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Introduction. In this and another paper [4], partial answers are given to

two of the questions raised in §11.5 of [3]. Because the results in [4] hold for

a more extensive class of Lie algebras of classical type than those considered

in this paper, the two questions have been treated separately. Let 8 be a Lie

algebra over an algebraically closed field fi of characteristic p > 7 whose Kill-

ing form is nondegenerate, and let M he an irreducible restricted right

8-module. We shall give a computable sufficient condition on M in order for

Weyl's formula [9, p. 359], suitably interpreted, to give the dimension of M

over fi. The problem of calculating the dimension of M in all cases remains

unsolved. In the last section we obtain an upper bound for the dimension of

any irreducible restricted right 8-module, and from this result it follows that

Weyl's formula as we have interpreted it does not always give the dimension

of M.

1. Definitions and preliminary results. Familiarity with the papers [l;

2] and [3] is assumed. First we list some notations.

fi algebraically closed field of characteristic p > 7;

8 Lie algebra over fi whose Killing form is nondegenerate;

Tkf irreducible restricted right 8-module;

X* maximal weight of Tkf;

A= {«i, • • • , cti) a maximal simple system of roots of 8 with respect to

a fixed Cartan subalgebra § (see [2, p. 97]);

hi the unique element in [8_a48aJ such that at(hj) =2.

By Corollary 1, p. 107, of [2], A is a linearly independent set, and it

follows that hi, ■■-, hi is a basis of £>, so that X* is uniquely determined by

the vector (X*(hi), • • • , \*(hi)) with coefficients in the prime field fio of fi.

By the main theorem of [2, p. 104], there exists a semi-simple Lie algebra 8'

over the complex field with the following properties. Let &' be a Cartan sub-

algebra of 8'. Then there exists a one-to-one mapping a-*a' of the set of

roots of 8 with respect to § onto the set of roots of 8' with respect to §'

which is compatible with the operations of addition and subtraction defined

on the system of roots. If A'= {a{, ■ • • , al] then A' is a maximal simple

system of roots of 8'. For each root a' of 8', let H* be the unique element in

[81a', 84'] such that a'(Ha>) = 2, and let Hi = Ha.i, ISiSl. We can choose
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Ea*E%'a' such that [£_„<, £„-] = Ha- for all a', and the elements Ea- together

with the iij,is,Si, form a basis (Xt) of 2' such that all the constants of struc-

ture of this basis belong to the ring Zp of p-adic integers (see [2, pp. 102-

104]). Let So be the Lie ring ^Zj,X,-; then S0'/p£o' is a Lie algebra over fi0

which becomes isomorphic to £ upon extension of the base field from fi0 to fi.

Let 5 be the set of integral linear functions on §' i.e. rj consists of those

linear functions X such that X(iF) is a rational integer for iSiSl- The

dominant integral functions are those such that X(iF) SO, ISiSl- The ele-

ments of 5 span a vector space over the field of rational numbers, and this

vector space carries a scalar product whose value at the pair X, p in 8 's

given as follows. Let B(X, Y) be the Killing form on £', and for each XG$

let J\ be the unique element in $' such that ~K(H) =B(J\, H) ior all H in §'.

The value of the scalar product of X and p is given by (X, fi) = B(Jx, Jf), and

it is known that (X, n) is a rational number for X, p in g. Because in this case

the Killing form is nondegenerate modulo p we shall prove that we have

(1) (X, n) E Zp,       X, M E V5-

Let X£o7 then X= X^-i ?>a»' where the qt are rational numbers. Consider

the system of equations

i

HHj) = T,q#*UBj). j= 1,2, •••,/.
1=1

The numbers ~XiHj) belong to Zp, and the a,' (Hf) are elements of Zp such that

det(a' (Hf)) ^0 (mod p) (see [l, p. 164]). It follows that the qiEZp for all

i, and since (a/, a/ )£ZP(2), 1 gi, j^/, we have proved (1).

Now let {Hi} and {K,} be dual bases of £>' with respect to the Killing

form, and choose elements Fa>E%' such that [F_„'Fa'] = Ja' for each root

a'9^0. We then form the Casimir element

i

Y   =      2Z    F-a-Fa-  +   £ HiKi,
a'^0 t-1

which is known to belong to the center of the universal associative algebra

(7(8') of £'. For each irreducible finite dimensional right S'-module V with

maximal weight A, we have

vT = y(A)*> v EV,

where y(A) is a fixed nonnegative rational number which is given explicitly by

(2) y(A) = (A, A) + E (A, a') = (A, A + 2p)
or'>0

(2) To prove this assertion, we begin with the known result that 2{on , aj )(a,- , a,- )_1 is a

rational integer for all i and j. Then by the argument in the proof of Proposition 6, p. 104 of

[2], we know that (a'j, a'j ) = B{Ja-j, Ja>f) is a unit in Zp, and hence (ai, <*,' )EZ„ as required.
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where p is one half the sum of the positive roots of 8' with respect to §'. The

number y(K) is defined by (2) for every dominant integral function X, and

is by (1) an element of Zp. In particular if X is a dominant integral function

which is a weight of V, then it is known [5, p. 373] that

(3) y(\) < 7(A), X * A.

