NONLINEAR VOLTERRA FUNCTIONAL EQUATIONS AND
LINEAR PARABOLIC DIFFERENTIAL SYSTEMS(})

BY
J. YEH

1. Introduction. In his recent paper [1](?) Professor R. H. Cameron
pointed out that there exists a certain duality between almost everywhere(?)
type existence problems for solutions of nonlinear Volterra functional equa-
tions and minimality problems of positive solutions for certain linear para-
bolic differential systems. At the conclusion of that paper he stated that he
expected to follow it with another paper where the duality principle is put to
work and that he expected to prove at least one theorem of each type without
using the duality principle, and then prove an equal number of corresponding
theorems of opposite types by using the duality principle. The nonlinear
Volterra functional equations that were studied were, for the two-dimensional
case, functional equations of the type

y(l) = x(8) + fotF2 {s, x(s), fosFl[r, x(r)]dr} ds.

The definition of the functional equations in the general n-dimensional case
will be given in §2. The related linear parabolic differential systems were, in
the general #-dimensional case,
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The task of proving theorems of the above mentioned nature was then
handed over to the present author. Since then two everywhere-type existence
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(?) Numbers in square brackets refer to bibliography.

(3) “Almost everywhere” means all except for a set of Wiener measure zero. See for in-
stance [2]. In this paper Wiener measure and integral will be denoted by m., and S dux
respectively.
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NONLINEAR VOLTERRA FUNCTIONAL EQUATIONS 409

theorems, namely, Theorems I, I1, and then by applying the duality principle
on them, three corresponding minimality theorems, namely Theorems III,
IV, V have been proved. On the other hand a uniqueness theorem for solu-
tions of the differential system, namely Theorem VI, has been found.

The proofs of these theorems constitute this paper. Theorems I, I1 were
derived by classical methods in the sense that no knowledge of Wiener meas-
ure was assumed in the proof. Theorems III, IV, V were derived from Theo-
rems I, II by means of Theorems 1, 4, 6 of [1]. Theorem VI is based on
Theorem 8 of [1].

2. The general Volterra functional. Throughout this paper the letter I
denotes the interval 0<¢<1, I, the interval 0<¢<¢,, R, the n-dimensional
Euclidean space. The symbol C,[a, b] denotes the Wiener space on the inter-
val ¢ £t<b, namely the space of continuous functions on ¢ =<¢{<b which
vanish at t=a. In particular C,[0, 1] is often abbreviated as C,. In order to
shorten the notation for functions and functionals of several variables, we
adopt the following notational convention which was introduced in [1].

NoraTtioN. When a functional depends on a function and several numer-
ical variables, the function will be written first, followed by a bar. The nota-
tion for functionals and also for functions may be abbreviated by dropping
the function or some or all of the numerical variables, but we stipulate that
if the function is dropped, the bar must also be dropped, and if a numerical
variable is dropped, all those that follow it must also be dropped. Moreover,
whenever a function or variable is dropped, it is understood that the sup-
pressed arguments are the letters which originally stood in the function or
functional when it was first introduced, with no substitutions. We also stipu-
late that if a numerical variable is replaced by some other letter, or by a num-
ber it will not be suppressed and none of the numerical variables preceding it
will be suppressed.

Thus, for example, the functional \I/[x(-)|t, u, vy, + + +, v,] could be ab-
breviated as ¥, \I/(xl ), W(t), ¥(t, u), \I/(x|t, u, v1) etc. but could not be ab-
breviated as ¥(x), ¥(u), ¥(u, 9, ;) etc. The symbol ¥(0) means that ¢ has
been replaced by zero while other arguments are left alone, ¥ (%) would mean
that ¢ has been replaced by # and would be the same as ¥ (u, u).

With the above notational convention, we now give our formal definition
of the Volterra functional.

DerINITION. Consider a finite sequence of real continuous functions
F(t, uw), F*(t, u, v1), - - -, F*(¢, u, 1, » - -, v,1) defined for &I and other
variables unrestricted. From these construct inductively two sequences of
functionals <I>"(x|t), A"(xlt) depending on the function x(-) and the real
variable ¢ as follows:

(2.0) (x| 1) = x(), onC, ® I,
(2.1) k(x| f) = Fr(l, A% - - -, AFY),  (B=1,2,---,%) onC, ® I,
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t
(2.2) Ar(x]| 1) =f ®*(r)dr, (k=1,2,-+-+,n)onCy, ® I.
0

Then the functionals ®* and A* will be called “Volterra functionals” and &=
and A* will be called Volterra functionals of order # if no shorter string of
functions could be used to define them.

Now to come to our problem, let F1, F?, - - -, F" be defined and continu-
ous on I®R, and consider the Volterra functional equation

(2.3) y(t) = 2(t) + A*(x| D)
or with f=F(%)

(2.4) o) =30 + [ fls, 0] 9), < -, 4] 9)]as

Then for any given xEC,, y defined by (2.3) belongs to C,. The question
here is under what restrictions on F!, F?, - . ., F» the equation (2.3) has a
solution x&€C,, for every or for almost every y& C,. Before we answer this
question we quote a uniqueness theorem for solutions of (2.3) in the following
remark. For the proof, the reader is referred to [1, p. 145].

REMARK 1. Let F'(¢, u), F*(¢, u, v1), - - -, F*(t, u, vy, + - -, va1) and their
first derivatives with respect to #, v, - + -+, v,_1 be continuous on [(®R,.
Then if x; and x;, both belong to C,[0, t] and satisfy (2.3) for a given
yECw[O, to], X1 =Xa.

3. An everywhere-type existence theorem for solutions of Volterra func-
tional equations.

THEOREM 1. Let FU(¢, u), F2(¢, u, 1), + - -, F*(¢, u, vy, + - + , vu_yr) and their
first derivatives with respect to u, vi, + -+, oy be continuous on IQRy,
(k=1,2,---,n), and let F', F?, - - - | I'" satisfy

k—1 k—1
tl"k(t)uale tet )1'/0—1)! = A{l + E Ivil} log {2+ Z Ivjl}
(.1) =0 =0

anI@Rk,(k=1,2,"'»”)(5),

for some positive number A. Then for every y&ECy, the Volterra functional
equation (2.3) has a solution x & Cw. Moreover the solution is unigue in Cy.

The proof of Theorem I is based on Lemma 3 and Lemma 4. Lemma 3 is
based on Lemma 1 and Lemma 2.

3.1. LEmMMA 1. Let F!, F2, - - -, Frbe continuouson IQ R, (k=1,2, - - -, n)
and absolutely continuous with respect to each of u, vy, « + =, Vo_1. Let the first
derivatives of F!, F2, - - -, F» with respect to u, vy, « + + , vy exist everywhere

(*) Later, in §§5-6, as in [1], the notation F» will mean a function other than the nth in
the succession F!, F?, - - - . For the latter, the notation f will be used.
(5) We use v, for u.



