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1. Introduction. A real valued function g of a real variable will be said

to belong to the class 77(ai, ft) if there exists an x0>0 such that

0 < g(x) < x, for 0 < x S xo,

and

g(x) = aix + xh+1h(x), 0 ^ x ^ xo,

where O^ai^Sl, ft is a positive number, and h is continuous, and |^(x)| <M

for O^x^Xo. A sequence {x„} is said to be generated by g if 0<xi<x0 and

xn+i = g(xn), « _:1.

The purpose of this article is to investigate the rapidity of convergence

of sequences generated by functions of the class 77 and of certain subclasses.

We first dispose of the cases 0 <ai < 1 (Theorem 2.1) and ai = 0 (Theorem 2.2)

and then analyze the case ai = l in detail. In so doing we obtain not only

the dominant term of x„ (Theorem 3.1 and Corollary 3.1), but, for sufficiently

restricted g, also all terms that are not affected by the value of the initial

element of the sequence (Theorem 5.1). We lead up to this result by con-

sidering the difference between sequences generated by different functions

(Theorem 4.1 and Corollary 4.3) and sequences generated by the same func-

tion with different initial elements (Corollaries 4.1 and 4.2).

Some of the results presented here play a role in the solution of the func-

tional equation of Schroder. Our Theorem 2.1 was certainly known to Koenigs

[3], though with more restrictive assumptions on g. In a very recent investi-

gation of Schroder's equation, Szekeres [5] proved, also with substantially

stronger requirements on g than we are using, our Theorem 2.1, part of Theo-

rem 2.2, Corollary 3.1, and Corollary 4.3 (for r <ft only). Corollary 3.1 was

already proved by Polya and Szego [4, p. 31 ]; their assumptions on g are

somewhat stronger than ours but weaker than those of Szekeres.

A generalization of our Corollary 3.1 with weaker assumptions on g was

proved by Karamata [2]. Finally De Bruijn devotes a chapter of a recent

book [l ] to iterated functions. He illustrates the methods that can be used by

means of examples but gives no general theorems. Of interest is that, in a
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detailed discussion of the iteration of g = sin x, he obtains the result of our

Theorem 5.1 for this special case.

We now turn to a brief discussion of the ways in which sequences {x„},

generated by a function g, can converge. We restrict ourselves to functions g

which are continuous and have at least a first derivative, where needed.

Then it is well known that a sequence {x„} can converge only if its generating

function g has fixed points. A fixed point/ is one for which g(f) —f. The limit

of {xn} is one of these fixed points. Moreover, if we disregard the trivial case

where x„0=/ and hence xn=f for all reSw0, the sequence {xn} can approach

only one of those fixed points/ for which | g'(f) \ S1. The case — 1 Sg(f) <0

can be reduced to the case 0Sg'(f)Sl by considering the sequences {x2n}

and {x2n-i| separately. Both are generated by the function G(x)=g(g(x))

and one has G'(f) = (g'(f))2- There is thus no loss of generality if we study only

generating functions g near fixed points/ for which OSg'(f) SI. One can, by

means of a simple transformation, arrive at a generating function g* which

satisfies 0<g*(x)<x, at least if 0<g'(/)<l, and a sequence {x*} that is

generated by g* from some «o on. Assume that the same transformation has

been applied in the other two cases. If g'(0)=0 (we have omitted the star

again) it is possible that g(x) =0 for an infinite number of x tending to zero.

In this case the condition 0<g(x) will not be satisfied and x„ may, in a quite

irregular pattern, be sometimes positive, sometimes negative. Nevertheless

| x„| approaches zero very rapidly, so that a further study of this case can be

dispensed with. Considerably more complicated is the situation if g'(0) = l.

Write g(x) = x+xk+1h(x). Then the sequence {x„} cannot converge to zero if

either x*re(x)S0 for all |x| <5, or xn>0 for all re>«0 and x*re(x)S0 for all

0<x<5, or x„<0 for all re>reo and x*re(x) SO for all —S<x<0. Convergence

to zero does take place, if there exist two non-negative quantities a and 6 of

which at most one may be zero, so that xkh(x) <0 for —a<x<b, xt^O, and

if for some «o one has —a <x„0<6. These cases are subsumed under the con-

dition g(x) <x. Uncovered remains the case where in every neighborhood of

the origin the function h changes sign infinitely often. In this case not even

the convergence to zero, and hence certainly not the rapidity of the con-

vergence, depends solely on g.

