ON THE INVERSE LIMIT OF EUCLIDEAN N-SPHERES(1)

ву MORTON BROWN

In [1] Bing constructed a 1-dimensional hereditarily indecomposable continuum which is the inverse limit of a sequence of circles C_i and such that the maps $f_i \colon C_i \to C_{i-1}$ were of degree 1. In this paper we show that the dimension cannot be raised, i.e., if $S = \text{Lim}(S_i^N, f_i)$ where S_i^N is an N-sphere and f_i is essential, then S is not hereditarily indecomposable. In doing so we further generalize Bing's definition of " ϵ -crooked." Lemma 2 shows how to construct hereditarily indecomposable continua by making the bonding maps sufficiently crooked. In Lemma 3 we get a necessary crookedness condition on the bonding maps if the limit space is to be hereditarily indecomposable. The remainder of the paper is devoted to proving that in the case of N-spheres (N>1) this condition cannot be satisfied.

DEFINITIONS AND NOTATION. Let X_i be a sequence of compact metric spaces, and for $i \ge 2$ let f_i be a map of X_i into X_{i-1} . Then the subspace $\binom{2}{3}$

$$S = \left\{ z \in \prod_{i=1}^{\infty} X_{i} | f_{ij}(z_{j}) = z_{i} \right\}$$

of $\prod_{i=1}^{\infty} X_i$ is the inverse limit space of the inverse system (X_i, f_i) .

If d_i is the diameter of X_i then a metric for $\prod_{i=1}^{\infty} X_i$ (and hence for S) is given by $|z-z'| = \sum_{i=1}^{\infty} 2^{-i} d_i^{-1} |z_i-z_i'|$.

Let $f: X \to Y$ where X, Y are metric spaces. Then for $\epsilon > 0(4)$,

$$L(\epsilon, f) = \sup \left\{ \delta \middle| \begin{array}{l} x, y \in X \text{ and } |x - y| < \delta \\ \text{implies } |f(x) - f(y)| < \epsilon \end{array} \right\}.$$

If X is compact then $L(\epsilon, f) > 0$ for all $\epsilon > 0$.

Let $f: X \rightarrow Y$ where X is a topological space and Y is a metric space. Let $\epsilon > 0$. Then f is ϵ -crooked if for each path $g: I \rightarrow X(5)$ there exist real numbers t_1, t_2 such that $0 \le t_1 \le t_2 \le 1$ and:

Presented to the Society April 25, 1959 under the title A note on higher dimensional indecomposable continua; received by the editors September 25, 1959.

⁽¹⁾ This paper was written while the author was an Office of Naval Research Fellow at the University of Michigan.

⁽²⁾ $f_{ij} = f_{i+1} f_{i+2} \cdot \cdot \cdot f_j, f_{ii} = 1.$

⁽³⁾ If $z \in \coprod_{i=1}^{\infty} X_i$, then z_i denotes the *i*th coordinate of z. Hence $z = (z_i)$.

⁽⁴⁾ |x-y| denotes the distance from x to y.

⁽⁵⁾ I denotes the unit interval [01].

$$\left| fg(0) - fg(t_2) \right| < \epsilon,$$

$$\left| fg(t_1) - fg(1) \right| < \epsilon.$$

A metric space Y is ϵ -crooked if the identity map 1: $Y \rightarrow Y$ is ϵ -crooked (6).

A continuum M is *indecomposable* if it is not the union of two proper subcontinua. If every subcontinuum of M is indecomposable then M is hereditarily indecomposable.

LEMMA 1. Let K be a metric space. Suppose K_1, K_2, \cdots is a sequence of Peanian continua in K such that $K_1 \supset K_2 \supset \cdots$. Then $\bigcap_{1}^{\infty} K_n$ is hereditarily indecomposable if and only if there is a null sequence (ϵ_n) of positive real numbers such that K_n is ϵ_n -crooked.