1960] NONLINEAR VOLTERRA FUNCTIONAL EQUATIONS 411

except on a finite number of hyperplanes of the form v;=const. where the right
and the left hand derivatives exist, and satisfy

k
IF?(t;uyvl)°°';'vk—l)I = M, (j=0:1,2""’k_1)}

(3.2) (k= 1, 2)"'”)7

where the M’s are positive constants and F} stands for dF%/dV;. Then there exist
positive constants By, By, - - -, By, such that for any x1, x:E Cy,

| A%(ar | ) — A¥(xz| 8)| < By f ‘I wi(s) — xa(s) | ds,
0

fort€L (k=1,2---,n).

(3.3)

Proof. We remark that if F(v) is an absolutely continuous function of the
real variable v and dF/dv exists everywhere except at a finite number of points
v where the right and the left hand derivatives exist, and is bounded by M,
then

| F(vs) — F(v)| < M|vs — w].

From this remark, (3.3) holds by complete induction on & with B;= M}
and in general Byyi= MY+ MYV'Bi+ .. . + M¥"'By for N=0, 1, - - -,
n—1.

At this point we make the following observation which will be needed
later.

REMARK 2. Suppose F!, F2, . . .| F» satisfy the conditions in Lemma 1.
Then if for some y&C[0, 1], there exist x1, x:EC|0, t,] with $ =<1 which
satisfy (2.3), it follows that x,(f) =x.(¢) for t& [0, t,].

Proof. With (3.3), Remark 2 can be proved exactly in the same way as
Remark 1.

3.2. LEMMA 2. If FY, F?, - - - | Frare continuouson IQR, (k=1,2, - - -, n)
and {x,,(t) } is a sequence of functions which are continuous on I and converges
to a function x(t) uniformly on I, then
(3.4) lim A*(x,| 1) = A¥(x| &) uniformly inton I, (k=0,1,2,---,n).

P

Proof. From the fact that F* is uniformly continuous on I ®.S; where S;
is a closed rectangle in Ry, the conclusion of the lemma follows immediately
by complete induction on k.

3.3. LEMMA 3. Let F*, F?, - - - | F" satisfy the hypothesis of Lemma 1. Then
for any y& C,, there exists a unique element x of C, which satisfies (2.3).

Proof. Let y&C, be given. Let us define a sequence of functions {«,(t)}
on I by
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(3.5) Zora(l) = 3()) — A(x,| 1), (#=01,2--+)
with xo=y. Clearly x,&EC,, for p=0,1, 2, - - - . By (3.5), (3.3) and an induc-
tion on p, we obtain

b(B.t)?
(3.6) | 2p11(t) — 2,(0) | < o fortel,p=012---,

where b=max | F#| on the bounded closed set I@I®®IV® - - - @D
and

I® = {9, € Ry| min A*(y|f) £ v < max A¥(y|0)}.
el el

By (3.6) and by Cauchy’s criterion, {x,} converges uniformly on I to
an element x of C,.
This x is a solution of (2.3), for

(1) = lim x,(0) = y()) — A™(x] 1)

by (3.5), (3.4). The uniqueness of this solution is from Remark 2.

3.4. LEMMA 4. Let F', F?, - - - | Frbe continuouson IQ R, (k=1,2, - - -, n)
and satisfy (3.1). For a given xEC,, define y& Cy, by (2.3). Then there exists a
positive number B, independent of x, such that(®)

(3'7) ”lAk(x't)“I = B{1+I|y”8}y (k = 1: 2: t "”)7
where ||y|| is the Hilbert norm of y, i.e. ||x|| = { [3[x(t)]2de} 12
Proof. Let x& C,, be given and let y&C,, be defined by (2.3). Let

(3.8) wo(t) = y(1) — 2(t) = A"(x| ),

(3.9) w(l) = A*(x] 1), (k=1,2,---,n—1).
Then by (3.8), (2.2), (2.1), (3.1) we have the following estimate for wo(¢);
(3.10) | wo()| = 4 {Y(t) +3 W,-@}

where

610 ¥ = [1+ 6+ ] 50| g2+ 6+ D] 5] Jas,
0

3.1y THO= fot{l + o+ D] w) [} log {2+ (n+ D[ w(9)| Js,

(k=0,1,2---,n—1).

(%) We define |||*|]| =max.er | ()| for any function x(¢) defined on ¢t & I.
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By (3.11), (3.12), Y (@), Wi(), (=0, 1, 2, - .., n—1) are positive and
monotonically increasing functions of ¢ on I. Similarly from (3.9), (2.2), (2.1),
(3.1) we obtain

619 lwo] = 4{ro > WO, k=121,

=0

We now proceed to eliminate Y (¢), Wi(¢) from (3.10), (3.13) by estimating
first Wi(f) by Y(f) and then Y(¢) by ||y||. Let Yo(t)=|||¥]|| = ¥(1)(). Then
by (3.12), (3.10), (3.13)

dV[;,;(t) < {1 + (n+ 1)A(Yo + g Wj(ﬂ)}

tog {2+ s+ D4 (Yo + 3 W,-(o)}

=0

for k=0,1, 2, : - -, n—1. From the above n inequalities

(n+ 1)4 %{ > W,,(t)} {z Fn—14 (yo + 5 W,,(t))}_l

k=0 k=0

log {2 + (414 (yo + 5 Wk(t))}_l < n(n+1)4

k=0

and upon integrating with respect to ¢

log log {2 +(n+1)4 (Yo + "f Wk(s)>} fot < n(n + 1) At,

k=0

and then from the fact that W;(0)=0, (k=0,1,2, -, n—1)

n—1

24+ (n+ 1)A<Yo + > Wk(t)> = {2 + 4+ 1)4 Yo}"’

k=0

with B;=exp {n(n+1)A} and finally
1

3.14 Wi(t) £ —— {2 DAY, B = —
( ) k()—(n_'_l)A{ +(”+) 0} , (k 0y1:2; yn 1)-

By (3.11) and the fact that log (14+u) <% for «=0 and Iy(t)| §1+|y(t)|2
on I,

(3.15) Yogfo{1+(n+1>|y<t>|}2dt§3<n+1)2(1+llyllz),

and from (3.14)
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Wi(t) < _ {243+ 1340+ |y}®, *=0,1,2,---,n—1).
= (n—l— I)A ) ) ) ) b

We may assume without loss of generality that 4 =1. Then since n=1, it

follows that B;>1 and

1
@w)mwéa:BZHW+UMLWﬂﬂ‘@=QL%~wn—n

Then from (3.10), (3.13), (3.15), (3.16)
)] = 3004 0240+ (5D + = {460+ DA} + ol

(k=0’172""’n—1)

and from the fact that (n+1)24>1 and B;>1, it follows that 3(n+41)24
<(n+1)"1{4(n+1)34}5* and hence

| we(®) | = {4(n + 1)34}2:(1 + [|5]|%)2, (k=0,1,2,---,n—1).
Also from the fact that By>1, we have (1+||y||2)Br<28:{1+]|y||>5+} so that
[ we()) | < {8(n + 1)24}E:{1 + ||5]|221], (k=0,1,2,---,n—1).

