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BY
W. J. THRON

1. Introduction. A real valued function g of a real variable will be said
to belong to the class H(a,, k) if there exists an x,>0 such that

0 < glx) <z, for 0 < x = x,
and
g(x) = aix + xF+1h(x), 0=x = x,

where 0=<a;: =1, k is a positive number, and % is continuous, and Ih(x)l <M
for 0 Sx =x, A sequence {x,.} is said to be genmerated by g if 0 <x;<xo and
Xnp1=g(xn), 2 1.

The purpose of this article is to investigate the rapidity of convergence
of sequences generated by functions of the class H and of certain subclasses.
We first dispose of the cases 0 <a1 <1 (Theorem 2.1) and ¢, =0 (Theorem 2.2)
and then analyze the case a;=1 in detail. In so doing we obtain not only
the dominant term of x, (Theorem 3.1 and Corollary 3.1), but, for sufficiently
restricted g, also all terms that are not affected by the value of the initial
element of the sequence (Theorem 5.1). We lead up to this result by con-
sidering the difference between sequences generated by different functions
(Theorem 4.1 and Corollary 4.3) and sequences generated by the same func-
tion with different initial elements (Corollaries 4.1 and 4.2).

Some of the results presented here play a role in the solution of the func-
tional equation of Schréder. Our Theorem 2.1 was certainly known to Koenigs
[3], though with more restrictive assumptions on g. In a very recent investi-
gation of Schrioder’s equation, Szekeres [5] proved, also with substantially
stronger requirements on g than we are using, our Theorem 2.1, part of Theo-
rem 2.2, Corollary 3.1, and Corollary 4.3 (for r <k only). Corollary 3.1 was
already proved by Polya and Szegé [4, p. 31]; their assumptions on g are
somewhat stronger than ours but weaker than those of Szekeres.

A generalization of our Corollary 3.1 with weaker assumptions on g was
proved by Karamata [2]. Finally De Bruijn devotes a chapter of a recent
book [1] to iterated functions. He illustrates the methods that can be used by
means of examples but gives no general theorems. Of interest is that, in a

Presented to the Society, September 3, 1959; received by the editors September 22, 1959.

() This research was supported by the United States Air Force under Contract No.
AF 49(638)-100 monitored by the Air Force Office of Scientific Research of the Air Research
and Development Command.

38



SEQUENCES GENERATED BY ITERATION 39

detailed discussion of the iteration of g=sin x, he obtains the result of our
Theorem 5.1 for this special case.

We now turn to a brief discussion of the ways in which sequences {x,,},
generated by a function g, can converge. We restrict ourselves to functions g
which are continuous and have at least a first derivative, where needed.
Then it is well known that a sequence {x,.} can converge only if its generating
function g has fixed points. A fixed point f is one for which g(f) =f. The limit
of {x.} is one of these fixed points. Moreover, if we disregard the trivial case
where x,,=f and hence x,=f for all # =Z#,, the sequence {xn} can approach
only one of those fixed points f for which Ig'(f)l =1. The case —1=g(f) <0
can be reduced to the case 0=<g'(f) £1 by considering the sequences {xz,.}
and {xg,._l} separately. Both are generated by the function G(x) =g(g(x))
and one has G'(f) = (g’(f))% There is thus no loss of generality if we study only
generating functions g near fixed points f for which 0=<g’(f) £1. One can, by
means of a simple transformation, arrive at a generating function g* which
satisfies 0 <g*(x) <z, at least if 0<g’(f) <1, and a sequence {x,f} that is
generated by g* from some 7, on. Assume that the same transformation has
been applied in the other two cases. If g’(0) =0 (we have omitted the star
again) it is possible that g(x) =0 for an infinite number of x tending to zero.
In this case the condition 0 <g(x) will not be satisfied and x, may, in a quite
irregular pattern, be sometimes positive, sometimes negative. Nevertheless
Ix,,l approaches zero very rapidly, so that a further study of this case can be
dispensed with. Considerably more complicated is the situation if g’(0) =1.
Write g(x) =x+x**1h(x). Then the sequence {x,,} cannot converge to zero if
either x*h(x) 20 for all |x| <8, or x,>0 for all #>no and x*h(x) 20 for all
0<x <9, or x, <0 for all n>nyand x*k(x) 20 for all —§ <x <0. Convergence
to zero does take place, if there exist two non-negative quantities a and b of
which at most one may be zero, so that x*h(x) <0 for —a <x <b, x#%0, and
if for some 7, one has —a <x,,<b. These cases are subsumed under the con-
dition g(«x) <x. Uncovered remains the case where in every neighborhood of
the origin the function % changes sign infinitely often. In this case not even
the convergence to zero, and hence certainly not the rapidity of the con-
vergence, depends solely on g.

