ONE-PARAMETER SEMIGROUPS IN A SEMIGROUP(1)

BY

PAUL S. MOSTERT AND ALLEN L. SHIELDS

1. Introduction. A topological semigroup is a Hausdorff space S with a continuous, associative multiplication. If there is an identity, 1, then H(1) will denote the maximal subgroup of S containing 1; in other words, H(1) is the set of all elements with two-sided inverses. A one-parameter semigroup in S is a continuous, one-to-one function $\sigma: [0, 1] \rightarrow S$ such that $\sigma(0) = 1$, and $\sigma(a+b) = \sigma(a)\sigma(b)$ for all $a, b \in [0, 1]$ for which $a+b \in [0, 1]$.

In this paper we obtain the following result on the existence of oneparameter semigroups.

THEOREM 1. Let S be a compact semigroup with identity, and assume that H(1) is not an open set in S. Let there be a neighborhood V of the identity containing no other idempotents. Then S contains a one-parameter semigroup σ such that $\sigma(a) \in H(1)$ for $0 < a \le 1$. Moreover, $\sigma(a) = \sigma(b)g$, $g \in H(1)$, implies a = b and g = 1.

This is a generalization of a previous result of the authors [4, Theorem A] in which it is assumed that H(1) is a Lie group. Our proof will actually establish the following more general result.

THEOREM 2. The conclusion of the previous theorem is correct if S is merely assumed to be locally compact, provided H(1) contains a compact subgroup G open in H(1) but not open in S, and provided there is a neighborhood V of G containing no idempotents other than the identity.

In the last part of the paper it is shown that if S is a compact semigroup with zero and identity and no other idempotents, and if H(1) is not an open set in S, then S is arcwise connected and S contains a subsemigroup that is an arc with 0 and 1 as its endpoints. Examples are given to show that this result need not be true if there are additional idempotents. Finally, a theorem is stated giving conditions when a semigroup can be locally imbedded in a Lie group.

2. **Preliminaries.** The topological closure of a set A will be denoted by A^- . The set-theoretic difference A minus B will be denoted by $A \setminus B$. For the basic properties of topological semigroups see the survey by A. D. Wallace [5].

Let V be the neighborhood of the identity mentioned in the hypotheses of Theorems 1 and 2; without loss of generality we may assume that V has

Presented to the Society, November 30, 1957; received by the editors August 17, 1959.

⁽¹⁾ This work was supported in part by Tulane University's National Science Foundation contract.

compact closure and that V^- contains no idempotents other than the identity. Let N denote the index set of a fundamental system of neighborhoods of the identity, partially ordered by inclusion. N is thus a directed set and we give it the discrete topology. Let $\{x_{\alpha}\}$ ($\alpha \in N$) denote a net in V^- (for the properties of nets and subnets see [2, Chapter 2]).

Let N^* denote the Stone-Čech compactification of N. Any continuous function f from N to a compact space X admits a unique extension to a continuous function $f^*: N^* \to X$. In particular, define $f: N \to V^-$ by $f(\alpha) = x_{\alpha}$. Choose a point $b \in N^* \setminus N$ such that b is a limit point of the directed set N, and hold this point b fixed throughout the discussion. A generalized limit is then defined by

$$\operatorname{Lim} x_{\alpha} = f^{*}(b).$$

If the ordinary limit exists it will be denoted by $\lim x_{\alpha}$. If $\{y_{\alpha}\}$ is another set in V^- indexed by N we define $\lim y_{\alpha}$ in a similar manner, using the same point b. The generalized limit has the following properties (Gleason [1]).

- (i) $\lim x_{\alpha}$ exists for every set in V^{-} indexed by N.
- (ii) $\lim x_{\alpha} = \lim x_{\alpha}$ whenever $\lim x_{\alpha}$ exists.
- (iii) $\operatorname{Lim} x_{\alpha} y_{\alpha} = (\operatorname{Lim} x_{\alpha})(\operatorname{Lim} y_{\alpha}).$
- (iv) If $x_{\alpha} \in C$, then $\lim x_{\alpha} \in C^{-}$.