If we let B=max {{8(n+1)34}5, 2B}, then
lwe)| = B{1+]]s]]}2, *=01,2---,n—1).
3.5. Proof of Theorem I. Let y&C, be given and let
(3.17) § =B+ 5 + llisll

where B is a positive constant specified in Lemma 4. Let us define a sequence
of functions F'*(¢, u), F**(t, u, v1), * + -, F**(t, u,v1, - - -, va1) by stipulating
that for k=1, 2, - - -, n, F¥* is defined to be equal to F* if lvjl < .S forall
j=0,1,2,---, k—1, and if 9;,>S or v;,<-=S, - -+, v;,>S or v;,<—S
where m isany of 0, 1,2, - - - ,k—1, F** is defined to be equal to the value of
F*(t, u, v, - -+, k1) with v, -+ -, v, replaced by S or —S. Then
F¥* (E=1, 2, - - -, n), satisfy the hypotheses of Lemma 3 and hence there
exists x &€ C,, such that

y(0) = a(t) + A™(x] 9

where A"*(xlt) (=0, 1, 2, - - -, ) are defined by (2.0), (2.1), (2.2) with
F¥* (k=0,1,2, -+ -,n). By Lemma 4 and (3.17)

|”x”| =5, |”Ak*(x| t)l” =5, (k=1,2,---,n— 1).

Now since F* are identical with F** on Ivj] <Sforj=0,1,2,---,k—1and
kE=1,2,.---,mn, A"*(x[t) =A"(x|t) for t&I and k=0, 1, 2, - - -, for our x.
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Thus our x satisfies (2.3). The uniqueness of this solution x follows by Re-
mark 1.

4. Another everywhere-type existence theorem for solutions of Volterra
functional equations.

THEOREM II. Let F(¢, u), F2(¢, u, »n), - - -, F*(t, u, v1, - - -, Vo_1) and
their first derivatives with respect to u, vy, , Vo1 be continuous on
IQRy (k=1,2, -, n)and let F* satisfy the condition
(4.1) Fr(ty uy 01y« + ¢+ y0p1)sgnu = — A anI ® R,

where A is a constant. Then the Volterra functional equation (2.3) has a solution
x & Cy for every y&E Cy,. Moreover the solution x is unique in C,.

Theorem II is based on Lemma 7 which is based on Lemmas 5 and 6.

4.1. LEMMA 5. Let F', F?, - - - together with their first derivatives with re-
spect to u, v1, v, + - - be continuius on IQR, (k=1,2, - - - ). Let a and b satisfy
0=a=b=1, let £(t) be an arbitrary continuous function defined on 0=t=<a and
let U be an arbitrary constant satisfying U= !E(a)l. Let M(a, b, &, U) be the
totality of functions x(t) defined and continuous on 0=t =<0b and satisfying

4.2) x(t) = &@) om0 =t =a,
(4.3) |=(t)| = U oma<1tsb.
Then there exists a sequence of constants By, Bs, - - - such that

(4.4) | A¥(xo| ) — A*(x| )| = kall xa(s) — m(s) | ds, (B=1,2,--+)

hold for all t in a Zt=<b and any pair of elements x1, x2 of M.

We remark that the conclusion of Lemma 5 follows by complete induction
on k using boundedness of dF*/dv;.

REMARK 3. Consider M(a, by, &, U) and M(a, by, &, U) with 0=5a <550,
=1. If By, By, - - - is a sequence of constants with which (4.4) holds for all
tin a £t b, for any x1, x: EIM(a, by, £, U), then (4.4) holds with this sequence
for all ¢ in e £¢t<b, for any x1, xo:EM(a, by, &, U).

4.2. LEMMA 6. Let F, F?, - - - | F* and their first derivatives with respect to
U, 01, + + -, Vny be continuous on IQRy (k=1,2, - - - ,n). Leta satisfy0<a <1
and let £(t) be an arbitrary function defined and continuous on 0=<t=<a. Then
Sfor any function n(t) defined and continuous on a <t <1, there exists a function
x(t) which is continuous on 0=t=b for some b such that a <b=<1 and satisfies

4.5) x(t) = E@) om0=1=a,

(4.6) 2(0) — n(a) = x(t) — x(a) + [A"(x] 5)]. Jorasit=,
where
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[A"(x| S)]; = A"(xl 5 — A"(x| a) =f F'[s, Ao(xl 5), v, An_l(x‘ s)]ds.
Proof. We define a sequence of continuous functions {x,,(l)} on 0=t=1
by
(+.7) xo(t) = §(1), on0=t=a, x() =%0a) ones=t=1
xp(8) = £(1) on0<t=<a, (p=1,2,---),
xp(t) = xp(a) + (1) — n(a) — [A(xp1] s)]f,
onea=t=1,(p=12---).

(+.8)

To prove that {x,,(t) } converges uniformly on e £¢<b for some bon a<b=1,
we prove that for a suitably chosen b in the above interval

pr

Bt M

(4.9) | 2pa(t) — 2,(1) | = ,,!

fora<t<0b,(p=0,1,2,---),

where B,, M are non-negative numbers.

To do this let U be an arbitrary positive number satisfying U>|£(a)
and let b; be such that a <b; =1. Then according to Lemma 5, there exists a
constant B, such that

(4.10) | Ar(x] ) — A*(xm| O)| < B f l | 2:(s) — 2n(s) | ds

for all t on a £¢<b; and any pair x;, x,ESM(a, by, & U). Let 8 be a variable
with the domain a £B=b; and consider the continuous function of 8, ¢(8)
=MaX,g:5p le(t)—ﬁ(a)|. From the continuity of x;(¢) on I and from x(a)
=§£(a), we have limg_.., ¢(8) =0. On the other hand since U> E(a)| , we have
{ U—|£(a)| } /exp { B.} >0. Therefore there is a number b such that a <b=<b,
and

(4.11) M=¢®) = {U— |ta)]}/exp {B.}.

With this number b consider M(a, b, £, U). By Remark 3, the inequality
(4.10) holds with same B, for all t on ¢ £¢ < b and any pair x;, x.EM(a, b, &, U).
Now we prove (4.9) by complete induction on p. When p =0, (4.9) holds by
(4.7) and the definition of M. Assume that (4.9) holds for p <gq. Then for any
p=¢, by (4.11)

k k

» B
| #p1(t) — £@)| = M X

nl
k=0 k!

S Mexp{B,} SU— |&a)]|, fora<t=b

so that lx,,.H(t)l S U for a<t<b and in particular for p=g—1, ¢, |x,@1)],
|xq+1(t)| < Ufor a=<t=<band hence x4, x+-1EM(a, b, &, U). Then for p=g+1,
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by (4.8), (4.10) and the induction hypothesis, (4.9) holds. By complete in-
duction on p, (4.9) is now established. Then by Cauchy’s criterion, x(¢)
=1im, .., x,(f) exists uniformly on a <¢<b. By the definition of {x,(t)}, x(f)
is continuous on 0=¢{=<1 and x(¢t) =£(¢) on 0=¢=a. Also by (4.8)

2(t) = lim x,(f) = 2(a) +n(t) — 9(a) — [A"(x| 5)]s ona <t =b,
p—w

where the passing to the limit of p under the n—1 integral signs involved in
A"(xlt) is justified by the uniform convergence of {x,(t)} and the con-

tinuity of F!, F?, . . ., F* according to Lemma 2.
4.3. LEMMA 7. Let F', F?, - - -, F™ and their first derivatives with respect
to u, v1, * * *, Uy be continuous on IQR, (k=1, 2, - - -, n). Then for every

yE Cy, the Volterra functional equation (2.3) either has a solution x&EC, or
else it is satisfied by a function x.(t) which is defined and continuous on some
interval 0 St <t, with 0<t, =<1, vanishes at t=0, and becomes unbounded as t
approaches t., from the left.

