volterra func-

tional equations.

Theorem I. Let Fx(t, u), F2(t, u, vf), ■ • • , F"(t, u, Vi, • • • , vn-i) and their

first derivatives with respect to u, Vi, • ■ ■ , vn-i be continuous on 2®P_,

(k = l, 2, • • • , «), and let F1, F2, ■ ■ ■ , Fn satisfy

\F"(t,u,vi,- ■ ■ ,vk-i)\ _s aIi + zZ I fil} iogh + zZ \vA\
(3.1) l        ^ } [        i=0 J

an I ® Rk, (k = 1, 2, • • • , «)(5),

for some positive number A. Then for every y^Cw the Volterra functional

equation (2.3) has a solution xGC- Moreover the solution is unique in Cw.

The proof of Theorem I is based on Lemma 3 and Lemma 4. Lemma 3 is

based on Lemma 1 and Lemma 2.

3.1. Lemma 1. Let F1, F2, ■ ■ ■ , Fn be continuous on I®Rk (k = 1, 2, • • • , n)

and absolutely continuous with respect to each of u, »_, • • • , vn-i. Let the first

derivatives of F1, F2, • ■ • , Fn with respect to u, vu ■ ■ ■ , vn-i exist everywhere

(4) Later, in §§5-6, as in [l], the notation FH will mean a function other than the nth in

the succession F1, F2, • • - . For the latter, the notation/ will be used.

(6) We use Vo for u.
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except on a finite number of hyperplanes of the form Vj = const, where the right

and the left hand derivatives exist, and satisfy

I Fjit, u, vi, ■ ■ ■ , vk-f) |   S Mj, ij = 0,1,2, ■■■ ,k - 1),

ik = 1, 2, • • • n),

where the M's are positive constants and Pf stands for dFk/dVj. Then there exist

positive constants Pi, B2, • • • , Bn such that for any xx, x2ECw

| A*(*i | 0 - Akix21 0 |   S Bk f   | xiis) - x2is) | ds,
(3.3) J o

for t E I, ik = 1, 2, ■ ■ ■ , n).

Proof. We remark that if P(i>) is an absolutely continuous function of the

real variable v and dF/dv exists everywhere except at a finite number of points

v where the right and the left hand derivatives exist, and is bounded by M,

then

| Fiv2) — Fivf) |   S M | v2 — vi | .

From this remark, i3.3) holds by complete induction on k with Bi = Ml

and in general BN+i = M^+1 + Mf+1Bi+ ■ ■ ■ +M%+1BN lor N = 0, 1, • • • ,

n-1.

At this point we make the following observation which will be needed

later.

Remark 2. Suppose P1, P2, • • • , Pn satisfy the conditions in Lemma 1.

Then if for some yEC[0, l], there exist xi, x2EC[0, to] with toSl which

satisfy (2.3), it follows that Xi(/)=x2(0 for /G[0, to].

Proof. With i3.3), Remark 2 can be proved exactly in the same way as

Remark 1.

3.2. Lemma 2. If F1, F2, - - - ,Fn are continuous onI®Rkik = l,2, ■ • ■ ,n)

and {xPit)} is a sequence of functions which are continuous on I and converges

to a function xit) uniformly on I, then

(3.4) lim A*(a;p| I) = A.hix \ t) uniformly in I on I,        ik = 0,1,2, ■■-, n).

Proof. From the fact that Fk is uniformly continuous on I®Sk where Sk

is a closed rectangle in Pt, the conclusion of the lemma follows immediately

by complete induction on k.

3.3. Lemma 3. Let P1, F2, ■ • • , Pn satisfy the hypothesis of Lemma 1. Then

for any yECw, there exists a unique element x of Cw which satisfies (2.3).

Proof. Let yECw be given. Let us define a sequence of functions {xPit) \

on I by
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(3.5) Xp+i(t) = y(l) - A»(xp| .), (p = 0,1,2, ■■ ■)

with x0=y. Clearly x,6C„ for p = 0, 1, 2, • • • . By (3.5), (3.3) and an induc-

tion on p, we obtain

, i       b(Bj)"
(3.6) | xp+i(t) - xp(t) I   _g-, for t E I, p = 0, 1, 2, • • • ,

p\

where b = max \ Fn\  on the bounded closed set I®P0)cg)2(1)<g> • ■ • ®2(n~1)

and

2<*> = {z>„ G 2?i |   min A*(y | t) fg vk _S max A*(y | /)}.
iei tel

By (3.6) and by Cauchy's criterion, \xp] converges uniformly on I to

an element x of Cw.

This x is a solution of (2.3), for

x(t) = lim xp(t) = y(t) - An(x \ t)
X—* <*)

by (3.5), (3.4). The uniqueness of this solution is from Remark 2.

3.4. Lemma 4. Let F1, F2, • ■ • , F"be continuous on 2<g> Rk(k = 1,2, ■ ■ -,n)

and satisfy (3.1). For a given xE.Cw, define y^Cw by (2.3). Then there exists a

positive number B, independent of x, such thatif)

(3.7) |||A*(*| i)||| _S2J{l + y*}, (k= 1,2, ■■-,»),

where \\y\\ is the Hilbert norm of y, i.e. \\x\\ = {fl[x(t)]2dt]1/2.

Proof. Let ..(EC. be given and let y(HCw be defined by (2.3). Let

(3.8) w0(t) = y(t) - x(l) = A"(x\l),

(3.9) wk(t) = A*(x\t), (k=l,2,---,n-l).

Then by (3.8), (2.2), (2.1), (3.1) we have the following estimate for w0(t);

(3 • 10) | wo(t) |   _g A | Y(t) + "ff Wj(ty\

where

(3.11) Y(t) =  f'{l + (n+l)\y(s)\ ] log {2 + (n + 1) \ y(s) | ]ds,

.. 10,    Wk(t) =  f {1 + (n + 1) | wk(s)\] log {2 + (n + 1) | wt(s) | }*25,
(3.12) Jo

(k = 0,1,2, ■■■ ,n-l).

(*) We define |||3t||| =max,e/ |_:(.)| for any function x(t) defined on t G !•
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By (3.11), (3.12), Yit), W^t), (jfe = 0, 1, 2, • • • , n-1) are positive and

monotonically increasing functions of t on I. Similarly from (3.9), (2.2), (2.1),

(3.1) we obtain

(3.13) | Wkit) |   S A hit) + £ Wi(t)\ , ik=l,2,---,n-l).

