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1. Introduction. A topological semigroup is a Hausdorff space S with a

continuous, associative multiplication. If there is an identity, 1, then 77(1)

will denote the maximal subgroup of S containing 1; in other words, 77(1)

is the set of all elements with two-sided inverses. A one-parameter semigroup

in 5 is a continuous, one-to-one function a: [0, l]—>S such that o-(0) = 1, and

o-(a + b)=o-(a)<r(b) for all a, bE [0, l] for which a+ 6£ [0, l].

In this paper we obtain the following result on the existence of one-

parameter semigroups.

Theorem 1. Let S be a compact semigroup with identity, and assume that

77(1) is not an open set in S. Let there be a neighborhood V of the identity con-

taining no other idempotents. Then S contains a one-parameter semigroup a

such that <r(a)£77(1) for 0<a^l. Moreover, a(a)=o-(b)g, gEH(l), implies

a = b and g=l.

This is a generalization of a previous result of the authors [4, Theorem A]

in which it is assumed that 77(1) is a Lie group. Our proof will actually estab-

lish the following more general result.

Theorem 2. The conclusion of the previous theorem is correct if S is merely

assumed to be locally compact, provided 77(1) contains a compact subgroup G

open in 77(1) but not open in S, and provided there is a neighborhood V of G

containing no idempotents other than the identity.

In the last part of the paper it is shown that if 5 is a compact semigroup

with zero and identity and no other idempotents, and if 77(1) is not an open

set in S, then 5 is arcwise connected and 5 contains a subsemigroup that is

an arc with 0 and 1 as its endpoints. Examples are given to show that this

result need not be true if there are additional idempotents. Finally, a theorem

is stated giving conditions when a semigroup can be locally imbedded in a

Lie group.

2. Preliminaries. The topological closure of a set A will be denoted by

A~. The set-theoretic difference A minus B will be denoted by A\B. For the

basic properties of topological semigroups see the survey bv A. D. Wallace

[5].
Let V be the neighborhood of the identity mentioned in the hypotheses

of Theorems 1 and 2; without loss of generality we may assume that V has
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compact closure and that V~ contains no idempotents other than the iden-

tity. Let N denote the index set of a fundamental system of neighborhoods

of the identity, partially ordered by inclusion. TV is thus a directed set and we

give it the discrete topology. Let {xa} iaGN) denote a net in V~ (for the

properties of nets and subnets see [2, Chapter 2]).

Let N* denote the Stone-Cech compactification of N. Any continuous

function / from TV to a compact space X admits a unique extension to a con-

tinuous function /*: N*—>X. In particular, define f:N—>V~ by /(a)=x„.

Choose a point bGN*\N such that b is a limit point of the directed set N,

and hold this point b fixed throughout the discussion. A generalized limit

is then defined by

Lim xa = f*ib).

If the ordinary limit exists it will be denoted by lim xa. If {,„} is another

set in V~ indexed by N we define Lim ya in a similar manner, using the same

point b. The generalized limit has the following properties (Gleason [l]).

(i) Lim x„ exists for every set in V~ indexed by N.

(ii) Lim xa — lim xa whenever lim xa exists.

(iii) Lim xaya= (Lim xa)(Lim ya).

(iv) If xa£G, then Lim xaGC~.

A local semigroup is a Hausdorff space R with a distinguished element 1,

called the identity, a neighborhood V of 1, and a continuous function

m: VX V—*R which is associative whenever the triple products are defined,

and which has the property that mix, l)=rez(l, x)=x. We shall write xy

instead of w?(x, y).

Let G denote the set of all elements of V having inverses in V, in other

words, xGG if and only if xG V and there is an element yGV such that

xy = yx = 1. R is said to be an adequate local semigroup if G is a group (not

merely a local group). We shall need the following result (see [4, Theorem

A]).
Let R be a compact adequate local semigroup whose maximal subgroup G is

a Lie group. If G is not an open set in R, and if there exists a neighborhood of

the identity containing no other idempotents, then there exists a one-parameter

semigroup a such that <r(a) GG for a>0. Moreover, ifo~ia) =<?ib)gfor some gGG,

then a — b and g — 1.