Proof. Let y& C,, be given. Suppose there does not exist an element of C,
that satisfies (2.3) on I for the given y. We prove the lemma by constructing
X,(t) by applying Lemma 6. We shall construct a solution on an interval
[0, #,] with 0<#;<1 and then extend this solution on an interval [0, ;] with
5 <t;=1 and so forth. Since the number 4 in Lemma 6 is not unique, the
choice of t, #;, - - - at each step will not be unique. We shall use the super-
script « for a sequence of choices of ¢, t5. - - - .

Now let ¢=0 and £(¢) be defined on the closed interval =0 by £(0) =0
and let 7(¢) =y() on 0=¢{=<1. By Lemma 6, there exists a function x{(f)
which is continuous on some interval 0 <¢ <} with 0<¢f <1 and satisfies

6(0) =0, (1) = 2:() + [A" 1] 9] on0 <t <

We apply Lemma 6 again by setting a=1{5, £(¢) =x7(¢) on 0=¢=<¢ and %(t)
=9(¢) on 1 =t=1, and obtain a function x3(f) which is continuous on some
interval 0 =t <t5 with ¥ <f3 =<1 and satisfies

2a(t) = 21(8) on0 <t <4,
and
y(t) — y() = #50) — %) + [A"@G| )]s omu == 4

We repeat the application of Lemma 6. This process will not be terminated
since t=1 will never be reached as we shall see below. Now, in general
xo(t) is continuous on [0, #2] with 0<#f<t< + - - <t2 =<1, vanishes at x=0
and satisfies
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(4.12) x1(0) = 0, w(t) = ax-1(f) on [0, 1] for k= 2,3, -+ -, m.

y(t) = &) + [A"@T] 9)]o onl0, £1],
(4.13) y(t) — y(iar) = 2(l) — mlly) + [A @] 9],
on [t:_l, t:] fork=2,3,:---,m.

To show that x2(t) satisfies (2.3) on [0, 12] we set, for any k<m, t=t1, by, + - *,
ti—1 respectively in the first k—1 equations of (4.13) and add these k—1 equa-
tions and the kth equation of (4.13) side by side. Thus we see that xj(¢)
satisfies (2.3) on [, 5] for E<m and then, since x,.(¢) =xx(t) on 0t <t
for k<m, x%(t) satisfies (2.3) on [0, t]. From this it follows also that #2>1
for any positive integer m and the sequence {xf‘n(t)} is an infinite sequence.
Now since 0<5<ts< - - - <1, let % =limp., t5=<1. We now construct a
function x%(#) which is continuous on [0, t%), vanishes at =0 and satisfies
(2.3) on [0, t%). For any 7€ [0, %), there is a positive integer M such that
151 <7 =t3. Then x% (1) =x%41(7) =x512(1) = - - - . Let x%(7) be this value
which is independent of m for m= M. Then a function x%(¢) is uniquely de-
fined on [0, £2). Since x%(t) =x2%(t) on [0, t2] for all m, x%(¢) is continuous on
[0, t2), vanishes at =0, and satisfies (2.3) on [0, %).

Now consider the collection {x‘f;(t)} each of which is constructed in the
manner described above. Since ¢5, =1 for all @, let t,=sup. {5 = 1. To construct
a function x,(¢) which is continuous on [0, ¢,), vanishes at t=0 and satisfies
(2.3) on [0, t,,). Let €0, t,). Consider all values of « for which 7 <t%. For
these values of «, the functions x%(f) are continuous on [0, 7], vanish at
t=0 and satisfy (2.3) on [0, 7]. Then by uniqueness of solution of (2.3) on
[0, 1'] according to Remark 1, the value of x%(7) is independent of «. Let
%X,(7) be x%(r) which is independent of « for such a that 7 <¢%. Then a func-
tion x,(t) is uniquely defined on [0, t,). It has the required properties.

To prove that x.(¢) becomes unbounded as ¢t approaches ¢, from the left:
Assume that x,(¢) =A°(xw[t) is bounded on [0, t.,). If Ak(xwl t) is bounded on
[0, t,) for E<N, it follows from the continuity of F¥+! on I® Ry,; that
AN+1(x,,| t) is also bounded on [0, t,). By complete induction on &,
A”(xwlt), (k=0,1,2, - - -, n) are all bounded on [0, t,). Let V be a positive
number such that

(4.14) | A¥(x| )| =V on0 =<t <t fork=01,2---,n.

Let the sequence of functions F**(¢, u, v, - - -, w1), (k=1,2, - - -, n) be
so defined that F¥*=F* if |9;] <V for all j=0, 1,2, - - -, k—1, for k=1, 2,

-, n and beyond the above k-dimensional rectangle F** is continued as
constant in the way F** was defined in the proof of Theorem I. The sequence
of functionals A"*(x|t), (k=0,1,2,--+-, n) is constructed with
Fe* (k=1, 2, - -+, n) by (2.0), (2.1), (2.2). Then x,(¢) is a solution of y(¢)
=x(t) +A**(x|£) on 0=t<{,. On the other hand, this modified functional
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equation has a solution #&C, by Lemma 3. According to Remark 2, x(¢)
=%(t) on [0, t,,). Let us now extend x,(t) to t=t, by defining x,(t.) = %(tx)-
Then x,(t) satisfies the modified functional equation on [0, ¢,]. Now since
(4.14) holds not only for [0, t,,) but also for [0, t,], x(f) satisfies (2.3) on
[0, tw]. Thus if t,=1, we have a solution x,&EC, for (2.3), which is a con-
tradiction. But if ¢, <1, then by applying Lemma 6 we can extend x,(t) be-
yond ¢, which contradicts the definition of ¢,. Therefore x,(f) must become
unbounded as ¢ approaches f, from the left.

4.4. Proof of Theorem II. Suppose that for some y&C, there is no
xE C, that satisfies (2.3). Then by Lemma 7, there is a function x(¢) which
vanishes at ¢=0, is continuous and satisfies (2.3) on some interval 0=t <¢,
with 0<¢,=1 and becomes unbounded as ¢t approaches ¢, from the left.

If x(¢) is such that x(¢) >0 on some interval £, <t <t., then by (2.3), (2.2),
(2.1), (2.0), (4.1), y(&) —y(to) =x(t) —x(te) —A(t—to) for ty<t<t,. Similarly,
if x(¢) <0 on ty<t<t, then y(t) —y(to) Sx(t) —x(to) +A(t—to) for tr<t<ie. In
any case y(f) becomes unbounded as ¢ approaches {,, from the left. This con-
tradicts the continuity of y(¢) at £,.