After these preliminary considerations we now derive a few basic proper-

ties of sequences generated by functions g which are continuous on 0 5Sx^x0

and satisfy

0 < g(x) < x

ior 0<x^x0. Clearly xn+i = g(xn)>0 for all wSl and xn+i = g(x„) <x„. The

sequence {x„} therefore converges to a value L which must satisfy 0 SL <xu

and, in view of the continuity of g, L = g(L). This is only possible if L is zero.

In what follows we shall encounter certain quantities that depend on

g, x, h, or certain constants; we shall denote this dependence by writing

K = K(g,xi,..-).
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2. The case g'(0) <1. In this section we present two theorems showing,

respectively, the rapidity with which {xn} tends to zero if 0<Ci<l and if

ai = 0.

Theorem 2.1. Let gCH(ax, ft), where 0<ai<l. If the sequence {xn} is

generated by g, then there exists a constant Kx(g, xj) such that

Xn

lim — = Ki.
n—*« a^

Proof. We can write

-  =   _i +  Xnh(xj).
Xn

Since the sequence {x„} decreases to zero, we can determine a p such that

for «^p

» 1 _ ai
xni!7 <-

2

It follows that

xn+i        1 + ai
-    <-< 1.

x„ 2

This insures the convergence of the infinite product

<,.„ n(y+A-m.
n-l \ ai    /

If we now introduce un = x„/a" we obtain

Un+i k h(xj)
-= 1 + x„-»

Wn ai

and hence

jj^ ( k   h(xm)\

Un+l   =   Ul Ij (   1  +  Xm  - J .
m-1 \ a-i    I

The proof of the theorem is then completed by setting Ki(g, xj) equal to „i

times the value to which the product (2.1) converges.

Theorem 2.2. Let gCH(ax, ft), where at = 0. If the sequence {x„} is gener-

ated by g, then there exists a constant K2(g, xj), with 0<K2<1, such that

(jt-t-i)n

xn < K2       ,       for n > n0(g, xi).
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If in addition lim infXJ.o re(x) >0, then there exists a Kz(g, xf), with 0<jK"3<1,

such that

e*+irn
hm x„ = A3.

n—»«

Proof. For ai = 0 we have

log x„+i = (k + 1) log xn + log /s(x„).

We now introduce

1>n  =   (k +  l)~n log Xn

and observe that, after division by (k + l)n+l, our recursion relation can be

expressed, in terms of the quantities v„, as

vn+i = vn+(k+ l)-<»+D log A(x„)

= £ ik + l)-(m+1) log h(xm) + vni.

If lim inf re(x) >0, then the series

(2.3) £ (k + l)-(-+» log h(xm)
m—no

converges to a value which can be called log K3(g, xf)— vno. It is then easily

seen that

hm x„ = Kz.
n—>»

That K3 < 1 will follow automatically once the remainder of the theorem has

been established.

Now let us assume only that 0<re(x) < J1F Then log h(xn) could approach

— 00 so that the series (2.3) might not converge. From (2.2) one can, however,

derive the following inequality:

n

vn+i < Z   ik + l)-c»+» log M + (k + l)-o log XB0

I II/IJ., A-(™»+1)    1   ~  <* +  l)-"+n°+1   ,    ,,     ,     . ,-(n„+l) k+1
= log M(k + 1) —- + (A + 1) log x„c  .

1 — (k + l)

If log M<0, we choose «o so that x„0<l and obtain

(2.4) Vn+i < (k + 1)-("»+') log M < 0.