Any 8'-module V is also a completely reducible module for the three

dimensional simple subalgebra Uo- of 8' with basis Ea>, E-a>, Ha>, where a'

is any nonzero root. This fact together with the explicit determination of the

irreducible tla-modules will be used frequently throughout the paper to ob-

tain information about the linear transformations on V induced by Ea< and

Ea-E-a'. For any a'y^O, the irreducible modules of U«' are described as fol-

lows. There exists one and only one module of dimension k for each k = l,

2, ■ • ■ , and if [v0, »i, • • • , »*_i] is a basis for this module, the action of

U«' is given by

»i__v = vi+i, 0SiSk-2;       Vk-iK-a- = 0;

(4) ViEa-   = i(k - *>*-i, 0|JU-1;

ViHa.   = (k - 1 - 2i)vi,                                       0 S i S k - 1.

From these formulas it is immediate that VE% = 0 lor all roots a!j^O if

and only if

l(V) = max | \(Ha>) |   < m,
a',\

where the maximum is taken over all roots a'^0 and all weight X of V (see

[6, p. 306]).
All these preparations are brought to bear on the irreducible 8-module Tkf

by means of the following definition.

Definition. Let A be the dominant integral function such that A (Hj) is

the integer, 0^A(77i) <p, whose residue modulo p is equal to \*(hj), 1 SiSl-

Let V be the irreducible 8'-module whose maximal weight is A. Then V is

called the associated module of Tkf.

Now we can state the principal result of the paper.

Theorem 1. Let M be an irreducible restricted ^-module whose associated

module V satisfies the following conditions: (ji) l(V)<p; and (ii) for any dom-

inant weight X different from the maximal weight A of V, 7(X) f^y(A.) (mod p).

Then we have dim Tkf = dim V, and this dimension is given by Weyl's formula

(o) dim M = dim V = J__[   - •
o->o       p(Ha>)

2. Proof of Theorem 1. We remark first that in view of (3) the hypothesis

(ii) amounts to the assumption that the inequalities (3) cannot be replaced
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by congruence modulo p. We point out also that it is sufficient to prove that

dim M = dim V, since the formula (5) is known to give the dimension of V.

We begin with an observation about modules over Zp. Let Q be a free

Zp-module with basis xi, • • • , x„. A set of vectors yi, ■ ■ ■ , ym is called a

p-independent set provided that XX^GpQ implies atEpZp for any set of <z,-

from Zp. We shall prove that a set yu ■ • • , yn of vectors in Q is a Zp-basis if the

yi are p-independent. Let y<= 2Ia,'yXy, anEZp. Because the yis are p-inde-

pendent, we have det (aff) f^O (mod p). Since an element of Zp not divisible by

p is a unit, the matrix (a,,-) is invertible in the set of re by re matrices with

coefficients in Zp. From this it follows that yx, • • • , y„ is a Zp-basis of Q.

Now let V be the associated module of M, and let »bea maximal vector

in V. Let Vo be the smallest Zp-submodule of V containing v and invariant

relative to So'. Then Fo is a finitely generated free Zp-module which spans V

over the complex field, and by the argument on p. 170 of [l], F0 is generated

by vectors of the form vE^^ ■ ■ ■ Eyt, 5 SO, where the y/ are negative roots.

Because these vectors are all weight vectors it follows that

(6) Fo = 2Z © iVo n Fx)
x

where the sum is taken over the weights X of V. From (6) it is clear that Fo

has a Zp-basis consisting of weight vectors.

Lemma 1. Suppose that l(V)<p, and let ctiEA. Then Vo has a Zp-basis

(vjl))l gjgdim V of weight vectors vf which are proper vectors of £„'<£_„',■ with

proper values which are either zero or units in Zp.

Proof. We begin with some known facts about representation of the three

dimensional simple Lie algebra U0'4 which are more or less immediate conse-

quences of the formulas (4). Let vEV\ be a weight vector such that vEa>( = 0.

Then the vectors {nEi^}, &S0, generate an irreducible U<,';-submodule of V.