Let us assume that for any ¢, satisfying 0 <ty <¢?,, there is always a point ¢
such that ¢y <t<t?, and x(t) =0. Let {tm} be an increasing sequence of points
such that lim,,., tn=1£, and x(¢,) =0. Let ¢}, be so chosen that ¢, <?, <!f, and
| x(t)| =Zm. Let #.! be the least upper bound of all points between t. and tj
at which x(¢) vanishes. Then x(¢) %0 on {,, <{=t, and x(¢,,) =0 by the con-
tinuity of x(¢). Now if x(¢) >0 on ¢, <t <t/,, then y(¢,») =m and by (2.3), (2.2),
(2.1), (2.0), (4.1), y({tw) —yE)Zm—A(tm—t,). Similarly if x(¢f)<0 on
by <t = ththeny(th) £ —mand y(th) — y(t) = —m + At — t,)). Since
liMp oy tn=liMp . b =1, the two inequalities contradict the continuity of
y(t) at t,. This completes the proof of Theorem II.

5. Relationship between the functional equations and the differential
systems. Let A, be the triangle 0 <s=<t=t, and I, be the interval 0 =<t=¢,
and let J(¢, u), J2(t, u, v1), - - -, J*(t, u, vy, + * -, Vo—1) be defined and con-
tinuous on I[,®R, and y(¢) be defined and continuous on I,. Then let the
functionals QF, Wk, F* &k A* be defined by

(5.1) 9°(y| s, 8) = 9@ — 3) on A,.
(5.2) \I/"(yl S, 4w, vy, ) = JE[s, 00 4+ QO - - -, my + Q61
ODAo@R}c,(k= 1,2,' -‘,n).

t
(5.3) Q"(yls,t,u,vl,---,vk_l)f\If(p)dp ondo® R, (k=1,2, - -, ).

Fk(t’7 u/) vl’) Sty vk’—l, t’ Uy V1y * * vk—l)
(5.4) = tJ[(1 — ), u+ 0% vy + of - - -, vy + viy],
(k=1,2,---,mn).
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(x| )t uy vy - v, ) = I {t”?xl:%l]l a- t')t} ,

(5.9)
(k=1,2,---,n).
K"(x| Uity vy - o e, mey) = QF {l”zx[—(—'—)]l - t’)l} ,
(5.6) ¢
(k=1,2,---,n).
(5.7 Aox| ¢, 8) = «(@t)).

We quote results of [1] in the following remarks.

REMARK 4. If we regard the variables ¢, u, vy, - - -, v,y in F*, &, A* as
parameters, then the recurrence relationships (2.0), (2.1), (2.2) hold for
F*, &, A* with the variables ¢, u/, o{, - - -, v,/1.

REMARK 5. Let JU'(¢, u), J2(¢, u, v1), -+, J*(t, u, v, -, Vo_q),
L(u, vy, - - -, va1) and the first derivatives of J?, J2, - - - | J*~! with respect
to u, vy, + -+ +, Vs be continuous on I[,®R,. Let F* &, A* be defined by
(5.4), (5.5), (5.6), (5.7) with J1, J2, - . - | J= let G be defined by

G(t,: u,) 7)1,) S} 'un’—l’ b, vy, 0, vn—l)
=0[(1 — ), u+ 0%, 0+ v, - - v vay + vl

for 0=¢' =1 and v/ (j=0, 1, 2, - - -, n—1) unrestricted, and finally, let g, f
be defined by

(5.8)

1 ~
5.9 g, w,vi,- -, 0i_) = — ?log GW,u, v, --,v_1) onl ® R,.

(5.10) f(t',u' vl - -+, vly) = @u onl @ R,.

Then by Remark 4 and [1, Theorem 1], the transformation
‘f

(5.11) y0) = ) + [ ]I, K, <, Ber]as, ver,
0

maps Cy in a 1-1 manner into a Wiener measurable subset T of C,. Further-
more if there exists a positive solution 8 of (1.1), (1.2) such that all its first
derivatives and the first derivatives of 6, with respect to v, vs, - + -, v,
are continuous on I[,®R,, then

0(!, Uy, V1, = 0y v"*l)mw(r)

5.12
o B fc exp {27(0)} L[vo + %0), - - -, vasy + 271(0)]duy

on Iy@R,.
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6. Minimality theorems. 6.1. A minimality theorem derived from Theo-
rem I.

TuaEOREM II1. Let J*, J2, - - -, J*, L and the first derivatives of J*, J%, - + -,
J»t with respect to u, vy, - + -, Voo be continuous on Iy QR,. Let J, J2, - - -,
J*=1 satisfy the order of growth conditions

I JEt, u, vy, - ¢ 0 D) I
k—1 k—1
6.1) §A{1+E|vjl}log{2+zlvj|} on Iy @ Ry,
J=0 J=0
k=1,2,---,n—1)
where A is a positive number. Suppose that there exists a positive solution 0 of

(1.1), (1.2) such that all its first derivatives and the first derivatives of 0, with
respect 10 vy, vy, -+ + , Un_y are continuous on Is®@ R, and furthermore

0“ S Uy U1y * 0 0y U n—1 n—1
|0ty -, ‘)IgA{1+Elvf|}1°g{2+Zl”"|}
=0

(6.2) 00, u,v1, * + +, Vn_1) =0

on Iy @ R,

then it follows that 0 is the minimal positive solution with continuous first deriva-
tives of (1.1), (1.2) on I,@R,.

Proof. We prove that for any given point (¢, #, v1, * + +, Ua1) ELLQR,,
mo(I)=11n (5.12). Let A’ Zmax {1, log (14 (t)"2)}. Then from (5.4), (6.1)
l F‘k(l" u'7 vl’r Tty 'vk,—ly t: Uy, V1y * 'vlc—l)l

k=1 k=1
< b1+ ()1 4 {1 + 20 [ul + 2|0 }
=0 j=0

-log {(1 + (t)'?) (2 + kil [ o] + g | of | >}

j=0

< 2(1 + (to)”z)AA’{l + i | 2] + i | o |}

k-1 k—ll-o a
olog{Z-l-?-%lvjl—l—j-Eo[v}]}: (k=1,2,-++,n—1).
Let us remark that for any two real numbers a and x
(t+ |a| + |2[)log @+ [a] + |=])
(6.3) <41+ |x])log @+ |2]) + (1 + 2| a]) log 2 + 2] a])
<4[t+ (1 +2]a|)log@+2|aD]A+ |x])log 2+ | =]).
Then
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| F*| < 8io(1 + (t)2) AA AL (s, 01, -+ + 5 24

6.4) {1+§|v;|}log{2+§|””}

j=0
where
k—1 k—1
A (w01, - - v ) = 1+<1+ 23 Iv,-l)log(Z-l— 23y |v,-|>,
(6-5) j=0 Jj=0
(k=1,2,-+,n—1).