After these preliminary considerations we now derive a few basic proper-
ties of sequences generated by functions g which are continuous on 0 <x <x,
and satisfy

0<glx) <z

for 0 <x =xo. Clearly xn41=g(x.) >0 for all 21 and x,,;=g(x,) <x,. The
sequence {x,.} therefore converges to a value L which must satisfy 0 < L <x;,
and, in view of the continuity of g, L=g(L). This is only possible if L is zero.

In what follows we shall encounter certain quantities that depend on

g, x, h, or certain constants; we shall denote this dependence by writing
K=K(g, X1y, * * ).
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2. The case g’(0) <1. In this section we present two theorems showing,
respectively, the rapidity with which {x,,} tends to zero if 0<a,<1 and if
(11=0.

THEOREM 2.1. Let gEH(ay, k), where 0<a,<1. If the sequence {x.} is
generated by g, then there exists a constant K(g, x1) such that

Proof. We can write

xn+l

=a+ xf.h(x,.).

Xn

Since the sequence {xn} decreases to zero, we can determine a p such that
fornzp
1-— a)

xf.M <
2

It follows that
Zns1 1+ a
<

Xn 2

This insures the convergence of the infinite product

2.1) ﬁ(1 + X. h(x")).

n=1 ay

If we now introduce %, =x,/a} we obtain

Uns1 & B(xa)
=14 x,
Un a

)

and hence

n h 'm
tor = 10 H<1 4o M )).
m=1

a,
The proof of the theorem is then completed by setting Ki(g, x1) equal to u,

times the value to which the product (2.1) converges.

THEOREM 2.2. Let g& H(ay, k), where a,=0. If the sequence {xa} is gener-
ated by g, then there exists a constant Ko(g, x1), with 0 <K, <1, such that

k+1)"
x, < K2 * , for n > no(g, x1).
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If in addition lim inf,.q k(x) >0, then there exists a Ki(g, x1), with 0 <K;3<1,
such that
lim x,(.k“)—n = K.

Proof. For a;=0 we have
log a1 = (B + 1) log %, + log h(z,).
We now introduce
v, = (k 4+ 1)7 log %,

and observe that, after division by (k+41)"+!, our recursion relation can be
expressed, in terms of the quantities v,, as

Vut1 = Un + (B + 1)~®D log h(x,)

2. ki
(2.2) = 2 (k4 1)~ log h(xm) + vn,

m=ng

If lim inf A(x) >0, then the series

0

(2.3) 2 (k4 1)~ log h(xn)

m=nq

converges to a value which can be called log K;(g, x1) —v,,. It is then easily
seen that

lim zy 0 = K.

7n— 00
That K;<1 will follow automatically once the remainder of the theorem has
been established.

Now let us assume only that 0 <k(x) < M. Then log k(x,) could approach

— o so that the series (2.3) might not converge. From (2.2) one can, however,
derive the following inequality:

Tap1 < 2, (B+ 1)=@+D log M 4+ (k + 1)~ log xn,

m=ng

—mery 1 — (k4 1)=ntnot1 -
(mo+1) (no+1) k+1
= log M(k+ 1 kE+1 1 ng -
og M(k + 1) =t o +&+1) 08 %n;
If log M <0, we choose 7, so that x,,<1 and obtain
2.9 Tnpr < (B 4 1)=@otD Jog M < 0.