(The last sentence was not included in the statement of Theorem A but

may be found in §4.4.4 of [4].)

3. Proof of Theorem 1. Throughout this section we assume the hypotheses

of the theorem. As remarked in §2, we may assume that V is open and has

compact closure, and that V~ contains no idempotents other than 1. Let

x„^l (xa<EF\27(l),a£7V).

Lemma 1. For each aG A there is a positive integer re (a) such that
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X* EV, (l£k£ n(a)),

(1) *:W+1 £ V.

Proof. Let *£F\77(1) and assume that xn£F (« = 1, 2, • • • ). Then

T(x)= {*, x2, x3, • • • }~CF-. But T(x) is a compact semigroup and hence

contains an idempotent. This can only be 1, and therefore T(x) is a group

and x£77(l), which is a contradiction. (See [3] and [5] for the properties

ofT(x).)

Let r: [0, l]—*V~ be defined by

. .      x.       [«»(«)l
r(a) = Lim xa

where [5] denotes the greatest integer less than or equal to 5. (x° is defined

to be 1 for all x£ V.)

Lemma 2. The function r has the following properties.

(i) r(0) = l,

(ii) r(l)£F-\F,
(iii) T(a + b)=T(a)r(b) for a, b, a+bE[0, l].

Proof, (i) is obvious.

(ii) Since xa—>1 we have r(l) = Lim x[n(a)1 =Lim x[n(a)I+1; the result now

follows from (1).

(iii) Fix a and b and let c(a) = [an(a)+bn(a)]. Then c(a)=[an(a)]

+ [bn(a)] + 6(a), where t(a) = 0 or 1. Thus r(a + b) = Lim xacia)

= Lim xJanM] Lim xat6n(a)1 Lim x«,(a) from which the result follows.

The function t is not necessarily continuous. However, in the local semi-

group R*= {r([0, l])}~ we shall be able to construct a one-parameter semi-

group. Notice that R* is abelian and that R*EV~ (and therefore R* con-

tains no idempotents except the identity).

Lemma 3. Let Q = C\a>o {t([0, a])}~. Then Q is a compact abelian subgroup

0/77(l).

Proof. By (iii) of Lemma 2, Q2EQ, so Q is a compact abelian semigroup.

Furthermore, 1EQ and Q contains no other idempotents (since QEV~).

Thus Q is a group, and therefore QEH(l).

Lemma 4. If an—>a (an, a£[0, l]), then all cluster points of {r(an)} are

contained in the set r(a)Q.

Proof. We may assume an>a for all n, or an <a for all n. In the first case,

r(an) =r(an — a)r(a) and the result follows since a„ — a—>0 and therefore

r(a„— a) clusters in Q. In the second case r(a) =r(a„)r(o — a„). Let x be a

cluster point of {r(a„)}. By taking subnets we may assume that r(an)—>x,

and that T(a—an) is convergent, say to an element y (necessarily in Q). Then

r(a) =xy or x=r(a)y-1.
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Lemma 5. 7/a>0(aG[0, l]), then T(a)£77(l).

Proof. Assume the statement were false, so r(a) =g£27(l) for some a>0.

Let x = r(a/2), so that x2 = g. Let y = xg~1, z = g~xx. Then xy= 1, zx= 1 and so

x has both a left and a right inverse and therefore x£77(l). Similarly,

T(a/2")£77(1) (« = 0, 1, 2, • • • ).

Choose dyadic rationals rn such that rna—>1_. Then by Lemma 4, r(r„a)

clusters in t(1)(). But since r(r„a)£27(l) for all re this implies thatr(l)G27(l),

contrary to Lemma 2 (ii).