If log MSO, the following inequality is valid

(2.4)' »„+1 < (k + 1) log (M Xn, ).
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We can then choose «o large enough so that the expression on the right is

negative. The proof of the theorem is then completed by setting log K2(g, xj)

equal to the right-hand side of (2.4) or (2.4)' depending on whether log M <0

or log M50.
3. The dominant term of xn for g'(0) = 1. From now on we shall be con-

cerned with a detailed investigation of the case g'(0) = 1. As a first result we

have

Theorem 3.1. Let gCH(ai, ft), where _i=l. Then 73i = lim infx^0+ —h(x)

5 0, 732 = lim supx-.o+ —h(x) S M. Let {x„} be a sequence generated by g, and let

e>0 be given; then there exists an N(e, g, xj) so that

Xn > [(B2 + €)ft»]-1'*, n > TV.

If in addition Bi>0 and e is chosen less than 7>i, then the following inequality

also holds:

Xn < [(Bi - Oftw]-1'*, n > TV'(e, g, xi).

Proof. The requirements g(x) =x+xk+1h(x), g(x) <x, and \h(x)\ <M to-

gether insure that OS—h(x)<M, for 0^x^x0. This proves the assertions

about the lim sup —h(x) and lim inf — h(x).

We first consider the case ft = 1, employing a method suggested by O. Per-

ron. We set

-h(xj)   =  dn

and then have

xn+i = xn(l — x„d„).

It follows that

1 1 1

Xn+l Xn     1 Xndn

Let e be given and set it equal to 3r;. We now choose an ni(g, xu e) such that

for «§Mi the following three inequalities hold:

OO

x„_„ < 1, JZ dnXn     <v,        Bi — ij < _„ < B2 + rj.
m—2

For w5wi we then have

11 °°a JL ^_>     m  m—1

-=-h -n + __• anxn

(3.1) j

<—+ B2+2V.
Xn
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Hence

1

*n,+m > m(Bi + 2v) + x-\

and, for reSwi,

1

X" > re[(l - «i/«)(F2 + 2,) + (rex*,)-1]

1

«[F2 + 2i; + (rex^)-1]

By imposing a further restriction on re, namely (rex,,,)-1^, we arrive at

1
Xn  >  -  •

re(F2 + t)

From equation (3.1) it follows that, for reSwi

1 1
-> —+ Bx- v,
Xn+1 Xn

and hence, provided Fi —€>0, that

1

re[(l - rei/«)(Fi -V) + (rex,,,)"1]'

Choosing N'>ni and such that for n>N'(l—ni/n)(Bi — r])>Bi — 3ri we ob-

tain the desired inequality

1
xn <-> for re > N'.

n(Bi - t)

For the case i^l we introduce wn = x„. Now

k
x„+i = g(x„) = x„(l + x„h(x„)).

Hence

1i>n+l  =   G(Wn)   =   [g(Wn    )]     =  W„(l   +  W„h(lV„    ))

= w„(l + w„H(wn)).

Here G(w)EH(l, 1) for OStvSwo = xl], and it is lim inf„^0+ —H(w)=kBu

lim sup„.o+ —H(w) =kBi. With this observation the case k^l has been re-

duced to the case k— 1 and the proof of Theorem 3.1 is complete.

The result below follows immediately.
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Corollary 3.1. Let gCH(l, ft) and in addition let limx<0+ h(x) =ak+i^0.

If {x„ ] mo sequence generated by g, then

Xn   =   (-«t+«-1" + 0(«-1«).

4. Comparison of different sequences. From now on, it will be convenient

to use the following abbreviations:

(i)       6=1 + 1/ft,
(4.1) '

(ii)    ak = (-a^ift)-1'*.

To obtain sharper results about sequences {x„} we impose further restrictions

on g. Let gG77(l, ft) and in addition assume

g(x) = x + aA+1x*+1 + R(x),        | R(x) \   = 0(xk+1+r),     r > 0, 0 S x S x0.

We then say gCF(k, r). If 7?'(x) exists for 0<x<Xo and satisfies the condition

|7?'(x)| =0(x*+') for some »7>0, we say gCF'(k, r).

In the remainder of this article, the following lemma plays a fundamental

role.

Lemma 4.1. Let {yn} be a sequence of non-negative numbers satisfying the

inequalities

Yn+l   <  7n (l--j  + _*-«+"'*>, »_1,

where m and ft are positive constants, and 5 = 1 + 1/ft. Then

yn = 0(n-<m+1"*),        ifm<k and en = o(l)

jn = 0(n~s log n),        if m = ft and tn = 0(«-''), r; > 0,

7„ = 0(»-5),        if m > ft and e„ = 0(n~"), y > 0.