Because 0S\(Hf) Sl(V) <p, vE'-^^O and the nonzero vectors vE*-^ are

weight vectors, and are proper vectors of Ea><£_„',. whose proper values are

either zero or units in Zp. Now let N* be the null space of £„-,. in V, and let

JVJ = N(r\ Vo. We prove first that

(7) iVo= E© (/v'nFxHFo).
x

It is sufficient to prove that Nl is contained in the sum on the right hand

side. Let vENl; then by (6), v= 2~Lv\ where the V\E FxPiFo, and the X's are

distinct weights. Applying £„-< we have

0 = vE,,',. = 2~1 VxEa\,
x

and since the DxFa'j belong to the distinct weights X+a/, we have vxEa'^O for

all X, and the v^E^CW^CWo as required.
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Because of (7) we can find a Z„-basis of TVq consisting of weight vectors

Wj; then the Wj span Nl over the complex field. From the formulas (4) and

the fact that V is a completely reducible Uavmodule, it follows that the

nonzero vectors WjEtLa<. are linearly independent and span Fover the complex

field. These vectors satisfy all the requirements of the lemma if we can prove

that they are p-independent, for then by the remark preceding Lemma 1,

they will form a Z„-basis of Vo- Let

w = JZ ajkWjE-aU C pVB,       ajk C Zp.

Write w in the form

w = 2_ aiNWjE-a't + 2_ aj.N-iWjE-,,^ + ■ ■ ■ ;

then from the formulas (4) we have

wEa>x = JZ ajN^jNWj C pVo,

where the £",«• are units in Zp. Because the w, are p-independent we have

ajifCpZp, and the terms JZajNWiE1La. can be dropped from the expression

for w. Continuing in this way we see that the W/JE*,,^ are p-independent, and

Lemma 1 is proved.

Lemma 2. Let M be an irreducible restricted %-module with maximal weight

X*, and let V be the associated module M. Then V = (V0/pVo)a is a (not neces-

sarily restricted) 2-module, and V has a restricted homomorphic image R which

is ^-isomorphic to M(3).

Proof. We introduce first some notation which will be used here and later

in the proof of the theorem. Let X—>X* be the natural mapping of 8o

->8o7p8o. Because (8o'/^o')Q = 8, we may regard the X* as elements of 8

which span 8 over fi. For any r\CZp we let 77* be the image of 17 under the

natural map of Zp—»fi0. The elements 77*, 1 Si SI form a basis of §, and we

may assume that 8« = fi£*- for all roots a^O. We shall denote the image of v

in Vo under the natural map of Vo—>V0/pVo by [»]. V becomes a right 8-

module if we define

a*[v] = [av],       aCZp,       vC Vt,

and

[v]X*=[vX],       vCVo,       XG80'.

If A is the maximal weight of V and vQ the maximal vector in Vo which gen-

erates Fo, then [u0] is a maximal vector in V of weight X*. Let 5 be a maximal

8-submodule of V which does not contain [v0]; then R = V/S is an irreducible

(*) This lemma is an improvement of Theorem 6 of [l ].
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S-module with maximal weight X*. If we can show that R is a restricted

S-module, then R^M by Theorem 1 of [3]. It is sufficient to prove that

R(E*,y = 0 ior all roots a' and R[(Ht*)*-H*]=0. In any case (£*,)" belongs

to the centralizer of R, so that by Schur's Lemma (£*')" = £• 1 for some ££fi.

On the other hand, F„< is nilpotent on V, hence £*' is nilpotent on R, and

we have £ = 0. In order to discuss (H?)p — H*, we recall that V is spanned by

the elements v= [i>o ]-£*,, • ■ • , E*t, and for such an element we have

VH{  =  [*>o]£7'i> • • ^Ey'.Hi =  [voEYv ■ • •, Ey,Hi]

=  [n(Hi)vo] = n(Hi)*v0

where p=A+yi + ■ ■ ■ +7/ and A is the maximal weight of V. Since

p(-ff;)*£fio, v(Ht*y — vHt* = 0, and we have proved that R is restricted. This

completes the proof of Lemma 2.

Now consider the Casimir element I\ Since we can express F„-

= 2~1 (a', a')Ea',ct' > 0, F_a- = E-a>, a' > 0, and solve the equations Kt = 2~l°a^i

ior bijEZp because B(Ki, iiy)=5,y, • • • , we can assume that the elements

Fa>, Hi, and K( all belong to S0'. Therefore r*= 2ZF*-a>F*>+ EiFfX,* is an
element of the center of the universal associative algebra £7(S) of S.

Lemma 3. Let Q be a restricted right %-module and let TV be an irreducible

composition factor of Q. Suppose that r* = 5-l ore Q for some 8£fi. Then

b=y(ff)*, where pt is the maximal weight of the associated module W of TV.

Proof. On IF we have T =y(p) ■ 1. Therefore on W = (Wo/pWf)Q we have

r*=y(p)*-l. By Lemma 2, IF has a homomorphic image isomorphic to TV,

and it follows at once from this that 5=y(p)*.

Finally we come to the proof of the theorem. Because l(V) <p, we have

F0(F*')p = 0 for all roots a', and it follows that V is a restricted S-module.