We now proceed to eliminate Yit), Wkit) from (3.10), (3.13) by estimating

first Wkit) by Yit) and then Yit) by ||y|[. Let F0(i) = ||| F||| = F(l)(6). Then

by (3.12), (3.10), (3.13)

*^ *{. + <. + .>..(*+ £*,»)}

•log {2 + in + 1)A (y0 + £ Wjit)\j

for k = 0, 1, 2, • • • , n — l. From the above n inequalities

in + 1)A — | £ WkH)\ h+in- 1)a(y0 + £ Wk(t)Si

•log ll + in + 1)a(y0 + £ Wk(t)\\     S nin + 1)A

and upon integrating with respect to t

log log (2 + in + I) A ( Yo + £ Wt(s)\\   f    Snin+ l)At,

and then from the fact that W*(0) =0, (* = 0, 1, 2, • • • , »-l)

2 + in+ 1)a(yo + £ Wkit)) S {2+ in+ 1)A F0}B'

with Bi = exp {»(w + l)^4} and finally

(3.14) Wkit) S-——{2+in+l)AYo}B\     ik = 0, 1, 2, • • ■ , n - 1).
(»+ 1)^

By (3.11) and the fact that logil+u)Su tor w^0 and |y(/)| ^ 1 +1 y(<) |2
on J,

(3.15) Yosf  {l + (»+l)|y(0| }2*^3(W+l)2(l + ||y||2),
J 0

and from (3.14)
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Wk(t) _S,    ,  ,,    {2 + 3(»+l)M(l + l|yll')}J">     (* = 0,1, 2, •••,»-1).
(n + 1)_4

We may assume without loss of generality that A'Szl. Then since «=_;1, it

follows that Bi> 1 and

(3.16)   Wk(l) * {4(n+iyA(l + \\y\\2)]B> (k = 0,1,2, ■■■, n - 1).
(n+ I) A

Then from (3.10), (3.13), (3.15), (3.16)

I wt(t) |   _S 3(n + 1)2A(1 + \\y\\2) + —— {4(n + 1)M}B>(1 + \\y\\2)Bl,
n+1

(k = 0, 1, 2, ••-,»- 1)

and from the fact that (w + l)3_4>l and Bi>l, it follows that 3(w + l)2_4

_S(« + l)-1{4(w + l)3yl}i?1 and hence

| wk(i) |   :g {A(n + 1)3_4}S'(1 + b\\2)Bl, (* = 0, 1, 2, • • • , » - 1).

Also from the fact that Bx> 1, we have (l + ||y||2)B'=g2Bl{ l+|MI2Bl} so that

\wk(t)\   rg {8(W+l)3_l}B'{l + ||y||^}, (k = 0,1,2,- ■■ ,n-l).

If we let _3=max { {8(« + l)3_4 }B>, 2Bi], then

| w*C0 I   ^B\l + \\y\\]B,       (k = 0,1,2, -■-,n-l).

3.5. Proof of Theorem I. Let y^Cw be given and let

(3-17) 5 = 5(l-f-||y||B) + |||y|||

where B is a positive constant specified in Lemma 4. Let us define a sequence

of functions 271*(., u), F2*(t, u, vi), ■ • • , Fn*(t, u,v\, • • • , vn-i) by stipulating

that for k = l, 2, ■ ■ ■ , n, Fk* is defined to be equal to Fk if \vt\ _SS for all

j = 0, 1, 2, ■ ■ • , k — l, and if Vj0>S or i>y0<— S, • ■ ■ , vjm>S or vJm<—S

where m is any of 0, 1, 2, • • • , k — 1, T7** is defined to be equal to the value of

Fk(t, u, Vi, ■ • ■ , Vk-i) with Vja, ■ ■ ■ , Vjm replaced by 5 or —5. Then

Fk*, (k = l, 2, • • ■ , n), satisfy the hypotheses of Lemma 3 and hence there

exists xGC_ such that

y(l) = x(t) + An*(x | I)

where A**(x|/) (k=0, 1, 2, • • • , n) are defined by (2.0), (2.1), (2.2) with

Fk* (k = 0, 1, 2, • • • , n). By Lemma 4 and (3.17)

|||*|||£3. |||A**(*|.)||| *5, (*= 1,2, •• -,n- 1).

Now since Fk are identical with Fk* on |»,-| _S5 for j = 0, 1, 2, • • • , & — 1 and

jfe = l, 2, • • • , », A**(x|j)=A4(a;|.) for tGI and fe=0, 1, 2, • • • , for our x.
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Thus our x satisfies (2.3). The uniqueness of this solution x follows by Re-

mark 1.

4. Another everywhere-type existence theorem for solutions of Volterra

functional equations.

Theorem II. Let Px(/, u), F2it, u, vf), ■ ■ ■ , Fnit, u, Vi, - ■ ■ , vn-i) and

their first derivatives with respect to u, Vi, • • • , vn-i be continuous on

I®Rk (k = l, 2, • ■ ■ , n) and let Fn satisfy the condition

(4.1) F"(t, u,vx, • - • , vn-i) sgn u ^ — A an I ® Rn

where A is a constant. Then the Volterra functional equation (2.3) has a solution

xECw for every yECw. Moreover the solution x is unique in Cw.

Theorem II is based on Lemma 7 which is based on Lemmas 5 and 6.

4.1. Lemma 5. Let P1, P2, • • • together with their first derivatives with re-

spect to u, vi, v2, • • • be continuius on I®Rk ik = 1, 2, • • • ). Let a and b satisfy

OSaSbS 1, let £(0 be an arbitrary continuous function defined on OStSa and

let U be an arbitrary constant satisfying U^, |£(cz)|. Let Wt(a, 6, £, U) be the

totality of functions x(t) defined and continuous on OStSb and satisfying

(4.2) x(t) = £(t) onO < t S a,

(4.3) | x(t)\   SU onaSl<b.

Then there exists a sequence of constants Pi, P2, • • •   such that

(4.4) I A*(x21 0 - A*(*i I t) I   SBkf   I x2(s) - xi(s) \ ds,     (k=l,2,---)
J a

hold for all t in aStSb and any pair of elements Xi, X2 of 9JJ.

We remark that the conclusion of Lemma 5 follows by complete induction

on k using boundedness of dFk/dVj.

Remark 3. Consider M(a, bu f, U) and 2Jc(a, o2, £, U) with 0SaSbiSb2

SI. If Pi, P2, • • • is a sequence of constants with which (4.4) holds for all

t in aStSb2 for any xi, x2G50c(o, o2, ̂ , U), then (4.4) holds with this sequence

for all tin aStSbi for any Xi, x2G9)c(a, bi, £, U).

4.2. Lemma 6. Let F1, F2, ■ - ■ , Fn and their first derivatives with respect to

u,vi, ■ ■ ■ , vn_i be continuous on I® Rk (k =1,2, • • • , n). Let a satisfy 0 Sa <1

and let £(/) be an arbitrary function defined and continuous on OStSa. Then

for any function r\(t) defined and continuous on a St SI, there exists a function

x(t) which is continuous on OStSb for some b such that a<bSl and satisfies

(4.5) x(i) = £(t) onO S t S a,

(4.6) 1,(0 - n(a) = x(t) - x(a) + [h*(x | s)]l for a S t S b,

where
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r l

[A (x\ s)]a = A (x\ l) — A (x\ a) =   I    F [s, A (x\ s), • • ■ , A     (x\ s)]ds.
J a

Proof. We define a sequence of continuous functions {xj,(r)j on Ofg.fgl

by

(4.7) x0(f) = £(0,    on 0 fg I fg a,    x0(l) = £(a)    on a _£.__. 1.