A local semigroup is a Hausdorff space R with a distinguished element 1, called the identity, a neighborhood V of 1, and a continuous function $m: V \times V \rightarrow R$ which is associative whenever the triple products are defined, and which has the property that m(x, 1) = m(1, x) = x. We shall write xy instead of m(x, y).

Let G denote the set of all elements of V having inverses in V, in other words, $x \in G$ if and only if $x \in V$ and there is an element $y \in V$ such that xy = yx = 1. R is said to be an adequate local semigroup if G is a group (not merely a local group). We shall need the following result (see [4, Theorem A]).

Let R be a compact adequate local semigroup whose maximal subgroup G is a Lie group. If G is not an open set in R, and if there exists a neighborhood of the identity containing no other idempotents, then there exists a one-parameter semigroup σ such that $\sigma(a) \notin G$ for a > 0. Moreover, if $\sigma(a) = \sigma(b)g$ for some $g \notin G$, then a = b and g = 1.

(The last sentence was not included in the statement of Theorem A but may be found in §4.4.4 of [4].)

3. **Proof of Theorem** 1. Throughout this section we assume the hypotheses of the theorem. As remarked in §2, we may assume that V is open and has compact closure, and that V^- contains no idempotents other than 1. Let $x_{\alpha} \rightarrow 1$ ($x_{\alpha} \in V \setminus H(1)$, $\alpha \in N$).

LEMMA 1. For each $\alpha \in N$ there is a positive integer $n(\alpha)$ such that

(1)
$$x_{\alpha}^{k} \in V, \qquad (1 \leq k \leq n(\alpha)),$$
$$x_{\alpha}^{n(\alpha)+1} \notin V.$$

Proof. Let $x \in V \setminus H(1)$ and assume that $x^n \in V$ $(n = 1, 2, \cdots)$. Then $\Gamma(x) = \{x, x^2, x^3, \cdots\}^- \subset V^-$. But $\Gamma(x)$ is a compact semigroup and hence contains an idempotent. This can only be 1, and therefore $\Gamma(x)$ is a group and $x \in H(1)$, which is a contradiction. (See [3] and [5] for the properties of $\Gamma(x)$.)

Let $\tau: [0, 1] \rightarrow V^-$ be defined by

$$\tau(a) = \operatorname{Lim} x_{\alpha}^{[an(\alpha)]}$$

where [s] denotes the greatest integer less than or equal to s. (x^0 is defined to be 1 for all $x \in V$.)

LEMMA 2. The function τ has the following properties.

- (i) $\tau(0) = 1$,
- (ii) $\tau(1) \in V^- \setminus V$,
- (iii) $\tau(a+b) = \tau(a)\tau(b)$ for $a, b, a+b \in [0, 1]$.

Proof. (i) is obvious.

- (ii) Since $x_{\alpha} \to 1$ we have $\tau(1) = \text{Lim } x^{[n(\alpha)]} = \text{Lim } x^{[n(\alpha)]+1}$; the result now follows from (1).
- (iii) Fix a and b and let $c(\alpha) = [an(\alpha) + bn(\alpha)]$. Then $c(\alpha) = [an(\alpha)] + [bn(\alpha)] + \epsilon(\alpha)$, where $\epsilon(\alpha) = 0$ or 1. Thus $\tau(a+b) = \text{Lim } x_{\alpha}^{\epsilon(\alpha)} = \text{Lim } x_{\alpha}^{[bn(\alpha)]} \text{Lim } x_{\alpha}^{[bn(\alpha)]} \text{Lim } x_{\alpha}^{\epsilon(\alpha)}$ from which the result follows.

The function τ is not necessarily continuous. However, in the local semi-group $R^* = \{\tau([0, 1])\}^-$ we shall be able to construct a one-parameter semi-group. Notice that R^* is abelian and that $R^* \subset V^-$ (and therefore R^* contains no idempotents except the identity).

LEMMA 3. Let $Q = \bigcap_{a>0} \{\tau([0, a])\}^-$. Then Q is a compact abelian subgroup of H(1).

Proof. By (iii) of Lemma 2, $Q^2 \subset Q$, so Q is a compact abelian semigroup. Furthermore, $1 \subseteq Q$ and Q contains no other idempotents (since $Q \subset V^-$). Thus Q is a group, and therefore $Q \subset H(1)$.