We suppose the theorem is false; then F contains a proper submodule T. The

enveloping algebra of the transformations E*>, a!>0, on F is a nilpotent

algebra, so that F contains a maximal vector [w]?^0. We may assume that

[w] is a weight vector. Then we can express W — A+B+ • • ■ , where

AEV0r\VxA, BEV0r\ViB, • • • , and where \A(Hi)=\a(Hi) (mod p) ior

i=l, • ■ ■ , I. We may assume also that none of the components A, B, • ■ •

of w lie in pV0. For a.GA, let {v)^} be the Zp-basis of F0 chosen according to

Lemma 1, and let A = 2^iaivj)> f°r example, where the vf1 all have weight X^.

Because [w] is a maximal vector in V, we have [w]£*'(= [wE^] =0, and hence

AEa'iE-a'i = ^ajfijvf Ep Vo, where the py are either zero or units in Zp. There-

fore ajUjEpZp, and if py^O, then ajEpZp. Since A EpVo, at least one py = 0.

By Lemma 1 and the formulas (4), the basis vectors vf for which vfEa^E-a^

= 0 are among those for which vfHi=\v(f) for a non-negative X, and it fol-

lows that \A(Hi) SO. Similarly XB(IF)S0, etc. and the weights X^, XB are

dominant weights of V. Because l(V) <p, no two dominant weights are con-
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gruent modulo p, and it follows that we may assume that w = A C V\A, where

\a is a dominant weight different from A. If X' is the weight of [w] then T

has a restricted irreducible composition factor TV whose maximal weight is

X'. Then X^ is the maximal weight of the associated module of TV. On V we

have r*=7(A)*-l, and applying Lemma 3 we obtain y(A)*=y(kA)*. This

contradicts the hypothesis (ii) of the theorem. Therefore V is irreducible,

restricted, and is isomorphic to Tkf by Theorem 1 of [3]. Thus dim Tkf = dim V

and Theorem 1 is proved.

3. Remarks and examples. We begin with the following estimate of

dim Tkf for any irreducible module Tkf.

Theorem 2. Let M be an irreducible restricted 2-module and let x0 be a

maximal vector of Tkf. For each positive root a, let ma be the integer such that

Xoe-^0, x0emA1 = 0. Then

(8) dimM sU(ma+ 1).
a>0

Proof. Let A he the universal associative algebra of 8 regarded as an

ordinary Lie algebra (i.e. not taking account of the p-power operation). Then

Tkf is an irreducible A -module, and the argument given by Harish-Chandra

[7, p. 52] can be applied almost verbatim to prove (8).

Now let V he the associated module of Tkf, and let A be^the maximal

weight of V. For each a'>0, let mj he the non-negative integer <p such

that A(Ha,) = mj (mod p). Then it is easily proved that ma = mj.

Now let 8' be the simple Lie algebra of type ^42 defined over the complex

field, and let Ha>v Ha>2 he the basis of the Cartan subalgebra of 8' correspond-

ing to the roots al, a{ in a maximal simple system of roots, where ai (H„'j)

= „2 (Ha'j) = 2. Then Ha-l+a>2 = Ha,l+Ha>2, and it follows that if A is a dominant

integral function such that A(Ha>j)=ai, i=l, 2, then the dimension of the

irreducible 8'-module V whose maximal weight is A is given by

__. (A + P)(Ha.)       1
(9) dim V = II "-,„\       =~(ai+ D(at + l)(-i + a2 4- 2),

a>0        P(Haj 2

where p= (2^a'>o «')/2 (see also [9, p. 289]).

If p7*3, then the Killing form of 8' is nondegenerate modulo p, and it is

easily shown by means of (8) and (9) that for any p > 7 (so that the general

theory is applicable) there exist irreducible restricted 8-modules Tkf with

associated modules V such that dim Tkf^dim V. In fact, it is enough to

choose A such that ai+a2 = p, at>0, i=l, 2. Let V be the irreducible module

whose maximal weight is A, and Tkf the irreducible restricted (8o' /p8o )a mod-

ule whose maximal weight is X*, where X*(77f) =a*, i=l, 2. Then since

H*'l+a'2 = H^+HA we have \*(H*>l+a.j) = _*+_,* = _, and by (8)

dim M S (-i + l)(a2 + 1) < dim V.
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It is also worthwhile pointing out where our argument in the proof of

Theorem 1 fails to apply to arbitrary Lie algebras of classical type in the sense

of [8], For the simple Lie algebra S of classical type of class An with p\ n + l,

the Killing form of S is degenerate. In this case S is not a modular Lie algebra

coming from a complex simple Lie algebra of the same type. Therefore the

apparatus of the associated modules and the Casimir element T* as we have

used it does not seem to be available.
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