*,(_) = £(.) on 0 * . fg a, (/> = 1, 2, • • • ),

xp(.) = xp(a) + ij(0 — 17(a) — |A(av-i| s)\a

on a fg . fg 1, (p = 1, 2, • • • ).

To prove that {xp(.)} converges uniformly on afg.fg& for some & on a<6fgl,

we prove that for a suitably chosen & in the above interval

p p
, ,       Bid M

(4.9) I Xp+iQ) - xp(t) I   fg -, for a fg / fg b, (p = 0, I, 2, ■ ■ ■ ),
p\

where Bn, M are non-negative numbers.

To do this let U be an arbitrary positive number satisfying U> | ij(a) |

and let 61 be such that a<&i_gl. Then according to Lemma 5, there exists a

constant Bn such that

(4.10) I A"(x; I t) - A"(xm I 0 I   ^ Bn f   I x,(s) - xm(s) I ds
J a

for all . on afg.fg£>_ and any pair x., xmG9K(a, &i, £, 27). Let j3 be a variable

with the domain afgj3fg_>_ and consider the continuous function of /?, c/>(0)

= maxasisj |xi(.)— J(a)I. From the continuity of Xi(.) on I and from Xi(cx)

= £(a), we have lim^^a+ c/>(/3) =0. On the other hand since U> \ £(a) \, we have

{ U— I $-(a) I }/exp {_3n} >0. Therefore there is a number b such that a <b fg&1

and

(4.11) M = 4>(b) fg {27-  I |(a) I }/exp{5n}.

With this number 6 consider 9J_(a, _>, £, 27). By Remark 3, the inequality

(4.10) holds with same 23„ for all. on a fg 2 fg & and any pair x*, xmG9J?(ci, b, £, U).

Now we prove (4.9) by complete induction on p. When p = 0, (4.9) holds by

(4.7) and the definition of M. Assume that (4.9) holds for pfgg. Then for any

pfgg, by (4.11)

k k

I xP+i(l) ~ 1(a) I   ^ M zZ ^— ^ Mexp \Bn] fg U -  | £(a) | ,    for a fg t fg b
*=o    k\

so that |x„+i(_)| fg 27 for afg.fgfr and in particular for p=q — l, q, \xq(t)\,

\xq+i(t)\ fg U for a fg. fg b and hence xq, Xg+iGSttfa, b, £, 27). Then for p = q+l,
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by (4.8), (4.10) and the induction hypothesis, (4.9) holds. By complete in-

duction on p, (4.9) is now established. Then by Cauchy's criterion, x(f)

= limp<00 xp(t) exists uniformly on aStSb. By the definition of {xj,(0}, #(0

is continuous on 0^/^l and x(t)=l-(t) on OStSa. Also by (4.8)

x(t) = lim xp(t) = x(a) + rj(t) — ri(a) — [A (x| s)]a     on a S t Sb,
p~*oo

where the passing to the limit of p under the n—l integral signs involved in

An(x|0 is justified by the uniform convergence of {xj>(0} and the con-

tinuity of P1, P2, • • • , F" according to Lemma 2.

4.3. Lemma 7. Let P1, P2, • • • , P" and their first derivatives with respect

to u, vi, • • ■ , vn-i be continuous on I®Rk (k = l, 2, ■ ■ ■ , n). Then for every

yECw, the Volterra functional equation (2.3) either has a solution xECw or

else it is satisfied by a function xx(t) which is defined and continuous on some

interval 0St<tx with 0</„^l, vanishes at t = 0, and becomes unbounded as I

approaches tn from the left.

Proof. Let yECw he given. Suppose there does not exist an element of Cw

that satisfies (2.3) on I for the given y. We prove the lemma by constructing

xM(t) by applying Lemma 6. We shall construct a solution on an interval

[0, h] with 0<<i^l and then extend this solution on an interval [0, 22] with

h<t2Sl and so forth. Since the number 6 in Lemma 6 is not unique, the

choice of h, t2, ■ • ■ at each step will not be unique. We shall use the super-

script a for a sequence of choices of h, t2. • • • .

Now let a = 0 and £(t) he defined on the closed interval / = 0 by £(0) =0

and let v(l)=y(t) on O^i^l. By Lemma 6, there exists a function xfit)

which is continuous on some interval OStStf with 0<t"Sl and satisfies

*i(0) = 0,        yQ) = x"iit) + [a"(x"| s)]'o on0|/g/i.

We apply Lemma 6 again by setting a = t", §(0=*i(0 on OStSt" and 7,(0

= y(0 on t"StSl, and obtain a function x2it) which is continuous on some

interval 0^/^/2 with t"<t2Sl and satisfies

x'it) = x"iit) on 0 S I S h,

and

yit) - yil/) = x2(0 - Xiiti) + [A ix2\ j)],a       on h S I S h-

We repeat the application of Lemma 6. This process will not be terminated

since t = l will never be reached as we shall see below. Now, in general

xm(0 is continuous on [0, C] with 0<^</2< • • • <£gl, vanishes at x = 0

and satisfies
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(4.12) z,(0) = 0,        Xkit) = Xk-iit) on [0, tk-i] for k = 2, 3, • • • , m.

yit) = x"(t) + [A"(*i| s)]o on[0, ti],

(4.13) y(0 - yih-i) = xlit) - xlih-i) + [Anix"k\ *)]£_,

on [tk-i, Ik] for k = 2, 3, • • • , w.

To show that xm(0 satisfies (2.3) on [0,tm] we set, for any k S m, t = h, tif • • • ,

tt-i respectively in the first k — 1 equations of (4.13) and add these k — 1 equa-

tions and the &th equation of (4.13) side by side. Thus we see that x£(0

satisfies (2.3) on [tk-u tk] for kSm and then, since xm(0=Xjt(0 on OStStk

for kSm, xm(0 satisfies (2.3) on [0, ff]. From this it follows also that ff^l

for any positive integer m and the sequence {x^(0} is an infinite sequence.

Now since 0<t\<t2< ■ ■ • <1, let C = limm_M tmS 1- We now construct a

function x"(0 which is continuous on [0, ff), vanishes at / = 0 and satisfies

(2.3) on [0, ff). For any t£[0, iff), there is a positive integer M such that

tM-i<TStM- Then x^(t) = x|f+1(T) =4+2(r) = ■ • • . Let x«(t) be this value

which is independent of m for m^M. Then a function xam(t) is uniquely de-

fined on [0, ff). Since xt,(t) =xm(t) on [0, C] for all m, xZ(t) is continuous on

[0, tff), vanishes at t = 0, and satisfies (2.3) on [0, tlf).