If log M =0, the following inequality is valid

(2.4)1 Vg1 < (k + 1)—(no+l) lOg (M(l+k)/k xﬁ-:l).



42 W. J. THRON [July

We can then choose 7, large enough so that the expression on the right is
negative. The proof of the theorem is then completed by setting log K(g, x1)
equal to the right-hand side of (2.4) or (2.4)’ depending on whether log M <0
or log M=0.

3. The dominant term of x, for g’(0) =1. From now on we shall be con-
cerned with a detailed investigation of the case g’(0) =1. As a first result we
have

TueoREM 3.1. Let gEH(ay, k), where a1=1. Then By=lim inf,. o4 —h(x)
20, By=lim sup,.oy —h(x) S M. Let {x,} be a sequence generated by g, and let
€>0 be given; then there exists an N(e, g, x1) so that

xn > [(B2 + €)kn]~1/k, n> N.

If in addition B1>0 and e is chosen less than By, then the following inequality
also holds:

Xy < [(B; — e)kn]_”", n> N'(e, g, x1).

Proof. The requirements g(x) =x+x*+!h(x), g(x) <x, and |h(x)[ <M to-
gether insure that 0 < —h(x) <M, for 0 <x =x,. This proves the assertions
about the lim sup —#k(x) and lim inf —A(x).

We first consider the case k=1, employing a method suggested by O. Per-
ron. We set

—h(xn) = dn
and then have
Tny1 = 2a(1 — 2,d,).
It follows that
1 1 1

Xnt1 Xn 1 - xndn

Let € be given and set it equal to 37. We now choose an 7,(g, x1, €) such that
for n=n, the following three inequalities hold:

%ada <1, X duemm <m, Bi—n<da<Bitn.

M2
For n=n; we then have
1

m m—1

1 0
= —-4d.+ Zdnxn

XTn41 Xn mm=2

3.1) 1
<—+4 B:+ 29.

Xn
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Hence
1
> —1
m(Bz: + 29) + Xa

Xny+m

and, for n=mn,,
. 1
72l = /) (B + 20) + ()]
1
> .
n[By + 20 4+ (nx,,)7]

By imposing a further restriction on #n, namely (nx,,)~! <7, we arrive at
N 1
x ———e @
"7 n(By+ €

From equation (3.1) it follows that, for n=n,

1
> — + Bl -
Xnt+1 Xn

and hence, provided B, —¢e>0, that
1
X, < .
n[(1 — n/n)(Br — 1) + (nxa,)"]

Choosing N’ >mn, and such that for n> N'(1 —n,/n)(B:1—1) > B1— 39 we ob-
tain the desired inequality

1

_ forn > N'.
n(B; - 6)

X, <

For the case k1 we introduce w, =x%. Now

Tng1 = g(@n) = xa(l + 2ah(22)).
Hence
Wai1 = G(wa) = [gn )] = wa(1 + wah(w )"
wa(1 + w.H(w,)).

Here G(w)EH(1, 1) for 0Sw=wo=x¢, and it is lim inf,.o, —H(w)=FkB,,
lim supy.o+ —H(w)=FkB;. With this observation the case k51 has been re-
duced to the case k=1 and the proof of Theorem 3.1 is complete.

The result below follows immediately.
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CoROLLARY 3.1. Let gEH(1, k) and in addition let lim,_ .oy h(x) =ax170.
If {xn} 15 a sequence generated by g, then

X = (— Qpyakn)™VE 4+ O(nV¥),

4. Comparison of different sequences. From now on, it will be convenient
to use the following abbreviations:

1) o6=14 1/k,
(ll) a = (—a;,+1k)"“/’°.

To obtain sharper results about sequences {x,} we impose further restrictions
on g. Let g€H(1, k) and in addition assume

gx) = 2 + @yttt + R(x), | R@)| = 0@+H), 7> 0,0= 5= x.

We then say gE F(k, r). If R'(x) exists for 0 <x <x, and satisfies the condition
|R’(x)| = O(x**+7) for some 7>0, we say gEF'(k, r).

In the remainder of this article, the following lemma plays a fundamental
role.