Proof of sufficiency. Suppose M is a subcontinuum of $\bigcap_{1}^{\infty}K_{n}$ and $M=A\cup B$, where A, B are proper subcontinua of M. Let $a\in A-B$, $b\in B-A$. Then there is an n such that $\epsilon_{n}<\min(\left|a-B\right|,\left|b-A\right|)({}^{7})$. Let O_{A} , O_{B} be connected open subsets of K_{n} such that $A\subset O_{A}$, $B\subset O_{B}$, $\left|a-\overline{O}_{B}\right|>\epsilon_{n}$, and $\left|b-\overline{O}_{A}\right|>\epsilon_{n}$. Let $x\in O_{A}\cap O_{B}$. Then there are paths α , $\beta\colon I\to K_{n}$ such that $\alpha(0)=a$, $\alpha(1)=x$, $\beta(0)=x$, $\beta(1)=b$, $\alpha(I)\subset O_{A}$, and $\beta(I)\subset O_{B}$. Let $g\colon I\to K$ where

$$g(t) = \begin{cases} \alpha(2t), & 0 \le t \le 1/2, \\ \beta(2t-1), & 1/2 \le t \le 1. \end{cases}$$

Since K_n is ϵ_n -crooked there exist t_1 , t_2 such that $t_1 \leq t_2$, $|a-g(t_2)| < \epsilon_n$ and $|g(t_1)-b| < \epsilon_n$. Hence $t_2 < 1/2$ and $t_1 > 1/2$. But this contradicts the fact that $t_1 \leq t_2$.

Proof of necessity. Suppose $\bigcap_{i=1}^{\infty} K_n$ is hereditarily indecomposable and for some $\epsilon > 0$ there is a sequence n_i such that K_{n_i} is not ϵ -crooked. Then for each i there is a path $\alpha_i : I \to K_{n_i}$, and real numbers t_i such that $\left|\alpha_i([0t_i]) - \alpha_i(1)\right| \ge \epsilon$ and $\left|\alpha_i([t_i1]) - \alpha_i(0)\right| \ge \epsilon(8)$. Let $A_{n_i} = \alpha_i([0t_i])$, $B_{n_i} = \alpha_i([t_i, 1])$, $M_{n_i} = \alpha_i(I)$. Then $\lim \sup A_{n_i}$, $\lim \sup B_{n_i}$ are proper subcontinua of the continuum $\lim \sup M_{n_i}$, and $\lim \sup M_{n_i} = \lim \sup A_{n_i} \cup \lim \sup B_{n_i}$.

LEMMA 2. Let $S = \lim(X_i, f_i)$ where the X_i are Peanian continua with diameters d_i . Suppose for all n, f_n is ϵ_n -crooked where $\epsilon_n < \min_{i < n-1} L(2^{-n}d_i, f_{i-n-1})$. Then S is hereditarily indecomposable.

Proof. Let $K_n = \{z \in \prod_{i=1}^{\infty} X_i | f_{ij}(z_j) = z_i \text{ for } i < j \le n \}$. Then K_n is homeomorphic to X_n and $S = \bigcap_{n=1}^{\infty} K_n$. Now K_n is 2^{3-n} -crooked. For if $g: I \to K_n$ is a path in K_n , then $\binom{9}{}$

⁽⁸⁾ It may be noted that both definitions of ϵ -crooked (for maps and for spaces) depend on the given metric.

⁽⁷⁾ |x-Y| denotes the distance from x to Y.

⁽⁸⁾ We may assume without loss of generality that $\alpha_i(t_i)$ converges.