Now consider the collection {x°(0} each of which is constructed in the

manner described above. Since t\\Sl for all a, let /„ = supa fx S1. To construct

a function xM(0 which is continuous on [0, t<f), vanishes at t = 0 and satisfies

(2.3) on [0, tx). Let tE [0, tx). Consider all values of a for which r <f„. For

these values of a, the functions x^(0 are continuous on [0, r], vanish at

t = 0 and satisfy (2.3) on [0, r]. Then by uniqueness of solution of (2.3) on

[0, t] according to Remark 1, the value of x\\(t) is independent of a. Yet

x«,(t) be x^,(t) which is independent of a tor such a that r<C- Then a func-

tion x„o(0 is uniquely defined on [0, t„). It has the required properties.

To prove that x„(0 becomes unbounded as I approaches t„ from the left:

Assume that x„(t) =A°(xx\t) is bounded on [0, /„). If A*(xM|0 is bounded on

[0, O for kSN, it follows from the continuity of FN+1 on I®RN+i that

A.N+1(x„\t) is also bounded on [0, t„). By complete induction on k,

Ak(xx\t), (k = 0, 1, 2, • • • , n) are all bounded on [0, /„). Let V be a positive

number such that

(4.14) | Ak(x„ | 0 |   S V on 0 S t < tm for k = 0, 1, 2, • • • , n.

Let the sequence of functions Fk*(t, u, Vi, • • • , Vk-f), (k = 1, 2, - ■ - , n) be

so defined that Fk* = Fk if \vj\ SV for all j = 0, 1, 2, • • • , k-l, for k = l, 2,
■ ■ ■ , n and beyond the above ^-dimensional rectangle Fh* is continued as

constant in the way Fk* was defined in the proof of Theorem I. The sequence

of functionals A4*(x|0. (k = 0, 1, 2, ■ • • , n) is constructed with

P**, (jfe=T, 2, • • • , n) by (2.0), (2.1), (2.2). Then x„(0 is a solution of yit)
= x(0+An*(x| 0 on 0St<tx. On the other hand, this modified functional
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equation has a solution x£_Cw by Lemma 3. According to Remark 2, xx(t)

= x(t) on [0, tf). Let us now extend xx(t) to t=tx by defining xx(tx) =x(tf).

Then xx(t) satisfies the modified functional equation on [0, ._.]. Now since

(4.14) holds not only for [0, tf) but also for [0, tx], xx(t) satisfies (2.3) on

[0, .„]. Thus if tx = l, we have a solution 3C_£C. for (2.3), which is a con-

tradiction. But if tx<l, then by applying Lemma 6 we can extend xx(t) be-

yond tx, which contradicts the definition of tx. Therefore xx(t) must become

unbounded as t approaches tx from the left.

4.4. Proof of Theorem II. Suppose that for some y(~Cw there is no

xGC, that satisfies (2.3). Then by Lemma 7, there is a function x(t) which

vanishes at t = 0, is continuous and satisfies (2.3) on some interval 0fgi<i0O

with 0</_.fgl and becomes unbounded as / approaches tx from the left.

If x(.) is such that x(.) >0 on some interval to<t<tx, then by (2.3), (2.2),

(2.1), (2.0), (4.1), y(t)-y(to)^x(t)-x(tf)-A(t-tf) for t0<t<tx. Similarly,

if x(t)<0 on t0<t<tx then y(t)-y(tf) ^x(t)-x(tf)+A(t-t0) tor t0<t<tx. In

any case y(t) becomes unbounded as t approaches tx from the left. This con-

tradicts the continuity of y(t) at tx.

Yet us assume that for any to satisfying 0 <._<<« there is always a point /

such that t0<t<tx and x(t) =0. Yet [tm] be an increasing sequence of points

such that limm^». tm = tx and x(tm) =0. Let t'm be so chosen that tm<t'm<tx and

|x(.m)| ^m. Let t^i he the least upper bound of all points between tm and t'm

at which x(t) vanishes. Then x(t) 9*0 on t'f<t^t'm and x(t'ff)=0 by the con-

tinuity of x(t). Now if x(.)>0 on C<t^t'm then y(t'm) ̂ m and by (2.3), (2.2),

(2.1), (2.0), (4.1), y(t'm)-y(C)^m-A(t'm-t'ff). Similarly if x(.)<0 on
ffi <tS t'm then y(t'm) fg -m and y(t'm) - y(£) fg -m + A(t'm - O- Since

limm<00 t'm = limm^x t'f=tx, the two inequalities contradict the continuity of

y(t) at tx. This completes the proof of Theorem II.

5. Relationship between the functional equations and the differential

systems. Let A0 be the triangle 0fg_• fg. fg.0 and 20 be the interval Ofg.fg.o

and let J1^, u), I2(t, u, vf), • ■ ■ , In(t, u, Vi, • • • , vn-f) be defined and con-

tinuous on 20<8>2?re and y(t) be defined and continuous on Io- Then let the

functionals Q,k, iYk, Fk, $*, A* be defined by

(5.1) 0°(y | s, t) = y(t - s) on A0.

(5.2) **(y| j, I, u,vu---, Vk-i) = Jk[s, »,+ 0°, • • • , vk-i + ft*"1]

on Ao ® Rk, (k = 1,2, ••• , n).

(5.3) nk(y | s, I, u,vu • • • , Vk-i)   I   *(p)dp     on A0 <g> Rk, (k = 1, 2, ■ ■ ■ , n).
•2 8

Fh(t', u', vi, ■ ■ ■ , vf-i, t, u,vi,---, Vk-i)

(5.4) = tl"[(l - t')t, u + t"2u', vi + vi, • • • , v^i + vf-i],

(k = 1, 2, • • • , n).
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**(* | I', I, U,Vh ■ ■ ■ , Vk-l) = <** j/1'2* |^—J \(l-t')t\,

ik = 1, 2, ■ ■ ■ , n).

A*(* | I', I, u, vi, • • ■ , Vk-i) = 0* j/"2* T—11 (1 - l')l\ ,

ik = 1, 2, • • • , n).

(5.7) l\x\t',t) = xit').

We quote results of [l] in the following remarks.

Remark 4. If we regard the variables /, u, vu ■ • ■ , vn-i in Fk, $k, A* as

parameters, then the recurrence relationships (2.0), (2.1), (2.2) hold for

Fk, $*, Af with the variables t', u', v{, ■ ■ ■ , »„'_i.

Remark 5. Let JYit, u), J2it, u, vf), ■ • • , Jn(t, u, vu ■ ■ ■ , vn-f),

L(u, Vi, - • ■ , vH-f) and the first derivatives of J1, J2, ■ • • , J"-1 with respect

to u, Vi, ■ ■ ■ , v„-2 be continuous on I0®Rn- Yet Fk, $*, A* be defined by

(5.4), (5.5), (5.6), (5.7) with J1, J2, ■ ■ ■ , Jn, let G he defined by

G(t', u', v(, - - - , V/-1, t, U, Vi, • ■ • , Vn-l)

(5.8)
= 0[(1 - t')t, u + tl'W, vi + vl, • • • , Vn-i + v/_i]

for O^^'^l and vj (j = 0, 1, 2, • • • , n—l) unrestricted, and finally, let g, f

he defined by

1
(5.9) g(t', u', vi, ■ • ■ , vf-/) = - — log G(t', u', vl, ■ ■ ■ , »„'_i)    on / ® Rn.