Also from (5.10), (5.9), (5.8)

6.6 7 1 0129, [(1 — ), w4 0120 o+ ol - - -, Vet + 9]
' 2 01 = w4 2 o o, v + vl

and by (6.2), (6.3)

|f~(l,7 ul7 ‘1)1’, Y vn,—l; l; Uy, V1, * " "y vn—l)]
< 40021 + () AATAL (uy vy, - - - Bu)
(6.7) n—1 n—1
Jr+ Sl 1o {2+ Z 111
=0 =0
where A,/ (, v1, - -+, va21) is defined by (6.5) with k& =n.
By (6.4), (6.7), the functions F*, f* of the variables ¢, u’, v/, - - -, v/

satisfy the conditions of Theorem I for any given parametric values ¢, %, vy,
-, v,—1and according to the conclusion of Theorem I, the transformation
(5.11) maps C, in a 1-1 manner onto itself so that m,,(I') =1 in (5.12). Since
t, u, v, +++, v,1 are arbitrarily given, m,(I')=1 holds on I,®R,.. By
[1, Theorem 4], the proof is completed.
6.2. A minimality theorem derived from Theorem II.

LeMMA 8. Under the hypothesis of Remark 5 on J*, L and 0, assume further
that there are numbers t* S 1y and u* &R, such that for some constant A

Oult, w* + Au, vy, - - -, Vo
(6.8) [ + A4, 0 d sgn [Au] £ 4
0t, w* + Aw, vy, - - -, vai)
holds for 0S¢t <t* Au and v; (j=1, 2, - - -, n—1) unrestricted, then m,(I') =1
in (5.12) on the set [0, t*]®@ {u*} @ R,_1.
Proof. For 0<¢<t* Au and v; (j=1, 2, - - -, n—1) unrestricted, we have
from (6.6), (6.8)
- 1
f(t,7 u,7 1)1,, MR 'uﬂ,~l) L u*) Uy * " " vﬂ—'l) sgn w = —2— (t*)lle

for (¢, u', v!, - - -, v/ ) EI®R,. Then for the parametric values in the set
P
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[0, t*]® {u*} ® Ray, the functions F', F?, - - -, F*1, fsatisfy the conditions
of Theorem II and according to its conclusion, the transformation (5.11)
maps C, in a 1-1 manner onto itself so that m,(I')=1 in (5.12) on the set
[0, t*]® {u*} ® Ru-s.

THEOREM IV. Let Jt, J2, - - -, J* L and the first derivatives of J*, J2, - - -,
Jn1 awith respect to u, v1, + + +, Un—2 be continuous on I¢@R,. If n>1, let
JY, J2, - - -, Jo 1 be pervasive(?) in Io. Suppose that there exists a positive solu-
tion 8 of (1.1), (1.2) such that all its first derivatives and the first derivatives of 0.
with respect to v1, vz, - - - , Un— are continuous on Io®@ R,. If for some constant A,

Oull, w,v1, + + +, Vn—
(6.9) L, 2, i)

sgnu < A on Iy ® R,
0[t,u,v1,~-- ’0,,_.1] g 0 ’

then 0 is the minimal positive solution with continuous first derivatives of (1.1),
(1.2).

Proof. If (6.9) holds then (6.8) holds with t*=¢,, #*=0 and by the con-
clusion of Lemma 8, m,(I')=1 in (5.12) on the set I,® {0} ®R,—1. By
[1, Theorem 6] the proof of the theorem is completed.

6.3. Another minimality theorem based on Theorem II.

LEMMA 9. Under the hypothesis of Remark 5 on J*, L and 6, assume further
that there is a non-negative number A such that

| 0,,[1, w01, -+, v,._l]] <

(6.10) =4 on Iy ® R,

0[!, Uy V1y * * 0, vn—-l]
then my(T) =1 1n (5.12) on [,QR,.
Proof. If (6.10) holds on Iy,®R,, then from (6.6)

- 1
|f(t,7 uly vl’y T vn,—ly bty V1, e e, 'Un—l)l = "2“ (to)llQA onl ® Rn,

for (¢, w, vy, * + * , UVa1) EI4®R,. Therefore F!, F?, - . - | F» 1 f satisfy the
hypothesis of Theorem II for any choice of the parametric values ¢, »,v,, - - -,
V-1 in [y® R, and by the conclusion of the theorem, the transformation (5.11)
maps C, in a 1-1 manner onto itself so that m,(I") =1 in (5.12) on [, @R..

THEOREM V. Let Jt, J2, - - -, J", L and the first derivatives of J', J2, - - -,
Jn=1 with respect to u, v1, - - + , Un—g be continuous in Iy R,. Suppose that there
exists a positive solution 0 of (1.1), (1.2) such that all its first derivatives and the
first derivatives of 0. with respect to vi, va, * + -, Vn_1 are continuous on I,@R,.
Then if 0,/0 is bounded on IyQ@ R.,, it follows that 0 is the minimal positive solu-
tion with continuous first derivatives of (1.1), (1.2).

(%) See [1, p. 162].
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Proof. By Lemma 9, m,(I') =1 in (5.12) on I,®R,. By [1, Theorem 4],
the proof of the theorem is completed.
7. A uniqueness theorem for solutions of the differential system. Let the

functions H* and the functionals H* (k=1, 2, - - - ) be defined by
k—1

(7~1) Hk(A; B, M; € Uy Vyy * * 0y vk~—l) =4 exp{Bl u|2—e} H {1 + I vil }M7
=1

(7.2) I?"(yl A,B,M,e,u,v1, - - -, t—1) = HFexp {B max | y(p) Iz“}
pGIO

where 4, B, M>0, 2>¢>0, y(p) is continuous in p& I, and it is understood
that when k=1, the product []%Z}is equal to 1. The notational convention
for order of growth conditions involving H* is that J*(¢, u, vy, - - -, Ve—1)
<H*A, B, M, €) would mean that J* is bounded by a function H* of the
type (7.1) with the specific constants 4, B, M, € on [,®R, whereas
JE(t, u, vy, + ¢+, Uk—1) = H* would mean that J* is bounded on I,®R, by a
function H* of the type (7.1) with unspecified constants.

For a function L(u, 91, - * + , v,-1) defined on R,, let its “translation trans-
form” T7L be defined by

(7.3) TiL = exp { Q) Llvo 4+ Q9 - -+, 00y + 0 duy 0 S s S LS 1o,
C,[0,t—3]

provided it exists, and for ¢=s

(7.4) T.L=1, for s € I,.

T:L defined in this fashion with given J, J2, - - -, J* by (5.1), (5.2), (5.3) is
a function defined on I, ® R,.
We quote [1, Theorem 8] on which our uniqueness theorem, Theorem VI,

will be based.

THEOREM 8 OF [1]. Let JY, J?, - - -, J*, L and their first and second deriva-
tives with respect to u, vy, - - - , Va_z (except possibly for Ji,) be continuous and
satisfy in Io@ R, the order of growth conditions

|/ =8 | =B =1,2,--,m,G=01,--,n—1),
IJ’:iléHk) (k=1;21"°’”)7(i=1’21"',”'_'1))
G=0,1,---,n—1).

(7.5)

(7.6) Jn < log H™.
(.n |L| £HY |Lj| £HY |L;| <H, (,j=0,1,- -, n—1).