^(*) π_n denotes the map collapsing each point of $\prod_{i=1}^{\infty} X_i$ onto its *n*th coordinate.

$$I \xrightarrow{g} K_n \xrightarrow{\pi_n} X_n \xrightarrow{f_n} X_{n-1} \xrightarrow{f_{i,n-1}} X_i.$$

Since f_n is ϵ_n -crooked, there exist real numbers t_1 , t_2 such that $0 \le t_1 \le t_2 \le 1$, $\left| f_n \pi_n g(0) - f_n \pi_n g(t_2) \right| < \epsilon_n$, and $\left| f_n \pi_n g(t_1) - f_n \pi_n g(1) \right| < \epsilon_n$. Let $\alpha = g(0), \beta = g(t_2) < (\alpha, \beta \in K_n)$. Then $\left| f_n \pi_n(\alpha) - f_n \pi_n(\beta) \right| < \epsilon_n$, i.e. $\left| \alpha_{n-1} - \beta_{n-1} \right| < \epsilon_n$. Since $\epsilon_n < L(2^{-n}d_i, f_{i-1}), \left| \alpha_i - \beta_i \right| < 2^{-n}d_i$ for $i = 1, 2, \dots, (n-2)$. Hence

$$|\alpha - \beta| = \sum_{i=1}^{\infty} 2^{-i} d_{i}^{-1} |\alpha_{i} - \beta_{i}| \le \sum_{i=1}^{n-2} 2^{-i} d_{i}^{-1} |\alpha_{i} - \beta_{i}| + 2^{2-n}$$

$$\le \sum_{i=1}^{n-2} 2^{-i} d_{i}^{-1} 2^{-n} d_{i} + 2^{2-n}$$

$$\le 2^{-n} \sum_{i=1}^{n-2} 2^{-i} + 2^{2-n}$$

$$< 2^{n-1} + 2^{2-n}$$

$$< 2^{n-1} + 2^{2-n}$$

$$< 2^{n-1} + 2^{n-1}$$

Hence $|g(0)-g(t_2)| < 2^{3-n}$. Similarly, $|g(t_1)-g(1)| < 2^{3-n}$. Hence K_n is 2^{3-n} -crooked. But $S = \bigcap_{n=1}^{\infty} K_n$, so by Lemma 1, S is hereditarily indecomposable.

LEMMA 3. Let $S = \lim(X_i, f_i)$ where the X_i are Peanian continua and S is hereditarily indecomposable. Then for any $\epsilon > 0$ there is an n such that f_{1n} is ϵ -crooked.

Proof. By Lemma 1 there is an n such that K_n is $2^{-1}\epsilon d_1^{-1}$ -crooked. Let $g: I \to X_n$ be a path in X_n . Let $x_i \in X_i$ for $i = n + 1, n + 2, \cdots$. Let $\bar{g}: I \to K_n$ by

$$\bar{g}(t) = (f_{1n}g(t), f_{2n}g(t), \cdots, g(t), x_{n+1}, x_{n+2}, \cdots).$$

Since K_n is $2^{-1}\epsilon d_1^{-1}$ -crooked there exist $t_1 \leq t_2$ such that $\left| \bar{g}(0) - \bar{g}(t_2) \right| < 2^{-1}d_1^{-1}\epsilon$, $\left| \bar{g}(t_1) - \bar{g}(1) \right| 2^{-1}d_1^{-1}\epsilon$. Now $\left| \bar{g}(0) - \bar{g}(t_2) \right| = \sum_{i=1}^n 2^{-i}d_i^{-1} \left| f_{in}g(0) - f_{in}g(t_2) \right|$. Hence $\sum_{i=1}^n 2^{-i}d_i^{-1} \left| f_{in}g(0) - f_{in}g(t_2) \right| < 2^{-1}d_1^{-1}\epsilon$. In particular

$$2^{-1}d_1^{-1}|f_{1n}g(0) - f_{1n}g(t_2)| < 2^{-1}d_1^{-1}\epsilon$$
, or $|f_{1n}g(0) - f_{1n}g(t_2)| < \epsilon$.

Similarly $|f_{in}g(t_1)-f_{in}g(1)|<\epsilon$. Hence f_{1n} is ϵ -crooked.

LEMMA 4. Let Y be a metric space, X a topological space, and f, g two maps of X into Y such that $||f-g|| < \delta$. Then if f is ϵ -crooked, g is $(\epsilon + 2\delta)$ -crooked.