Lemma 6. There exists a0>0 such that t is one-to-one on [0, a0]. Moreover,

7(a) =r(6)g with atkao and gGQ implies a = b.

Proof. Let c0 = inf {cG [0, l]: ric) =rib)g for some b>c, gGQ}- It will be

sufficient to prove that c0>0, for then Co can be taken to be any positive

number smaller than c0.

Assume c0 = 0. Then there exist cn<bn, c„—>0, gnGQ such that ricn)

— Tibn)gn. Let dn = bn — cn. Then

(2) ric„) = Tic„)Tidn)gn = r(cn)r(rfn) g„ = Tic„)Timd„)gn

for every positive integer m such that mdn ^ 1. There exist integers ?re(re) such

that min)dn converges to a number d, l/2^d^l. By taking subnets we may

assume

r(cB) -^hGQ,

rimin)dn) —» z G rid)Q (Lemma 4),

m(n) _

gn -g^Q-

From (2) we have h — hzg or zG(?i which is a contradiction to Lemma 5.

Let 2? = t([0, a0])^. 2? is a closed set by Lemma 4, and therefore R is a

compact abelian adequate local semigroup. Also by Lemma 4, Q is not an

open set in R. If 27 is a closed subgroup of Q then the factor semigroup 2?/27

is an adequate local semigroup whose maximal subgroup is (?/27.

Consider the family F of all pairs (27, a) where 27 is a closed subgroup of

Q and a is a one-parameter semigroup in 2?/77, a: [0, a0]—>R/H, such that

(3) ait) G t(t(/)0), (0|^ a.),

and

(4) o-(a) = o-(6)g   (g G Q/H)    implies   a = b    and   g = 1.

Here w denotes the natural projection homomorphism from R to 2?/27. We

shall consider all one-parameter semigroups to be defined on the interval

[0, a0]. This is no restriction since we may always change parameters and

pass to the interval [0, l]. Notice that condition (3) implies that
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(5) a(t) £ (2/77, (/ > 0).

The family F is not empty since we may take 77=0/ in which case R/Q is

just the arc [0, a0], in other words, R/Q is itself a one-parameter semigroup.

We introduce a partial order into F by saying that (77, a) g (77i, <ri) if

(a) HiEH,
(b) po-i(t)=a(t), (Og^o,),

where p is the natural projection from R/Hi to i?/77. Notice that p~x(l) is

isomorphic to H/Hi. (The symbol 1 will be used indiscriminately to denote

the identity of any semigroup with which we are dealing.)

Let (77a, <r0) be a linearly ordered subfamily, and let K = Da 77„. One sees

easily that there is a one-parameter semigroup <r in R/K such that (77a, <ra)

g (K, a) for all (77a, <ra) in the subfamily. Indeed, let Ra = R/Ha. Then R/K

is the inverse limit of the Ra, and a may be taken to be the inverse limit of

the aa(t). It is easily verified that (3) and (4) hold for a. Now let (77„, <ra)

be a maximal linearly ordered subfamily. The proof of Theorem 1 will be

complete if we can show that in this case K = {1}. This will follow from the

following lemma.

Lemma 7. Let (K, a)EF. Let KiEK be a closed subgroup such that K/Ki

is a Lie group. Then there is a one-parameter semigroup <Ji in R/Kx such that

(K,a)^(Ki,ai).

Proof. Let p denote the natural projection from R/Ki to R/K. Let

R' = p~x(o-([0, ao])). Then R' is an adequate local semigroup contained in

R/Ki, and the maximal group of R' is isomorphic to K/Ki. We may apply

the result stated at the end of §2 to conclude that there is a one-parameter

semigroup 7: [0, l]—*R' such that if 7(0) =y(b)g(gEp~1(l)), then a = b and

g=l. Then y(l)E'^i('r(ai)Q) for some Oi (0<ai^a0), where wi denotes the

natural projection from R to R/Ki.