Then the function 0(¢, u, v1, - - -, V1) defined by 0= TL is a solution of the
differential system (1.1), (1.2) and has all its first derivatives continuous on
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Iy®R,.. Moreover if L >0 throughout R,, 0 is the minimal positive solution with
continuous first derivatives throughout I, Q@ R,.

REMARK 6. It is proved on [1, p. 167] that if J%, J2, - - -, J» and their
first derivatives are continuous and satisfy (7.5), then

(7.8) | v < &% || = B (k=1,2,--+,n).
7.1. THEOREM VI. Let JY, J?%, - - -, J™ and their first and second derivatives

with respect to u, vy, + + -, Vay (except possibly for Jy,) be continuous and satisfy
on IyQ@ R, the order of growth conditions (7.5) and let J* further satisfy

(7.9) | J»| < log H" on Iy ® R,.
Then if 0 is any solution of the differential system (1.1), (1.2) with continuous
Sfirst derivatives on I,Q R, such that
(7.10) lo| = a" on Iy ® R,
1t follows that 0 is unique.

The proof of the theorem is based on the following lemma.

LeMMA 10. Let JY, J2, - - -, J" and their first and second derivatives with
respect to u, v1, - - -, va_y (except possibly for Ji,) be continuous and satisfy on
I,®R,

| J*| < H'4,B,M,9), (k=1,2,---,m),
7.1y |J;| S H(A,B M, =12 ,n),G=01-,n—1),
|75 < B (4, B, M, 9, (k=1,2,--,n),G=1,2-+,n—1),
(j=0,1,---,n—1).
(7.12) | J»| < log H™(4, B, M, ¢)
where A, B, M, € are such that (7.8) holds with them and besides A =1, and let
LX(u,v1y + + + y One1; My, Mo, - - -, M)
(7.13) = A exp { Bo(1 + u?)1-e/s} ﬁl {2 + o2}
j=1
where By is a sufficiently large positive number that satisfies
(7.14) Bo(1 + u?)=¢/8 = B(1 + | u]| )22 onu€ Ry
and .M,- (G=1, 2, .-, n—1) are parameters with positive values. Then the
function 0% =T}L* defined by (7.3), (7.4) is the minimal positive solution with

continuous first derivatives on Io® R, of the differential system consisting of the
differential equation (1.1) and the boundary condition

(7.15) 00, u, vy, + + + , Vpy) = L¥(0, v1, ¢ ¢ ¢, Vpy) on R,,
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for whatever positive values of M; (j=1, 2, - - -, n—1). Furthermore for some

values of M; (j=1,2,---,n—1)

(7.16) 9% > H"(Ao, B, M, &) with Ay > 0 on Iy @R,
7.2. Proof of Lemma 10. J', J2, - - -, J~ satisfy the conditions of [1,

Theorem 8]. L* has continuous first and second derivatives with respect

tou, v1, + - -, U1 and, since (1+u2)1—‘/6§(1+|u[)2"‘/3 for u&€R,, L* and

its derivatives satisfy the order of growth conditions of [1, Theorem 8] on L
and its derivatives. By the conclusion of the theorem, 6* is the minimal posi-
tive solution with continuous first derivatives on I,® R, of the system (1.1)

and (7.15).

From (7.3), (7.13), (5.7), (5.6) we obtain for t&(0, o], (u, v1, * - +, Va1)
ER,,
T?L* =4 exp {f Jn[P> u+ yt — p)y i+ QUP), -,y taa
¢y, [0,¢] 0

+ Qﬂ-l(p)]dp}

exp {Ball + [+ 3119} T {2 + [ + 2(0))2) ¥y,

=1

From Jr= —log H" according to (7.12), and (7.1)

5
(7.17) ToL* = A 11 Giduy
Cul0t] =1
where
t
(7.18) Gi(t) = exp {—-f log 4 dp} ,
0

(7.19) Ga(y|t,4) = exp {_Bfo |+ 9t — p) lHdp},

G3(y| by u, vy, ¢, 'vn—l)

7.20 n—1 t .
=10
(7.21) Gi(y|t, u) = exp {Bo[l + [ + 3(5)]2]1—6},
(1.22) Gyl by - - oucsy My -+, M) =IL {2+ [1 + 290) ]2} .

7.3. Lower bounds for Gi, Gy, G.
From (7.18) and from (7.21), by our choice of By according to (7.14)
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(7.23) Gi(t) = 1/ A,
(7.24) Gi(y| t, u) = exp { B| u + y(&) |>~</2}.

As for G, since |a+b|?<4{|a|>*+]|b|?} for any two real numbers a
and b and 0<e<2,

¢ ¢
(7.25) —Bf |u+y(t'—1))l2_‘dp_2. “4Btol‘u|2—‘—4Bf Iy(t.__p)P—edp.
0 0

Let us define

(7.26) [15llis = max | 5()].
0=P=8
Then
t
(7.2) —48 [ |5 = p)|"ap 2 — aBallyll}
]

and by (7.19), (7.25), (7.27)
(7.28)  Galy|t,u) = exp { —4Bts| u|"™} exp { —4Buf|||5]||:”}.

7.4. A lower bound for G;. For any two real numbers a and 3, 1+ | a+b|
<(1+]a|)(1+]8]) so that

_ f log [t + | v; + 2i(p) | Idp

(7.29) .
> log [1 + | o] ] — f log [1 + | 2i(p) | ldp.

Now according to our choice of 4, B, M, € in the statement of Lemma 10

(7.30) | @'| = B4, B, M, ¢ exp { Bll5ll|7Y, for y € C.[0, 1].

Then since 4 =1, B>0, the right hand of (7.30) is not less than 1, and from
the fact that log (1+a) <log 2+log a for a =1 we have

gy " f log [1+ | 2i(p) | lap

= — folog 2 — log [Hj(A, B, M, e)]'o— toB|]]],” .
From (7.20), (7.29), (7.31),
Ga(}’l bu, vy, e, vn—l)

n—1 n—1
(7.32) = TT[1+ o] ]™oexp {—(n — )Mt log 2} ] [Hi(4, B, M, )]0
j=1 i=1

exp { = (n — D) MuB|lylI[;}.
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7.5. A lower bound for Gs. For any two real numbers a and b, 2+4a?
21+|a| and 1+|a+b]| Z(1+]|e|)(1+]5]|)"* hold. Thus

(7.33) 24 [o; 4+ Q)2 = 1+ |v])d+ | 20)])
From our choice of 4, B, M, € as stated in Lemma 10,
(7.34) 1+ | 2] =284, B, M, 9 exp {B| 5]l }
From (7.33), (7.34), the fact that M;>0, (7.22)

Gs()" b %y 01y 0 0 0y Una, M,y -, M,._l)

n—1
(7.35) = [T {11+ || |Mi2-™i[Hi(4, B, M, ]}
i=1
n—1
e =85 wlil}
£

7.6. A lower bound for 77L*. Substituting (7.23), (7.28), (7.32), (7.24),
(7.35) in (7.17), we have

(7.36) ToL* > [ on(0, o] ® Ra,

where

(7.37) I =KG exp { B| u + y(t) |12} T'duy,

C,f0,t]

with
n—1

(738) K(Ml) MR Mn—l) = Al exp {—(71 - 1)Mlo IOg 2} H 2—M; > O,
=0

G(u) Uy 0 Un—1y Ml’ ) Mn—-l)