Proof. We begin with a few preliminary observations. For sufficiently

large n, provided e„ = o(l), one has

\ n    /      \ n/\ n)      \        n)\        n)

Hence

n(1-__.)<(_tiY-.
»=n0  \ V      / \     He    /

If e„ = 0(w~"), then XT(l+2€„/«) increases monotonely to a limiting value P,

so that in that case
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n(l-)<F(-)    , «„ = 0(«-»).
»_„0 \ »     / \   «o   /

Next one sees easily that from

5n+i < $„r„ + d„ for all re S no

follows

n n n

Sn+i < s^ II rt + 2~1 ̂   IT  r»-
t>— no A*="o        v—M+l

For yn+i one thus obtains in the case m<k

/re + 1\2'-5 " /re + l\2'-s

\     «0     / M-n0 V* +  1/

-(J-2<)f J-2. A        -(m/i+2«)~]
< (re + 1) y»0«o     + d' 2J  u

L M="0 -J

Here d' = 2s~2'd. Now
n j* n

/i=n0 ^ n0—1

It follows that, if e has been chosen small enough so that rej/£ + 2e<l,

yn+i < (re + l)-<s-2''[0((re + l)i-W*M.))]

= 0((w + l)-«»+i)/*).

If ireSA and hence by assumption e„ = 0(re_"), then

/   «o   V A /«+ l\_a
y«+i<y«„( —— p + iZr"«-—)  P    .

\re + 1/ „=„„ V + 1/

<(re+irSFk0re:+cf' £^1
L ^=«o -1

and the assertions of the lemma are easily verified.

Theorem 4.1. Let giEF'(k, rf) and giEF(k, rf) and let

I gi(x) - gi(x) |   = 0(xk+l+»>),

where m>0. Let the sequences {x„} and {sn} be generated by gi and gi, respec-

tively. Then

0(»-(m+1)/*),      ifm < k,

| x„ — s„ |   = ■ 0(n~s log re),      if m = k,

0(n~s), ifm> k.
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Proof. We have

X„+l — Sn+l =   gl(Xn)  — gi(s„)   = gl(xn)   — gl(sn)  + gl(s„)   — gi(sj)

=   (X„  -  5„)gl'(£„)   +  gl(Sn)   ~  gi(Sn).

Hence, if we set yn= |x„ — sn\ we obtain

7n+l   S   Tn |   1   "   aA+l(ft  +   1)*B  +  0(i+j |     +  0(sT+m).

Now £„ lies between x„ and s„ so that xn, s„, and £„ are all of the form

(a* + «n)w_1/*,    where    e„ = o(l).

One thus arrives at

(4.2) Tn+i :_ Tn (l ~ ——1) + dn-^l*,

where ej =o(l). If m<k the assertion of the theorem then follows directly

from Lemma 4.1.

To prove the theorem for m 5 ft we first derive some preliminary results.

It is easily verified that the function

go(x) = x(l - ak+ikxk)-1'k

satisfies goCF'(k, ft) and that it generates the sequence {akn~llk} if ak is

chosen as initial element. Now the two functions gi and g2 satisfy

| gi — go |   = 0(x*+1+min <"•*>), i = 1, 2.

Thus, if we set 0<ft7ji<min(ri, r2, ft), we can use the part of the theorem

already proved to show that x„ and s„, and hence also £„, are of the form

akn~llk + 0(n~aik+''y)). We are then able to conclude that the numbers e„' in

formula (4.2) are of order n-«»>«>w.*i> and therefore can apply Lemma 4.1 for

wi5ft to complete the proof of Theorem 4.1.

Corollary 4.1. If gCF'(k, r) and {xn} and {xj } are two sequences gener-

ated by g starting with different initial elements xi and x{, then

\xn - xj | = 0(n~*).

Proof. We apply Theorem 4.1 with gi = g2 = g, and thus can choose m arbi-

trary large.

It is interesting to note that |x„—x„' | is independent of r. That the same

is probably not true for gCF(k, r), we shall see in the next corollary. In §5

we shall discuss an example to show that this result cannot be improved.