(5.10) f(t', u', vl, • • • , vf-/) = gU' on / ® Rn.

Then by Remark 4 and [l, Theorem l], the transformation

(5.11) y(l') = x(l') +  f ' f[s', AV), • • • , h-K^ds', I' E I,
J 0

maps Cw in a 1-1 manner into a Wiener measurable subset T of Cw- Further-

more if there exists a positive solution d of (1.1), (1.2) such that all its first

derivatives and the first derivatives of 6U with respect to Vi, v2, ■ ■ ■ , v„-i

are continuous on I0®Rn, then

6(t, u, vi, ■ ■ ■ , j>„_i)w„(r)

(5-12) C f 1    r
exp {q»(0)}£[j>o + n0(0), • • • , p„_i + Q-KOjJd.y

*^c„

on Io®Rn-
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6. Minimality theorems. 6.1. A minimality theorem derived from Theo-

rem I.

Theorem III. Let J1, J2, ■ ■ ■ , J", L and the first derivatives of J1, J2, • • • ,

jn-i wjtfo respect t0 u, Vi, ■ ■ ■ , vn-i be continuous on Io®Rn. Let J1, I2, ■ ■ • ,

_7"_I satisfy the order of growth conditions

| Jk(t, u, vi, ■ ■ • , Vk-i) |

(6.1) fg A jl + zZ I ». | } log {2 + E I »i| } on 20 ® Rk,

(k = 1, 2, ••■,»— 1)

where A is a positive number. Suppose that there exists a positive solution 8 of

(1.1), (1.2) such that all its first derivatives and the first derivatives of 6U with

respect to Vi, Vi, ■ • ■ , vn-i are continuous on Io®Rn and furthermore

l^,,.,---,..-ol      r+gN),o_{2 + gN}
(6.2) d(t, u, vi, ■ ■ ■ , Vn-i) \        y-o ) \        j-o J

on h ® Rn,

then it follows that 6 is the minimal positive solution with continuous first deriva-

tives of (1.1), (1.2) on Io®Rn-

Proof. We prove that for any given point (/, u, Vi, ■ ■ ■ , vn-i)ElI0®Rn,

mw(Y) = lin (5.12). Let 4'J.max {l, log (l + (tf)m)}. Then from (5.4), (6.1)

I Fk(l', u', vi, ■ ■ ■ , vf-i, t, u,vi,---, Vk-i) I

fg l0(l + (to)112) A \l+ IZ \vA   + E I »/ I }
V. j=0 3=0 )

•log |(i + (toy2)(2 + £ 1 vA + E I»/1)}

fg 2.0(1 + (to)ll2)AA'\i + E I ».l + E I»/1 j-
v        y=o y=o /

•log U + E kl + E I»/1} >       (* - 1,2, •..,«- i).
1 ;=0 ;=0 /

Let us remark that for any two real numbers a and x

(1+ \a\   + |*|) log (2+  |0|   +  |#|)

(6.3) <4(1+ |*|) log (2+ |*|) + (1 + 2 [ a I ) log (2 + 2 I a I )

< 4[1 + (1 + 2 I a I ) log (2 + 2 I o I )](1+ | x \ ) log (2 + | *| ).

Then
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| Fk\   S 8*o(l + ih)1'2) A A'A/'iu, Vi, • • • , vk-i)

(6'4) {l+£|v/||log|2+£|s/||

where

^"(n,*,- ■■ ,Vk-i) = l+(l+2£ h;|Vog^2 + 2£ |»y|V

(*= 1,2, ••-,»- 1).
Also from (5.10), (5.9), (5.8)

- 1_ <1/20„[(1 - t')t, u + WW, vi + vl, ■ • ■ , P-i + p,-i]

"  2       0[(1 - 0<, « + l1,2u', vi + vl, ■ ■ ■ , v„-i + vf-i]

and by (6.2), (6.3)

| fit', u', vl, ■ - ■ , vf-i, I, u, vi, ■ ■ ■ , vn-f) |

S 4(/0)1/2(l + (/o)1/2)^t^Mn"(w, vu- ■ ■ , vn-/)

(6.7)

• {i + £ \vj |} log {2 + £ I ̂  I}

where Af (u, V\, • • • , vn-f) is defined by (6.5) with k = n.

By (6.4), (6.7), the functions Fk, f of the variables t', u', vl, ■ ■ • , vf-i

satisfy the conditions of Theorem I for any given parametric values t, u, Vi,

• • • , f„_iand according to the conclusion of Theorem I, the transformation

(5.11) maps Cm in a 1-1 manner onto itself so that mw(Y) = 1 in (5.12). Since

t, u, Vi, • • • , vn-i are arbitrarily given, mw(V) = 1 holds on Ia®R„. By

[1, Theorem 4], the proof is completed.

6.2. A minimality theorem derived from Theorem II.

Lemma 8. Under the hypothesis of Remark 5 on Ih, L and 6, assume further

that there are numbers t*EIo and u*ERi such that for some constant A

du[t, u* + Au, vi, • • • , »„_i]
(6.8)- sgn [Au] S A

6[t, u* + Au, vi, - - - , d„_iJ

holds for OStSt*, Au and Vj (j = l, 2, • • • ,n — l) unrestricted, then mw(T) = 1

in (5.12) on the set [0, t*]®{u*\ ®R„-i.

Proof. For OStSt*, Au and Vj (J = l, 2, ■ ■ ■ , n— 1) unrestricted, we have

from (6.6), (6.8)

1
/(/, «', vl, ■ - - , »„'_i, t, «*, vu - - - , vn-f) sgn u' = - —- (t*y2A

for (t', u', vl, ■ • • , v/-/)EI®Rn. Then for the parametric values in the set
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[0, t*]® {u*} ®Rn-i, the functions F\ F2, ■ ■ ■ , F"-1,/satisfy the conditions

of Theorem II and according to its conclusion, the transformation (5.11)

maps Cw in a 1-1 manner onto itself so that mw(Y) = 1 in (5.12) on the set

[0, t*]®{u*]®Rn-l.

Theorem IV. Let J1, J2, ■ ■ ■ , Jn, L and the first derivatives of J1, J2, ■ • • ,

jn-i with respect to u, v\, • • • , v„-i be continuous on Io®Rn- If n>l, let

J1, I2, • ■ ■ , -2n_1 be pervasive(7) in Io- Suppose that there exists a positive solu-

tion 8 of (1.1), (1.2) such that all its first derivatives and the first derivatives of 8U

with respect to Vi, v2, ■ • ■ , vn-i are continuous on Io®Rn- If for some constant A,

du[l,U,Vi, ■  •  ■ , V„-i]
(6.9) —-r sgn u fg A on Io ® Rn,

d[t, u, Vi, ■ • •    l>„_ij

then 8 is the minimal positive solution with continuous first derivatives of (1.1),

(1.2).