Define <ri(t): [0, a0]^>R' by

<n(t) = y(t/ai), (O^l^ai),

<?i(t) = (<ri(ai))ko-i(r), (l ^ aB, t = kai + r).

Then pffi(ai) —o-(ai). From this it follows easily that pax(t)=a(t) (0^t^a0).

It only remains to show that ci satisfies (4). Assume that <ri(a) =<ri(b)g

for some gEQ/Ki. Applying p we have a(a)=a(b)p(g). But (4) holds for <r

and therefore a = b and p(g) = l. This means that gEp~x(l), but 7 was so

chosen that this implies g= 1. This completes the proof.

4. Applications. An (7)-semigroup is a semigroup on an arc such that one

endpoint is a zero and the other is an identity. The general structure is given

in [4, Theorem B]. In particular, if an (7)-semigroup has no idempotents

except the two endpoints, then it is isomorphic to one of the following:

(1)   [0, l] with the usual multiplication of real numbers,



1960] ONE-PARAMETER SEMIGROUPS IN A SEMIGROUP 515

(2) [1/2, l] with the product x-y defined by x-y = max (1/2, xy), where

xy denotes the ordinary multiplication of real numbers.

Theorem 3. Let 5 be a compact semigroup with zero and identity and no

other idempotents, and assume that 77(1) is not an open set. Then S contains an

ii)-sub semigroup J, and S is arcwise connected.

For the proof of this theorem we shall need the following lemma.

Lemma 8. Let S be a compact semigroup with zero and identity and no other

idempotents. Let yG77(l). Then yn—>0, and if yz = y for any z£77(l) then y = 0.

Proof. Let T(y)= {y, y2, y3, • • • }". This is a compact semigroup and

therefore contains an idempotent. As in the proof of Lemma 1, this idem-

potent cannot be the identity. But it is known [3, Theorem 1 ] that if OGr(y)

then yn—>0.

If yz = y, then yz2 = yz — y, and so yzn = y. But zn—>0 and so y = 0.

We do not know whether yz = y is possible for some z^l in 77(1).

Proof of Theorem 3. Let a be the one-parameter semigroup of Theorem 1.

Define ait) for *£[l, 2] by

(6) ail) = *il)ait - 1), (l*t* 2).

It is easy to see that if a, b, a + bG[0, 2] then aia+b) =a(a)o-(6), and that

<r(*)£77(l) for/>0.

Assume that <r(a)=<r(&) (a<&). Then aia)=aia)aib — a), and so by

Lemma 8 cr(a) =0. Thus either a is one-to-one on [0, 2], or <r(a) =0 for some a.

We may successively extend a into the intervals [2, 3], [3, 4], etc., so

that a is defined for 0^/< co. By Lemma 8, lim ait) =0 (/—>oo). Thus, either

a is one-to-one on [0, oo ], or there is a finite number a such that <r(a) =0 and

then ait) =0 for all t^a. If we let a' be the smallest such a, then a is one-to-one

on [0, a']. In any case, 7 = er([0, oo ]) is the required (7)-semigroup.

To show that 5 is arcwise connected we observe that if x ^ 0 then x J is an

arc from x to 0.

We conjecture that 7 is a homomorphic retract of 5. This would imply

that 5 has a "character" (a homomorphism onto an (7)-semigroup).

If 5 contains an additional idempotent the result need not be true, even

when 5 is connected. For example, let 5 be the points of the form

(l+l/(l+x)) exp i2wix) (0^x< co) together with the unit disc in the com-

plex plane. We multiply as follows:

(l -j-)e2*«.( 14-)e2riv = ( 14-) e2"(*+»>
V 1 +  X/ \ 1  + ,/ \ l  + x + yj

Ple2^-p2e2"'y = PlP2e2*i<x+y\ (Pl, p2 < 1),

( 1 4-\e2rix-pe2Tiy = pe2iri(x+y),

\        1 + x /
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and take multiplication to be commutative. This is a ray winding asymp-

totically about the unit disc. The identity (2e2"i0 = 2) of the ray is an identity

for S, while the zero of the unit disc is a zero for 5. In this case there is no

(7)-semigroup, in fact no arc at all, from zero to the identity, although a one-

parameter semigroup does exist.