LEMMA 4. If $a_n \rightarrow a$ $(a_n, a \in [0, 1])$, then all cluster points of $\{\tau(a_n)\}$ are contained in the set $\tau(a)Q$.

Proof. We may assume $a_n > a$ for all n, or $a_n < a$ for all n. In the first case, $\tau(a_n) = \tau(a_n - a)\tau(a)$ and the result follows since $a_n - a \rightarrow 0$ and therefore $\tau(a_n - a)$ clusters in Q. In the second case $\tau(a) = \tau(a_n)\tau(a - a_n)$. Let x be a cluster point of $\{\tau(a_n)\}$. By taking subnets we may assume that $\tau(a_n) \rightarrow x$, and that $\tau(a - a_n)$ is convergent, say to an element y (necessarily in Q). Then $\tau(a) = xy$ or $x = \tau(a)y^{-1}$.

LEMMA 5. If $a > 0 (a \in [0, 1])$, then $\tau(a) \notin H(1)$.

Proof. Assume the statement were false, so $\tau(a) = g \in H(1)$ for some a > 0. Let $x = \tau(a/2)$, so that $x^2 = g$. Let $y = xg^{-1}$, $z = g^{-1}x$. Then xy = 1, zx = 1 and so x has both a left and a right inverse and therefore $x \in H(1)$. Similarly, $\tau(a/2^n) \in H(1)$ $(n = 0, 1, 2, \cdots)$.

Choose dyadic rationals r_n such that $r_n a \to 1^-$. Then by Lemma 4, $\tau(r_n a)$ clusters in $\tau(1)Q$. But since $\tau(r_n a) \in H(1)$ for all n this implies that $\tau(1) \in H(1)$, contrary to Lemma 2 (ii).

LEMMA 6. There exists $a_0 > 0$ such that τ is one-to-one on $[0, a_0]$. Moreover, $\tau(a) = \tau(b)g$ with $a \leq a_0$ and $g \in Q$ implies a = b.

Proof. Let $c_0 = \inf \{c \in [0, 1]: \tau(c) = \tau(b)g \text{ for some } b > c, g \in Q\}$. It will be sufficient to prove that $c_0 > 0$, for then a_0 can be taken to be any positive number smaller than c_0 .

Assume $c_0 = 0$. Then there exist $c_n < b_n$, $c_n \to 0$, $g_n \in Q$ such that $\tau(c_n) = \tau(b_n)g_n$. Let $d_n = b_n - c_n$. Then

(2)
$$\tau(c_n) = \tau(c_n)\tau(d_n)g_n = \tau(c_n)\tau(d_n)^m g_n^m = \tau(c_n)\tau(md_n)g_n^m$$

for every positive integer m such that $md_n \le 1$. There exist integers m(n) such that $m(n)d_n$ converges to a number d, $1/2 \le d \le 1$. By taking subnets we may assume

$$au(c_n) o h \in Q,$$
 $au(m(n)d_n) o z \in au(d)Q$ (Lemma 4), $g_n^{m(n)} o g \in O.$

From (2) we have h = hzg or $z \in Q$, which is a contradiction to Lemma 5.

Let $R = \tau([0, a_0])Q$. R is a closed set by Lemma 4, and therefore R is a compact abelian adequate local semigroup. Also by Lemma 4, Q is not an open set in R. If H is a closed subgroup of Q then the factor semigroup R/H is an adequate local semigroup whose maximal subgroup is Q/H.

Consider the family F of all pairs (H, σ) where H is a closed subgroup of Q and σ is a one-parameter semigroup in R/H, $\sigma: [0, a_0] \rightarrow R/H$, such that

(3)
$$\sigma(t) \in \pi(\tau(t)Q), \qquad (0 \le t \le a_0),$$

and

(4)
$$\sigma(a) = \sigma(b)g \quad (g \in Q/H) \quad \text{implies} \quad a = b \quad \text{and} \quad g = 1.$$

Here π denotes the natural projection homomorphism from R to R/H. We shall consider all one-parameter semigroups to be defined on the interval $[0, a_0]$. This is no restriction since we may always change parameters and pass to the interval [0, 1]. Notice that condition (3) implies that

(5)
$$\sigma(t) \in Q/H, \qquad (t > 0).$$

The family F is not empty since we may take H = Q in which case R/Q is just the arc $[0, a_0]$, in other words, R/Q is itself a one-parameter semigroup.