Proof. Suppose $\alpha: I \to X$ is a path in X. Since f is ϵ -crooked there exist $t_1 \le t_2$ such that $|f\alpha(0) - f\alpha(t_2)| < \epsilon$, $|f\alpha(t_1) - f\alpha(1)| < \epsilon$. Hence

$$\left| g\alpha(0) - g\alpha(t_2) \right| \leq \left| g\alpha(0) - f\alpha(0) \right| + \left| f\alpha(0) - f\alpha(t_2) \right| + \left| f\alpha(t_2) - g\alpha(t_2) \right|$$

$$< \left\| g - f \right\| + \epsilon + \left\| g - f \right\|$$

$$< \left\| \epsilon + \right\| 2\delta.$$

Similarly $|g\alpha(t_1) - g\alpha(1)| < \epsilon + 2\delta$.

Let T be a triangulation of the N-sphere S^N (N>1) and suppose $\bar{f}\colon T^n\to T^m$ is a chain map of the nth barycentric subdivision of T onto the mth barycentric subdivision of T. Let $f\colon \left|T^n\right|\to \left|T^m\right|$ be the induced map of S^N upon itself and suppose f is essential. Finally let σ be a N-simplex of T. An open subset σ of S^N is said to be inessential mod $|\sigma|$ if there is a homotopy $F\colon S^N\times I\to S^N$ such that

- (a) $F_0 = f$,
- (b) $F_t | (S^N o) = f$,
- (c) $F_1(o) \subset |\sigma|$.

Otherwise o is essential mod $|\sigma|$.

LEMMA 5. Let o be essential mod $|\sigma|$. Then if F is any homotopy of $S^N \times I$ into S^N satisfying the above conditions (a) and (b), $F_1(\sigma) \supset S^N - |\sigma|$.

Proof. Suppose $x_0 \in S^N - [|\sigma| \cup F_1(\sigma)]$. Since $|\sigma|$ is a strong deformation retract of $S^N - x_0$, there is a homotopy $G: (S^N - x_0) \times I \to S^N$ such that $G_0 = 1$, $G_1 |\sigma| = 1$, and $G_1(S^N - x_0) \subset |\sigma|$. Let $H: S^N \times I \to S^N$ by:

$$H(x,t) = \begin{cases} F(x, 2t), & 0 \le t \le 1/2, \\ f(x), & 1/2 \le t \le 1, x \in o, \\ G(F_1(x), 2t - 1), & 1/2 \le t \le 1, x \in o. \end{cases}$$

Then $H_0=f$, $H_t \mid (S^N-o)=f$, and $H_1(o)=G_1(F_1(o)) \subset G_1(S^N) \subset |\sigma|$. But this contradicts the assumption that o is essential mod $|\sigma|$.

LEMMA 6. Suppose o_1 , o_2 are disjoint open subsets of S^N . Then if each is inessential mod $|\sigma|$ so is their union.

Proof. Let F, G be the homotopies corresponding to o_1 , o_2 respectively. Let $H: S^N \times I \rightarrow S^N$ by:

$$H(x,t) = \begin{cases} F(x, 2t), & 0 \le t \le 1/2, \\ G(x, 2t - 1), & 1/2 \le t \le 1, x \in o_1, \\ F(x, 1), & 1/2 \le t \le 1, x \in o_1. \end{cases}$$

Lemma 7. If X is a component of $f^{-1}(|\sigma|)$, then at least one complementary domain of X is essential mod $|\sigma|$.

Proof. Let o_1, o_2, \dots, o_r be the complementary domains of X. If each o_i is inessential then by Lemma 6 so is their union $S^N - X$. Hence there is a homotopy $F: S^N \times I \rightarrow S^N$ such that $F_0 = f$, $F_t \mid X = f$, and $F_1(S^N - X) \subset |\sigma|$. But then $F_1(S^N) \subset |\sigma|$. Hence F_1 is inessential. But F_1 is homotopic to f and f is essential.