Corollary 4.2. If gCF(k, r) and {xn} and {xj } are two sequences gener-

ated by g starting with different initial elements Xi and x{ , then
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0(»-<'+1>/*),      ifr<k,

| x„ — xf | =  ■ O(re-Mogre),      if r = k,

.0(n~s), ifr>k.

Proof. We introduce g* = x-|-at+ix*+1. By applying Theorem 4.1 twice,

once to compare {x„} with a sequence generated by g*, then to compare this

sequence with {xf }, we arriveat theabove result, if we note thatg*£F'(g, »)

and that

| g* - g\   = 0(xk+1+r).

These corollaries do not answer the question of how much the terms of a

sequence {x„} may differ from their dominant terms akn~llk. The answer is

provided below.

Corollary 4.3. If gEF(k, r) and {xn} is generated by g, then

rO(«-(r+1>/4),       ifr<k,
xn    —    akn llk\   =   <

lO(re-Mogw),      ifr^k.

Proof. Let the function gi of Theorem 4.1 be go (defined in the proof of that

theorem) and gi = g. Then

Uo — g |   = 0(x*+1+min *'r).

It is clear from the outline of the proof that, with the methods at our

disposal, this result cannot be improved by replacing F by F'. In the next

section we shall show that, unless the class of functions is much more severely

restricted, no better estimate can be obtained.

5. Other terms of x„ not depending on the initial element of the sequence.

By considering a more restricted class of functions than has been investigated

so far, we are able to make much more precise statements about the size of

the elements x„. The results we obtain are not unexpected in the light of

Theorem 4.1. However, Theorem 4.1 alone is not strong enough to prove

them.

Theorem 5.1. Let the function gEH(l, k) and satisfy the additional require-

ment
k+1

g(x) = x + Z) <**+» xk+" + R(x), 0 S x S xo,
v-l

where k is a positive integer, ak+i<0, and |i?(x)| =0(x2k+1+t) for some e>0.

If {xn} is a sequence generated by g, then there exist real valued constants

d, • • • , ck+i, where Ci = ak and cv = cv(ak+i, ■ • • , ak+f), such that

k

x„ — Z cvn~vlk — ck+irrl log re = 0(re-8).
v—l
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Proof. We define

k+1

G(x) = x+JZ ak+vxk+\
v-l

Then g = G+R. Let

k

pn = JZ cvn~v,k + ck+in-s log n.
n-l

The main part of the proof consists in showing that we can determine the cv

in such a way that

pn+i - G(pn) = 0(«-<2*+1+<>),       V > 0.

Assume this has been done and that we obtained ci=ak. Now let {z„| be a

sequence generated by G and set z„ = p„+7„. For y„ we obtain the relation

Zn+l  =  pn+l + Tn+l  =   G(p„ + Tn).

Hence

Tn+l  =   G(Pn + Tn)   -  G(p„)  + G(fn)   ~  Pn+l

= 7nG'(£„) + 0(«-(«+1+')).

Here £„ lies between p„ and z„. By Corollary 4.3

Zn = atw-1'* + 0(n~2lk).

Since p„ is also of this form, the same must be true for £„. We can therefore

write

Tn+l  =   Tn(l  - SAAl\ +  0(w-m+l+,)))

where e = 0(n~llk). An application of Lemma 4.1 then leads to the conclusion

yn = 0(n~s). Finally we employ Theorem 4.1 to compare sequences generated

by g and G. Since |g — G\ =0(x2*+1+«) we obtain

xn = pn + 0(n-*).

Here {x„} is any sequence generated by g.

We now turn to the evaluation of p„+i — G(pj). It is convenient to intro-

duce

y = n~ *'*.

Then

1 ft+ 1
(w + l)-l/t = (1 + y-k)-Uk = y-yk+l _|-yik+l + y^+l<bu

ft 2ft2
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where fa is a convergent power series in y for |y| <1. The coefficients of 4>i

depend only on ft. Hence fa is bounded for |y| <l/2.