Proof. If (6.9) holds then (6.8) holds with t* = t0, u* = 0 and by the con-

clusion of Lemma 8, ra„,(r) = l in (5.12) on the set 20<S> {o} <g>2?„__. By

[l, Theorem 6] the proof of the theorem is completed.

6.3. Another minimality theorem based on Theorem II.

Lemma 9. Under the hypothesis of Remark 5 on Ih, L and 8, assume further

that there is a non-negative number A such that

I  8u[t,U,Vi,   •   ■   •   , Vn-l] I
(6.10) J—^-f- fg A on Io ® Rn,

d[t, U, Vi,  ■  ■   ■  , S„_iJ

then mw(Y) = l in (5.12) on 70®2?„.

Proof. If (6.10) holds on Io®Rn, then from (6.6)

i - i        1
| /(.', u', vi, • • ■ , vi-i, t, u,vu ■ - - , Vn-i) I   fg — (to)112 A   on 2 ® Rn,

tor (t, u, vi, • • • , vn-i)GIo®Rn- Therefore F1, F2, ■ ■ ■ , 2?""1, / satisfy the

hypothesis of Theorem II for any choice of the parametric values ., u,Vi, • • • ,

vn-i in I0®Rn and by the conclusion of the theorem, the transformation (5.11)

maps Cw in a 1-1 manner onto itself so that mw(Y) = l in (5.12) on 20<8>2?„.

Theorem V. Let J1, I2, ■ ■ ■ , Jn, L and the first derivatives of J1, J2, ■ • • ,

jn-i with respect to u, Vi, ■ ■ ■ , vn-i be continuous in Io®Rn. Suppose that there

exists a positive solution 8 of (1.1), (1-2) such that all its first derivatives and the

first derivatives of 8U with respect to Vi, Vi, • ■ ■ , vn-i are continuous on Io®Rn-

Then if 8u/8 is bounded on Io®Rn, it follows that 8 is the minimal positive solu-

tion with continuous first derivatives of (1.1), (1.2).

(7) See [1, p. 162].
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Proof. By Lemma 9, mw(T) = l in (5.12) on Io®Rn- By [l, Theorem 4],

the proof of the theorem is completed.

7. A uniqueness theorem for solutions of the differential system. Let the

functions Hk and the functionals Hk (fe = l, 2, • • • ) be defined by

(7.1) HkiA,B,M,e,u,vi, ■ ■ ■ ,vk-f) = .4 exp {P | w|2-'} f[ {1 + | Vj\ \M,

(7.2) Hkiy | A, B, M, e, u, vu ■ ■ ■ , vk-f) = Hk exp \B max | yip) \2~\
<-    pe'„ )

where A, B, M>0, 2>e>0, yip) is continuous in pEIo and it is understood

that when k = l, the product XT/-i is equal to 1. The notational convention

for order of growth conditions involving LP is that Jkit, u, Vi, ■ • • , Vk-f)

SHkiA, B, M, e) would mean that Jk is bounded by a function Hk oi the

type (7.1) with the specific constants A, B, M, e on Io®Rn whereas

Jkit, u, Vi, ■ - - , vk-/)SHk would mean that Jk is bounded on Io®Rn by a

function Hk of the type (7.1) with unspecified constants.

For a function L(w, vi, • • • , vn-f) defined on P„, let its "translation trans-

form" T°L be defined by

(7.3) T\L =   f exp {Q"}L[vo + S2°, • • • , vn-i + iV^]dwy 0 S s S I S to,
J C„[0,t-,]

provided it exists, and for t = s

(7.4) T\L=L, tors Eh-

T\L defined in this fashion with given J1, J2, ■ ■ ■ , Jn by (5.1), (5.2), (5.3) is
a function defined on I0®Rn-

We quote [l, Theorem 8] on which our uniqueness theorem, Theorem VI,

will be based.

Theorem 8 of [l]. Let J1, I2, • • ■ , I", L and their first and second deriva-

tives with respect to u, Vi, ■ ■ ■ , z>„_i iexcept possibly for J*M) be continuous and

satisfy in Io®Rn the order of growth conditions

| /1   S H\   | /-|   SHk,ik=l,2,---, n), ij = 0, 1, • • • , n -1),

I 4-|   SH, ik=l,2,---,n),ii=l,2,---,n- 1),

if = 0, 1, ■ ■ ■ , n - 1).

(7.6) P-glogZP.

(7.7) \L\   SH",    \Lj\SH»,    \Lij\   SH\     (♦,/ = 0,1, •••,»-1).

Then the function Bit, u, Vi, • • • , vn-f) defined by 6= T°L is a solution of the

differential system (1.1), (1.2) and has all its first derivatives continuous on
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Io®Rn- Moreover if L>0 throughout R„, 6 is the minimal positive solution with

continuous first derivatives throughout I0®Rn-

Remark 6. It is proved on [l, p. 167] that if J1, J2, ■ ■ ■ , Jn and their

first derivatives are continuous and satisfy (7.5), then

(7.8) |**|   fgff*,        \Qk\^Bk, (k = 1, 2, ■ ■ -,n).

7.1. Theorem VI. Let J1, J2, • • • , Jn and their first and second derivatives

with respect to u, »_, • • • , vn-i (except possibly for J*f) be continuous and satisfy

on Io®Rn the order of growth conditions (7.5) and let Jn further satisfy

(7.9) | 7" |   fg log H" on I0 ® R„.

Then if 8 is any solution of the differential system (1.1), (1.2) with continuous

first derivatives on I0®Rn such that

(7.10) \d\   ^ H" onl0® Rn,

it follows that 8 is unique.

The proof of the theorem is based on the following lemma.

Lemma 10. Let J1, J2, • • • , Jn and their first and second derivatives with

respect to u, Vi, • • • , vn-i (except possibly for Jlf) be continuous and satisfy on

Io®Rn

\f\   ^H\A,B,M,e), (k=l,2,-- -,»),

(7.11) \J*A   ^Hh(A,B,M,e),    (k = 1,2, ■■-,n),(j= 0,1, ■■-,n-l),

| 4| fg Hh(A, B, M, _),    (k = 1, 2, • • •, n), (i = 1,2, • • •,» - 1),

(j = 0,1, -..,„- 1).