LEMMA 8. Suppose σ_1 , σ_2 , σ_3 are three N-simplexes of T whose geometric realizations are pairwise disjoint. Then there is an integer i_0 ($i_0 = 1, 2, 3$), a component X of $f^{-1}(|\sigma_{i_0}|)$, and a complementary domain o of X such that:

- (a) o is essential mod $|\sigma_{i_0}|$.
- (b) If Y is any component of $f^{-1}(|\sigma_i|)$ (i=1, 2, 3) in o and o' is a complementary domain of Y lying in o, then o' is inessential mod $|\sigma_i|$.

Proof. Let X_1 be a component of $f^{-1}(|\sigma_1|)$. By Lemma 7, X_1 has a complementary domain o_1 which is essential mod $|\sigma_1|$. If the pair (X_1, o_1) does not satisfy condition (b) there is an integer i_2 ($i_2=1, 2, 3$), a component X_2 of $f^{-1}(|\sigma_{i_2}|)$, and a complementary domain o_2 of X_2 such that $o_2 \subset o_1$ and o_2 is essential mod $|\sigma_2|$. Continuing in this fashion we must arrive at the required pair (X, o) after a finite number of steps.

Lemma 9. Let σ_1 , σ_2 , σ_3 be three N-simplexes of T whose geometric realizations are pairwise disjoint. Let p_1 , p_2 , p_3 be interior points of $|\sigma_1|$, $|\sigma_2|$, $|\sigma_3|$ respectively. Then for some permutation (i, j, k) of (1, 2, 3) there is a component X of $f^{-1}(|\sigma_i|)$, a complementary domain o of X, and points p_j' , p_k' of o such that:

- (a) $f(p_i') = p_i$,
- (b) $f(p_k') = p_k$,
- (c) $f^{-1}(|\sigma_j|)$ does not separate p_k' from X,
- (d) $f^{-1}(|\sigma_k|)$ does not separate p_i' from X.

Proof. Let i, o, X be the i_0, o, X of Lemma 8. Let j, k be any permutation of the remaining integers. Let Q_1, Q_2, \cdots, Q_w be those components of $f^{-1}(|\sigma_j|)$ in o which are not separated from X by any other component of $f^{-1}(|\sigma_j|)$. For $1 \le t \le w$ let W_t be the union of the complementary domains of Q_t not containing X. Then the W_t are pairwise disjoint. From condition (b) of Lemma 8, each component of W_t is inessential mod $|\sigma_j|$. Hence by Lemma 6, each W_t is inessential mod $|\sigma_j|$. Again, by Lemma 6, $\bigcup_{i=1}^{m} W_i$ is inessential mod $|\sigma_j|$. Hence there is a homotopy $F: S^N \times I \to S^N$ such that $F_0 = f$, $F_t|(S^N - \bigcup_{i=1}^{m} W_t) = f$, and $F_1(\bigcup_{i=1}^{m} W_t) \subset |\sigma_j|$. By Lemma 5, since o is essential mod $|\sigma_i|$, there is a point $p_k' \in o$ such that $F_1(p_k') = p_k$. Since $F_1(\bigcup_{i=1}^{m} W_t) \subset |\sigma_j|$, $p_k' \notin \bigcup_{i=1}^{m} W_i$. Hence no Q_t (and therefore no component of $f^{-1}(|\sigma_j|)$ separates p_k' from X. It follows from the unicoherence $(1^{(0)})$ of S^N that $f^{-1}(|\sigma_j|)$ does not separate p_k' from X. In the same manner we can find a $p_j' \in o \cap f^{-1}(p_j)$ such that $f^{-1}(|\sigma_k|)$ does not separate p_j' from X.

Lemma 10. Let T be a triangulation of S^N (N>1) and $\bar{f}\colon T^n\to T^m$ a chain map such that the induced map $f\colon |T^n|\to |T^m|$ is essential. Suppose $\sigma_1, \sigma_2, \sigma_3$ are N-simplexes of T whose geometric realizations are pairwise disjoint. Let p_1, p_2, p_3 be points interior to $|\sigma_1|, |\sigma_2|, |\sigma_3|$ respectively. Finally, suppose $\epsilon < \min_i D(p_i, S^N - |\sigma_i|)$. Then f is not ϵ -crooked.