We introduce a partial order into F by saying that $(H, \sigma) \leq (H_1, \sigma_1)$ if

- (a) $H_1 \subset H$,
- (b) $p\sigma_1(t) = \sigma(t)$, $(0 \le t \le a_0)$,

where p is the natural projection from R/H_1 to R/H. Notice that $p^{-1}(1)$ is isomorphic to H/H_1 . (The symbol 1 will be used indiscriminately to denote the identity of any semigroup with which we are dealing.)

Let $(H_{\alpha}, \sigma_{\alpha})$ be a linearly ordered subfamily, and let $K = \bigcap_{\alpha} H_{\alpha}$. One sees easily that there is a one-parameter semigroup σ in R/K such that $(H_{\alpha}, \sigma_{\alpha}) \le (K, \sigma)$ for all $(H_{\alpha}, \sigma_{\alpha})$ in the subfamily. Indeed, let $R_{\alpha} = R/H_{\alpha}$. Then R/K is the inverse limit of the R_{α} , and σ may be taken to be the inverse limit of the $\sigma_{\alpha}(t)$. It is easily verified that (3) and (4) hold for σ . Now let $(H_{\alpha}, \sigma_{\alpha})$ be a maximal linearly ordered subfamily. The proof of Theorem 1 will be complete if we can show that in this case $K = \{1\}$. This will follow from the following lemma.

LEMMA 7. Let $(K, \sigma) \in F$. Let $K_1 \subset K$ be a closed subgroup such that K/K_1 is a Lie group. Then there is a one-parameter semigroup σ_1 in R/K_1 such that $(K, \sigma) \leq (K_1, \sigma_1)$.

Proof. Let p denote the natural projection from R/K_1 to R/K. Let $R' = p^{-1}(\sigma([0, a_0]))$. Then R' is an adequate local semigroup contained in R/K_1 , and the maximal group of R' is isomorphic to K/K_1 . We may apply the result stated at the end of §2 to conclude that there is a one-parameter semigroup $\gamma \colon [0, 1] \to R'$ such that if $\gamma(a) = \gamma(b)g(g \in p^{-1}(1))$, then a = b and g = 1. Then $\gamma(1) \in \pi_1(\tau(a_1)Q)$ for some a_1 $(0 < a_1 \le a_0)$, where π_1 denotes the natural projection from R to R/K_1 .

Define $\sigma_1(t)$: $[0, a_0] \rightarrow R'$ by

$$\sigma_1(t) = \gamma(t/a_1),$$
 $(0 \le t \le a_1),$
 $\sigma_1(t) = (\sigma_1(a_1))^k \sigma_1(r),$ $(t \le a_0, t = ka_1 + r).$

Then $p\sigma_1(a_1) = \sigma(a_1)$. From this it follows easily that $p\sigma_1(t) = \sigma(t)$ $(0 \le t \le a_0)$. It only remains to show that σ_1 satisfies (4). Assume that $\sigma_1(a) = \sigma_1(b)g$ for some $g \in Q/K_1$. Applying p we have $\sigma(a) = \sigma(b)p(g)$. But (4) holds for σ and therefore a = b and p(g) = 1. This means that $g \in p^{-1}(1)$, but γ was so chosen that this implies g = 1. This completes the proof.

- 4. Applications. An (I)-semigroup is a semigroup on an arc such that one endpoint is a zero and the other is an identity. The general structure is given in [4, Theorem B]. In particular, if an (I)-semigroup has no idempotents except the two endpoints, then it is isomorphic to one of the following:
 - (1) [0, 1] with the usual multiplication of real numbers,

(2) [1/2, 1] with the product $x \cdot y$ defined by $x \cdot y = \max(1/2, xy)$, where xy denotes the ordinary multiplication of real numbers.