(4.1)

LeEMMA 4.1. Let {'y,.} be a sequence of non-negative numbers satisfying the
inequalities

6 — €,

Yat1 < Yn (1 -
n

) + dn—@tmik) | n=1,
where m and k are positive constants, and d=1+1/k. Then

Ya = O(n—mtDIk) ifm < k and e, = o(1)

¥a = O(n% log n), ifm=Fk and ¢, = O(n~"), 9 > 0,

Ta = O(n7?%), ifm >k and ¢ = O(n~"), 9 > 0.

Proof. We begin with a few preliminary observations. For sufficiently
large n, provided €, =0(1), one has

(45 2 <( (42
() e )

n 8__’ 12:—8
(-9 <50
v=ng ? o

If €,=0(n""), then J](1+42¢./n) increases monotonely to a limiting value P,
so that in that case

Hence
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fI (1 _2z €”> < P(n+ 1)—6, en = O(n).

v=ng v Mo

Next one sees easily that from

Snp1 < Satn + dn forall # = #no

follows

n n n
Snp1 < Sng H e t Z dy H Tv.
v=ng u=ng va=pt1
For .41 one thus obtains in the case m <k

n + 1 2e—5 n n + 1 2¢—6
Yn+1 < 7no< ) + d Z “-—(6+m/k)< )
No psng M + 1

—(6—2¢) 5—2¢ i —(m/k+2€)
<(n+1) ['Ynono +a Z K * ]

u=ng

Here d'=2%"2d. Now
n n
Z u— mIk+2) <f 2= (mlk+26 gy

u=ng ng—1
It follows that, if € has been chosen small enough so that m/k+2e<1,
Yap1 < (n + 1)=E20[0((n + 1)1~ mik+20)]
= 0((,, -+ 1)—(m+1)/k)_
If m =k and hence by assumption ¢, =0(n~"), then

no \? i n+ 1\"°
Yn < Yn <—_"_> P + d IJ'_(H—'"”C)( ) P
H u§ ut 1

<+ 1)7P [vnon: +d Y u—m/k]

p=ng
and the assertions of the lemma are easily verified.
THEOREM 4.1. Let ¢.E F'(k, 1) and g, E F(k, r2) and let
| 81(x) — go(®)| = O(ar+i+m),

where m>0. Let the sequences {x,.} and {sn} be generated by g, and g, respec-
tively. Then
O™+, ifm < F,
| 0 — sa| ={O0(mtlogn), ifm=Ek,
o(n?), if m > k.
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Proof. We have
Znt1 = Snt1 = £1(¥n) = ga2(sn) = £1(%n) — £1(sn) + g1(sn) — galsn)
= (%a — s2)g{ (£) + g1(sa) — g2(sn).
Hence, if we set y,=|x,—s.| we obtain

k+14m

k k
Yorr S Y| 1= @pa(k + Dén 4 0 )| + 0 ™™).
Now &, lies between x, and s, so that x,, s,, and &, are all of the form
(ar + €)n~ %, where ¢, = 0(1).

One thus arrives at

8 — el
(42) Ynt1 = Yn (1 - ‘ ) + d”—H-mlk;
n

where €,/ =0(1). If m <k the assertion of the theorem then follows directly
from Lemma 4.1.

To prove the theorem for m =k we first derive some preliminary results.
It is easily verified that the function

go(x) = 2(1 — apprka®)=10k

satisfies goE F'(k, k) and that it generates the sequence {cuwn=Vk} if ay is
chosen as initial element. Now the two functions g, and g satisfy

I g — go| = Q(zx++i+min (b)) i=1,2,

Thus, if we set 0 <kn <min(ry, 72, k), we can use the part of the theorem
already proved to show that x, and s., and hence also £,, are of the form
axn~ U 4+ O(n~/k+mw) We are then able to conclude that the numbers €, in
formula (4.2) are of order n~™irtn.m) and therefore can apply Lemma 4.1 for
m =k to complete the proof of Theorem 4.1.