(7.12) | 7" |   fg log H"(A, B, M, e)

where A, B, M, e are such that (7.8) holds with them and besides .4 __; 1, and let

L*(u, vi, • • • , Vn-i; Mi, Mi, ■ • ■ , Mn-i)

n-l

(7.13) = A exp {2?0(1 + m2)1"""6} II {2 + By8}1",
i-l

where Bo is a sufficiently large positive number that satisfies

(7.14) jB0(1 + u2y-*l* __: 5(1 + \ u\ )2~'l2 on u G Ri

and Mj(j = l, 2, • • ■ , n — 1) are parameters with positive values. Then the

function 8* = T?L* defined by (7.3), (7.4) is the minimal positive solution with

continuous first derivatives on Io®Rn of the differential system consisting of the

differential equation (1.1) and the boundary condition

(7.15) d*(0, u,vu • • • , n„__) = L*(u, vi, ■ • • , zi„__) on Rn,
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for whatever positive values of Mj (j=l, 2, • • • , n — l). Furthermore for some

values of Mj (j = l, 2, • • • , n—l)

(7.16) 6* > HniA0, B, M, e) with Ao > 0 on I0 ®Rn

7.2. Proof of Lemma 10. I1, J2, ■ ■ ■ , Jn satisfy the conditions of [l,

Theorem 8]. L* has continuous first and second derivatives with respect

to u, Vi, ■ • ■ , z/n_i and, since (l-f-w2)1_e/6^(l-r-| w[ )2~'/3 for uERi, L* and

its derivatives satisfy the order of growth conditions of [l, Theorem 8] on L

and its derivatives. By the conclusion of the theorem, 6* is the minimal posi-

tive solution with continuous first derivatives on Io®Rn of the system (1.1)

and (7.15).
From (7.3), (7.13), (5.7), (5.6) we obtain for <G(0, to], («, »i, • • • , w„_i)

GPn,

T,L* = A f exp I f Jn[p, u + yit- p), Vi + Q'ip), • ■ ■ , vn-X
d cw[0,t] Wo

+ G-l(#)]^|

•exp {B0[l +[u + yit)]2]1-"6} IT {2 + [vj + WiO)]2}M>dwy.
j-i

From Jn^ —log II" according to (7.12), and (7.1)

r 6
(7.17) TtL* ̂  A j JlGjdwy

J Cwl0,t]    j=l

where

(7.18) Gi(0 = exp|-   f   log^^l,

(7.19) G2iy\t,u) = exp 1-bJ   | u + yil - p) \2~'dp\ ,

G3(y \ t, u, vi, - - - , !)„_i)

= exp l-M £ f ' log [1 +\vj+ Wfp) | ]dp} ,

(7.21) Gtiylfu) = exp{B„[l + [u + yit)]2]1-"6},
n-l

(7.22) Gsiy\ I, u,vu- ■ • , vn-U Mu • • • , Mn-f) =J\{2 + [Vj + Q'\0)]2]M'-
y-i

7.3. Lower bounds for Gi, G4, G2.

From (7.18) and from (7.21), by our choice of B0 according to (7.14)



I960] NONLINEAR VOLTERRA FUNCTIONAL EQUATIONS 427

(7.23) Giit) £ 1/A\

(7.24) diy | I, u) g exp {B \ u + yit) | 2"«/2}.

As for G2, since |a+o| 2_e^4{ |o| 2_e+| &| 2~1}  for any two real numbers a

and 6 and 0<e<2,

(7.25) -B f   \u + yit - p) \2~*dp ̂ - 4P;01 «|2"' -4B f \yil- p) \2~'dp.
Jo dd

Let us define

(7.26) |||y|||*=   max   |y(P)|.
OSPS/3

Then

(7.27) -AB f   \yit- p) \*~'dp ̂  - 45/0|||y|||2~',
J o

and by (7.19), (7.25), (7.27)

(7.28) G2(y| t,u) ^ exp {-4P/0| «|2_f} exp { -4P*0|||:y|||2_t}.

7.4. A lower bound for G3. For any two real numbers a and b, l + \a + b\

g(l + |a|)(l + |6|) so that

-  f   log [1 + | vj + Q'ip) | ]dp
J o

(7.29)

SS log [1 +  | vj\ ]"'» -  f   log [1 +  | iV(p) | ]dp.
J 0

Now according to our choice of A, B, M, e in the statement of Lemma 10

(7.30) | o'|   S H\A,B,M,i)exo{B\\\y\\^1}, for y E C.[0, /].

Then since A Stl, P>0, the right hand of (7.30) is not less than 1, and from

the fact that log (1+a) ^log 2+log a for a^l we have

(7.31) ~fS[l+lnP)l]dP

^ - to log 2 - log [rfiA, B, M, e)]'°- t9B\\\y\\\^ .

From (7.20), (7.29), (7.31),

G3(y \ t, u, vi, ■ ■ - , Vn-i)

n—l n—l

(7.32) ^ II[1+ \vj\]-M">exp{-in- 1)AT/Olog2} II [H'iA, B, M,e)]-Mt°
3=1 j-l

■exp{-(»- l)Jf«?|||y||f}.
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7.5. A lower bound for G6. For any two real numbers a and b, 2+a2

^l + \a\ and l + |a+_>| _£(l + |a|)(l + |&|)_1 hold- Thus

(7.33) 2 + [vj + G'(0)]2 S_ (1 + | vj\ )(1 + | Q'(0) | )"1.

From our choice of A, B, M, e as stated in Lemma 10,

(7.34) 1+| n'(0) |   fg 2lf(A, B, M, .) exp {5|||y|||'_<}.

From (7.33), (7.34), the fact that Afy>0, (7.22)

Gf,(y |  t, U, Vl,  -  •  ■  , Vn-l, Mi,  ■  ■   • , Mn-l)

(7.35) ^ fi {[1 +  | vj\ ]"tl-*[Hi(A, B, M, «)]-**}
3-1

■e.pj-UgJfJIHIir}-

7.6. A lower bound for T?L*. Substituting (7.23), (7.28), (7.32), (7.24),
(7.35) in (7.17), we have

(7.36) T°,L* £ I on(0,lo]®Rn,

where

(7.37) I = KG f exp{£| M + y(.)|2-<'2}r<.,„y,

with

n-l

(7.38) K(Mi, ■ ■ ■ , Mn-i) = A'-'oexp { -(« - l)j_f_0log 2} II 2~M> > 0,
y-o

G(u, vh • • - , v„-i, Mi, - - - , Mn-i)

Cl 39) n_l

= exp { -+Bh\ «|2-«} II {[1 + KI ]Mi-M"[H'(A, B, M, <=)]-"«>-".}
3-1

(7.40) Y(y\ Mi,---, Mn-i) = exp { -3_|||y|||f"},

n-l

(7.41) Bx = +Bh +(n- l)Mt0B + B zZ Mj > 0.
i-i

So far the only condition on Mi, • • ■ , M„__ has been that they be posi-

tive and as long as this condition is satisfied (7.36) holds. We now proceed

to choose such positive values for Mi, - - - , Mn-i that the powers of

1 + | Vi\, • • • , 1 + | vn-i\ in G are all equal to M.
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7.7. Choice of values for the parameters Mu M2, ■ • • , Mn-i. From (7.1),

(7.39)

Giu,  Vi,   •   •   •   , Vn-1,  Ml,   ■   •   ■  ,  Mn-i)

= A-(n-i)MiJ JlA-M'\ exp {-PiI m|2-'}
(7.42) M-i )

• {n [i + i vj i ]*i-**\ | n n [i + \v,\ j-***-**,!.