THEOREM 3. Let S be a compact semigroup with zero and identity and no other idempotents, and assume that H(1) is not an open set. Then S contains an (I)-subsemigroup J, and S is arcwise connected.

For the proof of this theorem we shall need the following lemma.

LEMMA 8. Let S be a compact semigroup with zero and identity and no other idempotents. Let $y \in H(1)$. Then $y^n \to 0$, and if yz = y for any $z \in H(1)$ then y = 0.

Proof. Let $\Gamma(y) = \{y, y^2, y^3, \dots \}^-$. This is a compact semigroup and therefore contains an idempotent. As in the proof of Lemma 1, this idempotent cannot be the identity. But it is known [3, Theorem 1] that if $0 \in \Gamma(y)$ then $y^n \to 0$.

If yz = y, then $yz^2 = yz = y$, and so $yz^n = y$. But $z^n \rightarrow 0$ and so y = 0.

We do not know whether yz = y is possible for some $z \neq 1$ in H(1).

Proof of Theorem 3. Let σ be the one-parameter semigroup of Theorem 1. Define $\sigma(t)$ for $t \in [1, 2]$ by

(6)
$$\sigma(t) = \sigma(1)\sigma(t-1), \qquad (1 \le t \le 2).$$

It is easy to see that if a, b, $a+b \in [0, 2]$ then $\sigma(a+b) = \sigma(a)\sigma(b)$, and that $\sigma(t) \in H(1)$ for t > 0.

Assume that $\sigma(a) = \sigma(b)$ (a < b). Then $\sigma(a) = \sigma(a)\sigma(b-a)$, and so by Lemma 8 $\sigma(a) = 0$. Thus either σ is one-to-one on [0, 2], or $\sigma(a) = 0$ for some a.

We may successively extend σ into the intervals [2, 3], [3, 4], etc., so that σ is defined for $0 \le t < \infty$. By Lemma 8, $\lim \sigma(t) = 0$ $(t \to \infty)$. Thus, either σ is one-to-one on $[0, \infty]$, or there is a finite number a such that $\sigma(a) = 0$ and then $\sigma(t) = 0$ for all $t \ge a$. If we let a' be the smallest such a, then σ is one-to-one on [0, a']. In any case, $J = \sigma([0, \infty])$ is the required (I)-semigroup.

To show that S is arcwise connected we observe that if $x \neq 0$ then xJ is an arc from x to 0.

We conjecture that J is a homomorphic retract of S. This would imply that S has a "character" (a homomorphism onto an (I)-semigroup).

If S contains an additional idempotent the result need not be true, even when S is connected. For example, let S be the points of the form $(1+1/(1+x)) \exp(2\pi ix)$ $(0 \le x < \infty)$ together with the unit disc in the complex plane. We multiply as follows:

$$\left(1 + \frac{1}{1+x}\right)e^{2\pi ix} \cdot \left(1 + \frac{1}{1+y}\right)e^{2\pi iy} = \left(1 + \frac{1}{1+x+y}\right)e^{2\pi i(x+y)},$$

$$\rho_1 e^{2\pi ix} \cdot \rho_2 e^{2\pi iy} = \rho_1 \rho_2 e^{2\pi i(x+y)}, \qquad (\rho_1, \rho_2 \le 1),$$

$$\left(1 + \frac{1}{1+x}\right)e^{2\pi ix} \cdot \rho e^{2\pi iy} = \rho e^{2\pi i(x+y)},$$

and take multiplication to be commutative. This is a ray winding asymptotically about the unit disc. The identity $(2e^{2\pi i0}=2)$ of the ray is an identity for S, while the zero of the unit disc is a zero for S. In this case there is no (I)-semigroup, in fact no arc at all, from zero to the identity, although a one-parameter semigroup does exist.

We now give another example to illustrate the possibilities when there are additional idempotents. In this example S is the Cantor set endowed with a multiplication which will be described presently. The endpoint 0 will be a zero, 1 will be an identity, and every neighborhood of the identity will contain additional idempotents.