COROLLARY 4.1. If g& F'(k, r) and {x,.} and {x,.’ } are two sequences gener-
ated by g starting with different initial elements x, and x{ , then

|2, — 24 | = O(n?).

Proof. We apply Theorem 4.1 with g, =g, =g, and thus can choose m arbi-
trary large.

It is interesting to note that |x,—x, | is independent of 7. That the same
is probably not true for gE F(k, r), we shall see in the next corollary. In §5
we shall discuss an example to show that this result cannot be improved.

COROLLARY 4.2. If gE F(k, r) and {x,.} and {x,.' } are two sequences gener-
ated by g starting with different initial elements x, and x{ , then
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O(n=r+0I%), if r <k,
|, — 2/ | = {O(wtlogm), ifr =k,
o(n?), ifr> k.

Proof. We introduce g*=x4ar1x**!. By applying Theorem 4.1 twice,
once to compare {x,,} with a sequence generated by g*, then to compare this
sequence with {xn’ } , we arrive at the above result, if we note thatg*E F'(g, )
and that .
| g — gl = O(x*+1+7).

These corollaries do not answer the question of how much the terms of a
sequence {x,} may differ from their dominant terms axn='/*. The answer is
provided below.

COROLLARY 4.3. If g& F(k, r) and {x,,} is generated by g, then
O(n—(r+l)lk)’ 1:ff < k’
O(n~tlogn), ifr=k

Proof. Let the function g; of Theorem 4.1 be go (defined in the proof of that
theorem) and g,=g. Then

| g — g| = O(ak+1+min b7y

It is clear from the outline of the proof that, with the methods at our
disposal, this result cannot be improved by replacing F by F’. In the next
section we shall show that, unless the class of functions is much more severely
restricted, no better estimate can be obtained.

5. Other terms of x, not depending on the initial element of the sequence.
By considering a more restricted class of functions than has been investigated
so far, we are able to make much more precise statements about the size of
the elements x,. The results we obtain are not unexpected in the light of
Theorem 4.1. However, Theorem 4.1 alone is not strong enough to prove
them.

PR ={

THEOREM S.1. Let the function g& H(1, k) and satisfy the additional require-

ment
k+1
8(®) = 2 + 2 trpo 2 + R(2), 0= xS,
v=1
where k is a positive integer, ax,1<0, and |R(x)| = O(x*+1+¢) for some €>0.
If {x,,} is a sequence gemerated by g, then there exist real valued constants
€1, + * *, Cky1, Where ci=ay and ¢, =¢,(Ary1, * * -, Gryo), SUch that

k
Xy — Z con % — o n~? log n = O(n?).

v=1
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Proof. We define

k+1

Gx) = & + D aryortte.

=1

Then g=G+R. Let

k
pn = 2 o 4 o= log n.

v=1

The main part of the proof consists in showing that we can determine the ¢,
in such a way that

Pn-l—l — G(Pn) = O(n"(2k+l+"l))’ 7> 0.

Assume this has been done and that we obtained ¢;=ax. Now let {z.} be a
sequence generated by G and set 2z, = p,+7v.. For v, we obtain the relation

Zot1 = Pntt + Ynt1 = G(Pn + vn).
Hence
Ynir = G(pn + ¥n) — G(ps) + G(pa) — pas1
712G’ (£a) + O(n~ Gkt14m),
Here £, lies between p, and z,. By Corollary 4.3

2, = apn~ 1k 4 O(n=2%),

Since p, is also of this form, the same must be true for £,. We can therefore
write

0 — €,

Ynt1 = Yn (1 - ) + O(n—k+1my,

n

where e=0(n~1/%). An application of Lemma 4.1 then leads to the conclusion
v»=0(n"?%. Finally we employ Theorem 4.1 to compare sequences generated
by g and G. Since |g—G| = O(x%+1*¢) we obtain

Zn = pn + O(n™%).