Proof. The hypotheses of this lemma include those of Lemma 9. Rather than restating the conclusions of Lemma 9 let us bodily incorporate its con-

⁽¹⁰⁾ It is here that the proof breaks down for N=1.

clusions and notation. It follows from conditions (c) and (d) and from the unicoherence of S^N that there exist arcs $[p'_j x_1]$ and $[p_k' x_2]$ in S^N such that $x_1 \cup x_2 \subset X$, $[p'_j x_1] \cap f^{-1}(|\sigma_k|) = [p'_k x_2] \cap f^{-1}(|\sigma_j|) = 0$, $[p'_k x_2] \cap X = x_2$, and $[p'_j x_1] \cap X = x_1$. Since X is a connected polyhedron there is an arc $[x_1 x_2]$ in X. Let h_1 , h_2 , h_3 be homeomorphisms of I into $[p'_j x_1]$, $[x_1 x_2]$, and $[x_2 p'_k]$ respectively, such that $h_1(0) = p'_j$, $h_2(0) = x_1$, $h_3(0) = x_2$. Let $g: I \to S^N$ be defined by:

$$g(t) = \begin{cases} h_1(3t), & 0 \le t \le 1/3, \\ h_2(3t-1), & 1/3 \le t \le 2/3, \\ h_3(3t-2), & 2/3 \le t \le 1. \end{cases}$$

If f were ϵ -crooked there would be real numbers t_1 , t_2 such that $t_1 \leq t_2$, $|fg(0) - fg(t_2)| < \epsilon$, and $|fg(t_1) - fg(1)| < \epsilon$. Now $fg(0) = p_j$ and $fg(1) = p_k$.

Since $([p_j'x_1] \cup [x_1x_2]) \cap f^{-1}(|\sigma_k|) = 0$, $|fg(t) - p_k| > \epsilon$ for $0 \le t \le 2/3$. Hence $t_1 > 2/3$. Similarly $|fg(t) - p_j| > \epsilon$ for $1/3 \le t \le 1$. Hence $t_2 < 1/3$. But this contradicts the assumption that $t_1 \le t_2$. Hence f is not ϵ -crooked.

THEOREM 1. Let N > 1. Then there is an $\epsilon > 0$ such that no essential map of S^N upon itself is ϵ -crooked.

Proof. Let T be a triangulation of S^N fine enough to insure the existence of three N-simplexes σ_1 , σ_2 , σ_3 whose geometric realizations are pairwise disjoint. Let p_i be an interior point of $|\sigma_i|$ (i=1, 2, 3) and let

$$2\epsilon < \min_{i} D(p_{i}, S^{N} - |\sigma_{i}|).$$

Suppose now that g is any essential map of S^N upon itself. By the Simplicial Approximation Theorem there are barycentric subdivisions T^n , T^m of T and a chain map $\bar{f}\colon T^n\to T^m$ such that if f is the map of $|T^n|\to |T^m|$ induced by \bar{f} , then f is homotopic to g and $||f-g||<\epsilon/2$. Suppose g is ϵ -crooked. Then by Lemma 4f is 2ϵ -crooked. But by Lemma 10f cannot be 2ϵ -crooked. Hence g cannot be ϵ -crooked.

THEOREM 2. Let $X = \lim(X_i, f_i)$ where for some N > 1 each X_i is an N-sphere and f_i is essential. Then X is not hereditarily indecomposable.

Proof. This theorem is a direct consequence of Theorem 1 and Lemma 3.

REFERENCES

- 1. R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. vol. 1 (1951) pp. 43-51.
- 2. ——, Higher dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 267-273.
- 3. H. Freudenthal, Entwicklungen von Raumen und ihrer Gruppen, Compositio Math. vol. 4 (1937) pp. 145-234.

University of Michigan, Ann Arbor, Michigan