From (7.42), it follows that if we make the choice

Mn_i = M + Mto,

Mn-2 = M + Mto + M2to + MMn-i,

Mn-z = M + Mto + 2M% + MMn-i + MMn-2,

Mi     = M + Mto+ in- 2)M2lo + MMn-i + MMn-2 + ■ ■ ■ + MM2,

then Mi, • • • , Mn-i are all positive and the powers of 1 +1 vi\, • • • , 1 +1 oB_i|

in (7.42) all become M. From now on Mi, • • • , Mn-i will stand for these

values. Now from (7.42)

Giu, Vl, •  •  • , Vn-i, Ml,  •  •  • , A/n-l)

(7 43) ( n~x \ "~1

= A-W»< II A-MA exp j -Bi\u\2-'} II [1 + I vj\ }M,
\ >=i 1 i=i

and from (7.37), (7.43)

I=Ki exp {-Bi\ M|2-} "ji [1 + I */| ]M

(7.44)

•  f       exp{p|« + y(0|2-'/2}r(y|  )dwy
J C[0,(]

where

n-l

(7.45) A'i = A^-c-'-DMio TJ a-m> > 0.
j-i

It remains to estimate the Wiener integral (7.44).

7.8. Lower bound of the Wiener integral. Let us decompose the Wiener

integral I given by (7.44) into two Wiener integrals I+, I~ over the two

intervals C^[0, t], Cf [0, t] of the Wiener space C[0, t] where

Ct[0, t] = {yE Cw[0, t] I yit) £ 0},       Cl[0, t] = {y E Cw[0, l] \ yil) < 0},
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each with a measure 1/2. Then

(7.46) I = I+ + I-, on!o®Rn

and from the fact that the integrand of I is positive

(7.47) 2 > I+,        !>!-, onIo®Rn.

We now proceed to give a lower estimate for 2+ when z.__;0 and a lower

estimate for I" when u<0. Consider 7+. Since y(t) in its integrand is non-

negative, |w+y(.)| ^m for tti_;0 and

exp {B | u + y(l) \2-''2] S exp {B \ u |2-''2}, for u __; 0,

and consequently from (7.44)

2+ __; Ki exp { —_B_ | m|2-'}

(7 48) n_1 C

■exp{B\u\2-<'2} U[l+ \vj\]m I +      T(y\    )dwy,     for w _S 0.
3—1 J Cw{0,t]

Since for B, Bi>0 there exists a positive constant K2 such that

(7.49) exp{B\u\2->l2} exp{-Bi\u\2-<] ^ Kiexp{B\u\2-<],   for u G 2?,,

we have

n—1 /»

(7.50) 2+^ A-3exp{5| M|2-} II [1+ l"y|]M I +      T(y \ )dwy, for u ^ 0
3=1 J C„[0,.]

where 2<.3 = i^iA^ > 0. In estimating the Wiener integral in the right side of

(7.50) we first write

(7.51) f T(y\    )dwy=   f - {1 + sgn [y(l)]] T(y \   )dwy
Jc„[<u]                            J cwio,t]   2

and then reduce the integral to one over Cw[0, t] by using the transformation

formula(8)

f       FbKy= f      p\(b- ay2x\ '   ~ aJ\dwx.
J cwia.b] ■'c.id.u     L L o — a JJ

Then

f -{l + sgn[y(0]}r(y|    )dwy
•2c„[o,(]   2

= r   ^{l+sgn^^jjrr.1'2*^)]^*.
Jcw[o,i]  2 L        \ t /.

From (7.40)

(») See [3].
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r[,,,(ii)]-e,P{-B|,^(Ll)|p}

Be*Pi-B,<mHir}
where by definition |||x||| =|||x|||i. Thus

f +       F(y|    )dwy

(7.52) JC"™ i

^  f — {1 + sgn [x(l)]} exp { -Bil\ '/2|||x|||2 ' }dwx.
J c„[o.ij   2

Since fc„io,i] exp {P|||x|||2_'}tiwx exists as a finite number for any real number

P and 2>e>0 (9) the Wiener integral in the right side of (7.52) is finite. Let

us call it K4. Then from (7.50), (7.52), with K6 = K3Ki>0

n-l

(7.53) 1+ ^ Ksexr>{B\u\2-*}H[l+ \vj\]m, for u ^ 0.
j'=i

As for the integrand of I~, since yit) is negative, | u+yit) \^\u\ for u <0.

Following the same line of argument as for I+ we obtain

n-l

(7.54) I-tK£exp{B\u\2-<}lJ[l+\vj\]M, for u < 0,
j=i

where Ki = K%Ki and

Ki =  j — {l — sgn [x(l)]j exp {—Bil0 '' ]\\x\\\  '}dwx,
J c[o,i]   2

a finite positive number. If we now let X6 = min {K6, Ki }, then from (7.47),

(7.53), (7.54)
n-l

(7.55) I > K«exp{B\u\2-'}Jl[l+ \vj\]m      on (0, l0] ® Rn.
j-i

From (7.36), (7.55)

(7.56) T°tL* ̂ K6exp {B\ u^"} fi [1 + \ vj\ ]M     on (0, /„] ® Rn.
j=i

If we let ,40 = min {A, Kt] then from (7.4), (7.13), (7.14), (7.56)

n-l

TtL* ^ Aoexp{B\u\   '} U[l + \ Vj\]M on 70 ® Rn.
j=i

This completes the proof of Lemma 10.

(') See [4].
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7.9. Proof of Theorem VI. Let us assume without loss of generality that

the functions PP (k = 1, 2, • • • , n) in the hypothesis of the theorem all have

the same constants A, B, M, 2 — e which are so large as to satisfy the condi-

tion imposed on them in the statement of Lemma 10. Then for 8* = T°tL*

with L* defined by (7.13), the lemma applies.

Now assume that the differential system (1.1), (1.2) has two solutions

0i, 02 with continuous first derivatives and satisfying (7.10) on Io®Rn- Yet

03 = 01 — 02 on I0®Rn- We show that 03 = O on I0®Rn- Consider

Ao
(7.57) 04 = 0* + -—03.

2A

04 has continuous first derivatives and satisfies (1.1), (7.15) on I0®Rn- Since

0i, 02 satisfy (7.10), we have |03| ^J7"(2_4, B, M, e) on I0®Rn, ^o(2^)-x|03|

fg22"(_40, B, M, e) and by (7.57), (7.16) we have 04>O on I0®Rn for both of

the two signs in (7.57). Then since 0* is the minimal positive solution with

continuous first derivatives of (1.1), (7.15), we have 042_0* on I0®Rn for

both of the two signs in (7.57). This implies that _4_(2_4)_108 —0 on 70<S»2?„

and hence 03=-O on I0®Rn- This completes the proof of the theorem.
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