Let $x \in S$. Then x admits a triadic expansion in which only the digits 0 and 2 are used:

(7)
$$x = \sum_{n=1}^{\infty} \epsilon_n/3^n, \qquad (\epsilon_n = 0 \text{ or } 2).$$

Let the indices in which two occurs be $n_1 < n_2 < \cdots$, and let $J^* = \{1, 2, 3, \cdots, \infty\}$. Define a function $f_x: J^* \to J^*$ by:

(8)
$$f_x(j) = n_j, \qquad (j \neq \infty),$$
$$f_x(\infty) = \infty.$$

This definition is not complete if the expansion (7) has only a finite number of two's. In this case the indices for which a two occurs have a greatest member, n_N . We complete the definition of f_x by

$$(8') f_x(j) = \infty, (j > N).$$

In any case the function f_x has the following property:

(P) f_x is strictly increasing as long as it is finite-valued; once it takes the value ∞ it is constantly equal to ∞ thereafter.

Conversely, let $g: J^* \to J^*$ satisfy (P), and let $x = \sum 2/3^{g(i)}$. Then $x \in S$ and $g = f_x$. So there is a one-to-one correspondence between the Cantor set S and the set of functions satisfying (P). But the functions form a semigroup under composition, and we take this as the multiplication in S (continuity is easily checked).

The idempotents are precisely the elements 1 and $e_n = 2/3 + 2/3^2 + \cdots + 2/3^n$; they converge to 1. The multiplication is order-preserving on one side only: x < y implies $cx \le cy$ for all $c \in S$.

Another corollary to Theorems 1 and 2 is the following result (whose proof we omit).

THEOREM 4. Let S be a locally compact semigroup with identity and assume S is an n-dimensional manifold with regular boundary in some neighborhood of 1. If the hypotheses of Theorem 2 are satisfied and if dim H(1) = n - 1, then S can be locally imbedded in a Lie group.

This result need not be true if dim H(1) < n-1, as the following example shows.

Let I_1 be [0, 1] with ordinary multiplication, and let $I_2 = [0, 1]$ with the multiplication $x \cdot y = \min(x, y)$. Let $S = \{(x, y) : x \in I_1, y \in I_2, y \ge x\}$ and give S the coordinatewise multiplication. Then S satisfies the hypotheses of Theorem 4 except that dim H(1) = 0. However, every neighborhood of 1 contains elements for which the cancellation law fails, and so no neighborhood of the identity can be imbedded in a group.

5. Concluding remarks. The hypotheses of Theorem 1 are not necessary and sufficient for the existence of a one-parameter semigroup. Let us agree to say that an element x is Archimedean with respect to a neighborhood V of the identity $(x \in V)$ if some power of x is not in V. We originally conjectured that if S is a compact semigroup with identity then a necessary and sufficient condition for the existence of a one-parameter semigroup (with $\sigma(t) \notin H(1)$ for t > 0) is the existence of a neighborhood V of 1 and a net x_a in V, $x_a \rightarrow 1$, such that each element x_a is Archimedean with respect to V. The main difficulty in proving this seems to be in showing that Q is a group (Lemma 3). A. M. Gleason has given us an example of a semigroup with an Archimedean collection for which Q is not a group. Although this example does not necessarily kill the conjecture, it certainly throws doubt on it.

We further conjecture that if S is a locally compact connected semigroup with identity, and if there is a neighborhood of 1 containing no other idempotents, then S contains a one-parameter semigroup.

Finally, we note that R. J. Koch [6] has an unpublished result showing that every compact connected semigroup with identity contains a generalized arc, but an example of R. P. Hunter shows that there need not be any arc having the identity as one endpoint. These results will appear soon.

REFERENCES

- 1. A. M. Gleason, Groups without small subgroups, Ann. of Math. vol. 56 (1952) pp. 193-212.
 - 2. J. L. Kelley, General topology, New York, Van Nostrand, 1955.
- 3. R. J. Koch, On monothetic semigroups, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 397-401.
- 4. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. vol. 65 (1957) pp. 117-143.
- 5. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 95-112.
 - 6. R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. vol. 9 (1959) pp. 723-728.

Tulane University,
New Orleans, Louisiana
University of Michigan,
Ann Arbor, Michigan