7.39 nl
T30 exp {—amto| wl=) TT {104 | | rrseelmsca, B, 1, 9]}
=1
2—e
(7.40) I‘(yIMly ° ')Mﬂ—l) = eXp{'_‘BII“yl”‘ }7
n—1
(7.41) By = 4Bty + (n — 1)MtB+ B Y, M; > 0.
J=1
So far the only condition on Mj, - - -, M,_1 has been that they be posi-
tive and as long as this condition is satisfied (7.36) holds. We now proceed
to choose such positive values for M, - - -, M,_; that the powers of

14|, -+ -, 14|vana| in G are all equal to M.
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7.7. Choice of values for the parameters M;, M,, - - -, M,;. From (7.1),
(7.39)

G(ui U1 ° 5 Un—1y Ml, tt Mn—l)

n—1
— A—(n—l)Mto{ H A—M,} exp {—B1l ulz—e}

(7.42) g1
: { I:I [1+ ]l ]M,._M,o} { I:IlI:I [1+ [ o] ]—M"PMM:‘} :

From (7.42), it follows that if we make the choice
M,y =M + M,
M. 2= M4+ Mto + M2+ MMy,
Mus=M-+4 Mo+ 2M*% + MM, 1 + MM, _,,

My =M+ M+ (o — D)Mo+ MMaoy + MMos + - - - + MM,

then M, - - -, M,_; are all positive and the powers of 1+|vl| , e, 1+|v,,_1|
in (7.42) all become M. From now on M, - - -, M, will stand for these
values. Now from (7.42)

G(u, V1, * * * Un—1y Ml; M) Mn—l)

n—1 n—1
= aemvwa T sl exp =l ul) TT 11+ [l o,

jem1 j=1

(7.43)

and from (7.37), (7.43)
—1

I=Kyexp | —B|ult} h (14 o] ]

=1

(7.44)
[ e (Blut s0 6]
Clo,¢]
where
n—1
(7.45) Ky = KA-&=0M0 [] 4-Mi > 0.
=1

It remains to estimate the Wiener integral (7.44).

7.8. Lower bound of the Wiener integral. Let us decompose the Wiener
integral I given by (7.44) into two Wiener integrals I+, I~ over the two
intervals C; [0, t], C; [0, t] of the Wiener space C[0, t] where

cilo, 1] = {y € C.lo, ]| yy 2 0},  C.l0,4] = {y € C.[0,¢]] y) <0},
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each with a measure 1/2. Then

(7.46) I =141, only ® R,
and from the fact that the integrand of I is positive

(7.47) I> 1, I>1I, on Iy ® R,.

We now proceed to give a lower estimate for I+ when #=0 and a lower
estimate for I— when # <0. Consider It. Since y(¢) in its integrand is non-
negative, |u+y(t)| =u for u=0 and

exp {B| u+ y(t) |2} = exp { B| |12}, for u = 0,
and consequently from (7.44)
I+ = Ky exp { —Bi| u|*}
7.48 o
T e sl T+ w11 [, 1], foru

i=1 Cyl0,¢]

(%
o

Since for B, B;>0 there exists a positive constant K, such that

(7.49) exp {B| u|*2} exp | —By| u|*} = Ksexp { B| u|>}, foru € R,

we have

(7.50) I+ = Kgexp {B|«|>} [T [1 + Iv,-|]Mf+ I'(y| )duy, foru =0

=1 Cyul0,t]

where K;=K,K,>0. In estimating the Wiener integral in the right side of
(7.50) we first write

1
asn [, rol =[Sl bolirel i

and then reduce the integral to one over C,[0, t] by using the transformation

formula(®)
f Flyldwy = F[(b - a)1/2xli(.) — a]:l dyx.
Cpla,bl C,l0,1] b—a

1
[ S+ bOITo! ey
c, 0.1 2

= fcmu —;— {1+ sgn [x(l)]?r[t”“’x(%)]dwx-

Then

From (7.40)
(®) See [3].
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G Ty

2 exp {—Bua ||}
where by definition |||x||| =|||*|||.. Thus

. TO| Dduy
(7.52) © %04

1—e/2

= fc o %{1 + sgn [«(1)]} exp { —Bito |||x|||2_e}dwx

Since fc 0.1 exp { B|||x]||2~¢} dw¥ exists as a finite number for any real number
B and 2>€>0 (*) the Wiener integral in the right side of (7.52) is finite. Let
us call it K,. Then from (7.50), (7.52), with Ky=K3K;>0

n—1
(7.53) I* =z Kyexp { Bl u|>} T] [1 + | v;] ]*, for u = 0.

j=1

As for the integrand of I-, since ¥(f) is negative, |u+y(t)| = || for u <0.
Following the same line of argument as for I+ we obtain

n—1
(7.54) I-z K{ exp { B u|™} IT[1 + | o] ], for u < 0,
Jj=1

where K{ =K;3;K{ and
1 — —¢
Ki= [ {1 sgnlx]} exp { =B alll "} dus,
cro,1) 2

a finite positive number. If we now let K¢=min {Ks, K{}, then from (7.47),
(7.53), (7.54)

(7.55) I > Kgexp {B| u|*} ﬁ [t+ |9]]* on(0, %] ® R..

From (7.36), (7.55)

(7.56) T\L* = Keexp {B| u|” } [1+|v,|]” on (0, {] ® R,.
j=1

J

If we let Ao=min {4, K4} then from (7.4), (7.13), (7.14), (7.56)

n—1
T.L* = Ao exp {B|u l“}H[1+|v,[]M on I, ® R..

j=1
This completes the proof of Lemma 10.
(®) See [4].
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7.9. Proof of Theorem VI. Let us assume without loss of generality that
the functions H* (k=1, 2, - - -, n) in the hypothesis of the theorem all have
the same constants A, B, M, 2—e which are so large as to satisfy the condi-
tion imposed on them in the statement of Lemma 10. Then for §*=T7L*
with L* defined by (7.13), the lemma applies.

Now assume that the differential system (1.1), (1.2) has two solutions
01, 0; with continuous first derivatives and satisfying (7.10) on I,®R,. Let
03=0,—0, on I,®R,. We show that 8;=0 on Iy®R,. Consider
(7.57) 0, = 60* + :4—0 0

. 4 L 2A 3.

4 has continuous first derivatives and satisfies (1.1), (7.15) on I,® R,. Since
0:, 8, satisfy (7.10), we have |8;| SH"(24, B, M, €) on I,®R,, Ao(24)7|6;|
<H"(A,, B, M, € and by (7.57), (7.16) we have 6,>0 on I,® R, for both of
the two signs in (7.57). Then since 6* is the minimal positive solution with
continuous first derivatives of (1.1), (7.15), we have 6,=6* on I,®R, for
both of the two signs in (7.57). This implies that 4¢(24)70;=0 on I,®R,
and hence 6;=0 on Iy®R,. This completes the proof of the theorem.
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