Here {x,.} is any sequence generated by g.
We now turn to the evaluation of p.41—G(pn). It is convenient to intro-
duce

y = n—l/k_

Then

(n+1)"Ve= (14 yh)"th=y— 1 yhH 4 k+1
k 2k?

y2k+l + y3k+l¢l’
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where ¢; is a convergent power series in y for I yl < 1. The coefficients of ¢,
depend only on k. Hence ¢, is bounded for |y| <1/2.
We can now write p,;1 in terms of ¥ as follows

k 1 k41 v
Put1 = 2 Co <y ~ 7 Y+ W}’%H + ¢1y3"+‘>
v=1

1 e+l
+ck+110g(n+l)<y.__k_yk+1+ . )

: : k41
D

v=1 o=l k 2k?

— 8cky1 log (n + 1)y2k+l + y2"+2¢>2 + y%+2 Jog (n + 1)¢s.

y2+l 4 g log (4 1)ysH

Here ¢, and ¢; are polynomials in y and ¢;. Their coefficients depend only on
k and the ¢,. Hence the two polynomials are bounded for |y| <1/2 and fixed
Co.

For G(p.) we obtain
k k+1 k k+v
G(pn) = 2 co¥® + cearlog nytt! + 37 apy, ( D oy’ + ciyrlog ny"“) .
v=] v=1 v=1
Taking the difference we arrive at

k
Parr — G(pn) = D duy**® + crp1y**i(log (n + 1) — log n)

o=l

E+1 o 2%
Pym y i oCk+1y ! log (n + 1) — ak+1cli+l(k + l)y%+l log »n

+ iyt + ¥+ (py + log (n + 1)ds + log n s + ¢5).

+a

Here ¢, is a polynomial in y and ¢;s is a polynomial in y log #» and y. The
coefficients of both polynomials depend only on &, ¢,, @r.. The two poly-
nomials are therefore bounded for |y| <1/2.

For the coefficients d, we have the equations

k41
—d, = Cl/k + @ry101 ,

—dy = ¢o(v/k — 8) + ¥u(cy, -+ -, Com1} Grt1y - * * , Cito), v=2---,k

The system of equations d,=0 can be solved for the c,. For ¢; we obtain, by
discarding the possible solution ¢; =0,

1= (—ar1k)™VE = .

Since v/k—870 for all y=2, - - - | k the other equations can be solved suc-
cessively. The solutions are unique, real valued, and of the form
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cv(a"H-l) T, ak+')'

Substituting the values thus obtained into p.41—G(p.), and observing that

ak+1cf+l(k + 1) = —3§

and

2%
Iog(n+1)-logn=1og(1+yk)___yk_zz___i_...

we arrive at

1 y2k+l + ¢k+1y2k+l + O(y2k+1+e)’

2k+1 k +
Pr1 — G(Pn) = s y™*' + 1 22
where 0 <e<1. By setting cxs1= —c1(k+1)/2k* —yi41 we then have the de-
sired estimate for p,11—G(p.), and the proof of the theorem is complete.
The result just obtained can be extended to functions not possessing quite
as much regularity as those just considered. We have the following result.

COROLLARY 5.1. Let the function gE H(1, k) and satisfy

g(x) = 2+ 2 arper*t + R(x), 0 < x < x,
=1
where k and r £k are positive integers, Gry, <0 and |R(x)| = O(x*+rte) for some
0<e=<1. Then there exist real valued comnstants c, - - -, ¢,, where c;=ax and
Co=Co(@k41, * * * y Qkyo) SUCh that

{O(n“’“"‘”"), ifr+e<k+1,

—_ —v/k —
w = 2o O(n-tlogn) ifr+e=k+1.

v=1

Proof. We make use of a sequence generated by G, as obtained in the
proof of Theorem 5.1, and compare it with a sequence generated by the func-
tion g of the corollary. In this case

lg — G| = O@x++)
so that an application of Theorem 4.1 establishes the corollary.
It is of interest to know to what extent sequences generated by different

functions can agree. To discuss this problem we make the following definition.
Let

g = x4+ 2 Grpeattt + Oattrte)

v=1

and let {x,.} be generated by g. Then we call the sum
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.
D convlk, if r £k, .
v=1

P = &
> ek 4 cppn log =, ifr >k,

=1
the principal part of x,, provided
O(n=tHalk), r+e<k+1,
| %0 — pa| = {O(n~Plogn), r+4+e=k+1,
o(n=?), r+e>k+ 1.
We are now able to state the theorem
THEOREM 5.2. Let
a@) =x+ fr_‘, Qpppx®HY 4 O(aktr+e), 0

v=1

A
]
I\

Xo,

g2(%) = x + D by, xtte 4 O(aktrtea), 0

v=1

IIA
IIA

x Xo,

and i€ H(1, k), g2€H(1, k). Then sequences gemerated by the two functions
have the same principal part if and only if

o = biyo, v=1,--- min(r, B 4+ 1).