We can now write p„+i in terms of y as follows

*       / 1 ft+1 V
P„+i =zZcAy-— y*+! + —— yM+1 + fay*k+1)

„_i     \        ft 2ft2 /

/ 1 \k+1
+ ck+i log (n + 1) I y - —yk+1 + • • • J

= JZ cvyv - £ c — yk+" + ci —— y2^1 + ck+i log (n + l)^1
„_i ,_i       ft 2ft2

- Sck+i log (n + l)y2k+1 + y2k+2fa + y2*+2 log (n + l)fa.

Here <p2 and fa are polynomials in y and <j>i. Their coefficients depend only on

ft and the e„. Hence the two polynomials are bounded for |y| <l/2 and fixed

c,.

For G(pn) we obtain

k k+1 /    k \k+v

G(pn) = JZ Gvyv + Ck+i log My*+1 + JZ ak+v ( JZ cvyv + ck+i log nyk+1)     .
»=1 »-l \ v=l /

Taking the difference we arrive at

k

pn+i - G(pj) = JZ dvyk+° + cn-o^dog (n+1)- log n)
v-l

k+1   2k+l 2k+l k+l 2k+l
+ C\ ——— y       — 5ck+iy       log (w+1) — ai+ici   (ft + l)y       log n

2ft2

+ \r-*+iyu+1 + y2k+K<t>2 + log (n + l)<b3 + log n<bt + 4>t).

Here <pi is a polynomial in y and fa is a polynomial in y log n and y. The

coefficients of both polynomials depend only on ft, cv, ak+v. The two poly-

nomials are therefore bounded for |y| <l/2.

For the coefficients dv we have the equations

— _i = ci/ft + ai+iCi    ,

— d. = cT(v/k — S) + ypv(ci, ■■ ■ , cv-x; ak+i, ■ • ■ , ak+j),       v = 2, • • • , ft.

The system of equations fl*8 = 0 can be solved for the cv. For ci we obtain, by

discarding the possible solution Ci=0,

ci = ( — ak+ik)-llk = ak.

Since v/k — h^O for all v = 2, ■ ■ - , ft the other equations can be solved suc-

cessively. The solutions are unique, real valued, and of the form
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cv(ak+i, • • • , ak+f).

Substituting the values thus obtained into pn+i — G(pn), and observing that

fc+i
ak+ici   (k + 1) — — S

and

yik

log (re+1) — log re = log (1 + yk) = yk-f- • • •

we arrive at

Pn+i - G(pn) = ck+iy2k+l + ci—— y2k+i + *k+iy2k+l + 0(y2k+l+'),

2kr

where 0<e<l. By setting ck+i= — Ci(k + 1) /2k2 —\pk+i we then have the de-

sired estimate for pn+i — G(pn), and the proof of the theorem is complete.

The result just obtained can be extended to functions not possessing quite

as much regularity as those just considered. We have the following result.

Corollary 5.1. Let the function gEH(l, k) and satisfy

T

g(x) = x + 2Z a*+rX*+" + R(x), 0 S x S xo,
r-l

where k and rSk are positive integers, ak+v<0 and |i?(x)| = 0(xk+r+t) for some

0<e^l. Then there exist real valued constants C\, • • • , c„ where Ci = ak and

cv = cv(ak+i, • • ■ , ak+f) such that

x    _yc n_v/k =    I0(n-^'k),       ifr+t<k+l,

Xn      ~i C'H *     '   lO(re-5 log re)       if r + t = k + 1.

Proof. We make use of a sequence generated by G, as obtained in the

proof of Theorem 5.1, and compare it with a sequence generated by the func-

tion g of the corollary. In this case

\g- G\   = 0(x*+r+«)

so that an application of Theorem 4.1 establishes the corollary.

It is of interest to know to what extent sequences generated by different

functions can agree. To discuss this problem we make the following definition.

Let

r

g = x + 2Z <**+.**+" + 0(**+'+«)
D-l

and let {x„} be generated by g. Then we call the sum
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r

2Z cvn-"'k,        if r S k,
v—l

X) cvn~vlk + ck+in-s log re,       if r > k,
. v=l

the principal part of x„, provided

0(M-(r+.)/*)j r + £ < ^ + 1(

| x„ - *„ |   = ■ 0(w~5 log re),        r + t = A + 1,

0(n~*), r + e> k+1.