We now give another example to illustrate the possibilities when there

are additional idempotents. In this example 5 is the Cantor set endowed with

a multiplication which will be described presently. The endpoint 0 will be a

zero, 1 will be an identity, and every neighborhood of the identity will con-

tain additional idempotents.

Let x£5. Then x admits a triadic expansion in which only the digits 0

and 2 are used:

OG

(7) x = £ *»/3n, («» = 0 or 2).
i

Let the indices in which two occurs be «i < n2 < ■ • • , and let J*

= {l, 2, 3, • • • , oo }. Define a function fx: J*—>J* by:

,  . fx(j) = nh OV   co),

/*(<*>) = «.

This definition is not complete if the expansion (7) has only a finite number

of two's. In this case the indices for which a two occurs have a greatest mem-

ber, nn. We complete the definition of fx by

(8') /.0")-«, (]>N).

In any case the function fx has the following property:

(P) fx is strictly increasing as long as it is finite-valued; once it takes the

value co it is constantly equal to °° thereafter.

Conversely, let g: J*-* J* satisfy (P), and let x= X2/3»<;>. Then x£5

and g =fx. So there is a one-to-one correspondence between the Cantor set 5

and the set of functions satisfying (P). But the functions form a semigroup

under composition, and we take this as the multiplication in S (continuity is

easily checked).

The idempotents are precisely the elements 1 and e„ = 2/3 + 2/32+ • • •

+ 2/3"; they converge to 1. The multiplication is order-preserving on one

side only: x<y implies cx^cy for all c£5.

Another corollary to Theorems 1 and 2 is the following result (whose proof

we omit).

Theorem 4. Let S be a locally compact semigroup with identity and assume

S is an n-dimensional manifold with regular boundary in some neighborhood of 1.

If the hypotheses of Theorem 2 are satisfied and if dim 77(1) = n — 1, then S can

be locally imbedded in a Lie group.
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This result need not be true if dim 27(1) <re —1, as the following example

shows.

Let 7X be [0, l] with ordinary multiplication, and let 72= [0, l] with the

multiplication x-y = min (x, y). Let 5= {(x, y):xG7x, yG72, y2tx} and give

5 the coordinatewise multiplication. Then 5 satisfies the hypotheses of Theo-

rem 4 except that dim 77(1) =0. However, every neighborhood of 1 contains

elements for which the cancellation law fails, and so no neighborhood of the

identity can be imbedded in a group.

5. Concluding remarks. The hypotheses of Theorem 1 are not necessary

and sufficient for the existence of a one-parameter semigroup. Let us agree

to say that an element x is Archimedean with respect to a neighborhood V

of the identity (x£ V) if some power of x is not in V. We originally con-

jectured that if 5 is a compact semigroup with identity then a necessary

and sufficient condition for the existence of a one-parameter semigroup (with

<r(£)£77(l) for />o) is the existence of a neighborhood V of 1 and a net x„

in V, xa—>1, such that each element xa is Archimedean with respect to V. The

main difficulty in proving this seems to be in showing that Q is a group

(Lemma 3). A. M. Gleason has given us an example of a semigroup with an

Archimedean collection for which Q is not a group. Although this example

does not necessarily kill the conjecture, it certainly throws doubt on it.

We further conjecture that if 5 is a locally compact connected semigroup

with identity, and if there is a neighborhood of 1 containing no other idem-

potents, then 5 contains a one-parameter semigroup.

Finally, we note that R. J. Koch [6] has an unpublished result showing

that every compact connected semigroup with identity contains a generalized

arc, but an example of R. P. Hunter shows that there need not be any arc

having the identity as one endpoint. These results will appear soon.
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