Proof. If axyo=brtv, v=1, - - -, min(r, k+1) then the difference between
the two functions is of order x*+™+¢, 0 <e<min €, €. It follows from Theorem
4.1 that the principal parts of sequences generated by the two functions are
the same.

If the principal parts of the two sequences are the same, we note that the
¢» are determined uniquely by the method employed in the proof of Theorem
5.1, and proceed by induction. It is certainly true that a4, = b4, since

-1
k41 = k—cf = bk+1.
Now assume the assertion is true up to n—1<min 7, k41, then Gy = Dby,
v=n—1 and hence

"//n(cl, C 0ty Cae; Gkl t ot 0y Gkgn—1, ak+n)
= ¥nlcy, * * +, a1 Drgry * * * ) Bkgnet, Dkgn)
= ¥alcy, - - y Cnm1; @kt 1y * ° * 5 Gkyn—1y Okgn).

The only way axyn enters into ¥, (see proof of Theorem 5.1) is in the additive
term ax4nci ™ Hence
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k+n k+n
. Qk4nC1 = bryncr
and it follows that @iyn="0bxin, since ¢;5%0. This completes the proof of the
theorem.
We are now able to throw some light on the questions raised in §4 as to
whether some of the results obtained there could be improved. Consider the

function (r an integer <k)
v(®) = go(x) + 2**7h(x),

where k(x) =0 for x =axn~V*, rises very rapidly to one near these points and
remains at one until it has to dip down to zero again. Then one sequence
generated by v is {akn‘”"} if the initial element x; is chosen to be ax. How-
ever, for a suitably chosen x, we can obtain

Xn = akn_llk + Ck+rn_r/k + O(n‘(f‘#l)/k),

where ¢x;.#0 (this follows from Theorem 5.2). Now y & F(k, r) and hence it
follows that Corollary 4.2 cannot be improved. We also note that we can
make 4 differentiable but that then at certain places &’ would have to be of
order x* at least, which is not small enough to insure g& F’'(k, r). The example
also shows that Corollary 5.1 cannot be improved.

Another consequence of Theorem 5.2 is that a sequence {x,. }, generated
by a function of the type considered in the theorem, can satisfy

| %0 — axn=1k| = O(n?)
only if it agrees with go up to the term in x%*+!, that is only if

g=x+ ak+1xk+l + (k + 1):1;4.1:%2“l + -
This together with the previous example shows that Corollary 4.3 cannot be
improved.

At least for functions satisfying the conditions of Theorem 5.1 it is now
also quite clear that two sequences generated by the same function may differ
by O(n~?%). For let {x,.} be one such sequence and define y, =%x4m. The result
follows from the relation

1 1

nvllc - (n + m)vlk

= O(n=(+oib),

We conclude the article with two final remarks: Even if the function g
has a Taylor’s expansion going beyond the term x%*+!, this additional in-
formation is useless as far as the determination of the terms of a sequence
generated by g is concerned. More precisely, it is useless if we are only con-
cerned with that part of x, which does not depend on x;. If we had tried to
add a term ciyon~® to p, in Theorem 5.1, we would not have been able to
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determine it since in the determining equation the coefficient of ¢x;2 would
have been 6 —9. There is a gap in the result of Corollary 5.1 if g& F'(k, 1).
In that case there should be additional terms depending on g only and of
order greater than O(n~?%). These terms probably depend on R in addition to
@ky1, * * ¢, Grer, Dut we are at present unable to say what they are.
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