We are now able to state the theorem

Theorem 5.2. Let

T

gi(x) = x+2Z ctk+vxh^ + 0(xk+*+'i), 0 ^ x ^ xo,

r

gi(x) = x+2Z bk+txk+" + 0(xk+r+«), 0 ^ x ^ xo,
r=l

and giEH(l, k), giEH(l, k). Then sequences generated by the two functions

have the same principal part if and only if

ak+v = bk+v,        v = 1, • • • , min(r, k+1).

Proof. If ak+v = bk+v, v=l, ■ • ■ , min(r, k + 1) then the difference between

the two functions is of order xk+T+t, 0 < e < min d, €2. It follows from Theorem

4.1 that the principal parts of sequences generated by the two functions are

the same.

If the principal parts of the two sequences are the same, we note that the

c„ are determined uniquely by the method employed in the proof of Theorem

5.1, and proceed by induction. It is certainly true that ak+i = bk+i, since

-1
ak+l = —j = bk+i.

KCX

Now assume the assertion is true up to re—1 <min r, k + 1, then ak+v = bk+v,

v S re — 1 and hence

^n(cx, • ■ ■ , cn-X; ak+x, ■ ■ • , ak+n-X, ak+„)

=  *Pn(cX,  ■   ■   ■  , Cn-V, bk+i,   •   ■  ■  , bk+n-l, bk+n)

= ^n(ci, • • • , c„-i; ak+i, ■ ■ ■ , ak+n~i, bk+n).

The only way ak+n enters into \pn (see proof of Theorem 5.1) is in the additive

term ak+nc\+n. Hence
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k+n k+n

ak+nCl        =   bk+nCl     ,

and it follows that ak+n = bk+n, since Ci^O. This completes the proof of the

theorem.

We are now able to throw some light on the questions raised in §4 as to

whether some of the results obtained there could be improved. Consider the

function (r an integer :2 ft)

y(x) = go(x) + xk+rh(x),

where h(x) =0 lor x = akn~1,k, rises very rapidly to one near these points and

remains at one until it has to dip down to zero again. Then one sequence

generated by y is {akn~llk} if the initial element xi is chosen to be ak. How-

ever, for a suitably chosen xi we can obtain

x„ = akn~llk + ck+rn-"k + 0(n~<-r+1)lk),

where ck+r^0 (this follows from Theorem 5.2). Now yCF(k, r) and hence it

follows that Corollary 4.2 cannot be improved. We also note that we can

make h differentiable but that then at certain places h' would have to be of

order xk at least, which is not small enough to insure gCF'(k, r). The example

also shows that Corollary 5.1 cannot be improved.

Another consequence of Theorem 5.2 is that a sequence {x„}, generated

by a function of the type considered in the theorem, can satisfy

| xn — akn~llk |   = 0(n~s)

only if it agrees with go up to the term in x2*+l, that is only if

k+l 2 2fc+l
g = x + ak+xx      + (ft + l)a*+ix       + • • • .

This together with the previous example shows that Corollary 4.3 cannot be

improved.

At least for functions satisfying the conditions of Theorem 5.1 it is now

also quite clear that two sequences generated by the same function may differ

by 0(n~*). For let {xn} be one such sequence and define y„ = x„+m. The result

follows from the relation

1 1
-= 0(»-(1+w*>).
«*'*      (n + m)vlk

We conclude the article with two final remarks: Even if the function g

has a Taylor's expansion going beyond the term x2*+1, this additional in-

formation is useless as far as the determination of the terms of a sequence

generated by g is concerned. More precisely, it is useless if we are only con-

cerned with that part of xn which does not depend on xi. If we had tried to

add a term ck+2n~s to p„ in Theorem 5.1, we would not have been able to
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determine it since in the determining equation the coefficient of ck+i would

have been 6 — 5. There is a gap in the result of Corollary 5.1 if gEF'(k, 1).

In that case there should be additional terms depending on g only and of

order greater than 0(n~b). These terms probably depend on R in addition to

ak+i, • ■ • , ak+r, but we are at present unable to say what they are.
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