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This paper treats various problems connected with systems of differential

equations of the form

(1) x" = f(t, X, x')

for a vector x. The first part (§§1-5) deals with a priori bounds for |*'| for

a solution x = x(t). The next part (§§8-9) gives existence theorems for non-

singular boundary value problems

(2) x(0) = %o    and    x(T) = xt.

§§10-11 give existence theorems for solutions of singular boundary value

problems, that is, solutions which exist for all t ^ 0 and satisfy

(3) x(0) = Xo   and    | x |   ^ R for t ^ 0 or x—> 0 as /—»«>.

In §§12-13, there are obtained uniqueness and continuity theorems for the

solutions satisfying (2) or (3).

The results are applied in §§14-15 to obtain existence theorems for peri-

odic and almost periodic solutions. This application was suggested by a lec-

ture of G. Seifert.

Finally, §§16-17 deal with existence of solutions of

(4) x" = X(t, x, x', z),       z' = Z(t, x, x', z)

satisfying

(5) x(0) = Xo,       x(T) = xt   and   z(0) = z0,

where x and z are vectors (not necessarily of the same dimension).

1. Below, if x, f are vectors, \x\ denotes the Euclidean length of x and

x-f the scalar product of x and/.

In §§1—5, there will be obtained a priori bounds for the first derivatives of

w-vector functions x(t) subject to second order differential inequalities. In

this direction, our results are new only for n> 1. For reference and compari-

son, the following is stated for the case «=1.
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Lemma 1 (Nagumo [8]). Let 0(s), where 0^=5 < °°, be a positive continuous

function satisfying

sds/<f>is) =  oo.

Let R>0 and T?tS>0. Then there exists a constant M, depending only on 0

and R, S, with the following property: If x = x(i) is a real-valued function of

class C2 for O^t^T satisfying

(1.2) \x\   ^ R,        | x"\   ^ 0(| x'| ),

then \x'\ gMfor O^t^T.

For example, M can be chosen to be the solution of the equation

sds/d>is) = 2R.
2R/S

(Actually, the condition (1.1) on 0 can be relaxed to the assumption that

equation (1.3) have a solution M.)

Functions 0(5) satisfying the conditions of Lemma 1 will be called

Nagumo functions. (For example, (pis) =ys2-\-C>0, where 7, C are constants,

is a Nagumo function.)

2. An example of Heinz [5] given in connection with partial differential

inequalities shows that Lemma 1 is false if x = x(/) is a vector-valued func-

tion. His example is the binary vector xit) = (cos pt, sin pt) which satisfies

|x| =1, |x'| =\p\ and |x"| =|x'|2. Thus (1.2) holds with R=l and 0(5)

= 52 + l, but there is no a priori bound for arbitrary p.

Heinz's arguments suggest the consideration of auxiliary inequalities,

different in form from (1.2), say

(2.1) |*|   Si?,        |x"|   ^P",

where pit) is a (scalar) function of class C2 on 0^/:S T.

The desired a priori bounds for \x'\, in case of a vector x, are given by

the following lemma and its consequences.

Lemma 2. Let 0(5), 0:Ss<<», be a Nagumo function. Let p=pit) be a

iscalar) function of class C2 and O^pit) ^Ki on O^t^T. Let R>0, T^S>0.

Then there exists a constant M, depending only on 4>is), K\, R and S, with the

following property: If x = x(<) is a ivector-valued) function of class C2 onO^t^T

satisfying (1.2) and (2.1), then \x'\ gMfor O^t^T.

Heinz's example above shows that condition (2.1) in xit) cannot be

omitted. It will be seen below that condition (1.2) cannot be omitted either.

If, however, (1.2) is omitted (and (2.1) retained), one obtains a priori bounds

for |x'| on all subintervals p^t^T — p oi O^t^T, where 0<p<T; cf. §3.
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Remark. It will be shown (§4) that condition (1.2) on x(t) can be omitted

in Lemma 2 if p(t) satisfies

(2.2) \P'\  se\x'\ +Ci

for some constants 6, Ci with O<0<1.

If one chooses <p, p to be ys2 + C, a\x\ 2+K, respectively, then Lemma 2

implies the following:

Lemma 3. Let a, y, R, S, T, C, K be non-negative constants and T^S>0.

Then there exists a constant M=M(a, y, R, S, C, K) with the following prop-

erty: If x = x(t) is of class C2 on Q^t^T satisfying

(2.3) \x\   ^ R,        \x"\   = y\x'\2 + C,

(2.4) |a:|   g R, \x"\   ^ ar" + K,    where    r=  \ x\2,

then \x'\ ^M on O^t^T.

Heinz's example of the binary vector x = (cos pt, sin pi) shows that con-

dition (2.4) cannot be omitted. It is easy to give an example of a family of

(scalar) functions x(t) satisfying inequalities of the form (2.4) but not of the

form (2.3) and for which there is no a priori bound for |*'|. To this end, let

e, p>0 and let x(t) =x(t; p, e) be the scalar function which is l+ep4(t—l/p)i

or 1 according as 0^t^l/p or t>l/p. Then x' is 4ep4(t-l/p)3 or 0 and x"

is \2tp\t-l/p)2 or 0 according as 0^^1/£ or t>l/p. Since lgx = l+e

and x"^0, it is clear that (2.4) holds with i?=l+e, a=l/2 and K = 0. As

x'(0) = — Atp, there is no a priori bound for all p>0 (and e>0 fixed).

Note that if yR<l, then (2.3) implies (2.4) with

(2.5) a = y/2(l - yR)    and    K = C/(l - yR).

For since

(2.6) r" = 2(x-x" + | x'\2),

(2.3) shows that r"^2(l-7i?)|x'|2-2Ci? and another application of (2.3)

gives r"^2(l—yR)(\x"\ —C)/y — 2CR. This inequality is equivalent to

(2.4)-(2.5). Conversely, if 2F«<1, then (2.4) implies (2.3) with

(2.7) 7 = 2a/(l - 2Ra)    and    C = K/(l - 2Ra).

It can also be remarked that if (2.3) holds and, in addition,

(2.8) x-x" ^ 0,

then (2.4) holds with a = y/2 and K = C.

In view of the remark concerning (2.5), Lemma 3 has the following con-

sequence:

Corollary 1. Let y, R, S, T, C be non-negative constants subject to yR<l
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and T2r5>0. Then the analogue of Lemma 3 holds with an M=Miy, R, S, C)

if condition (2.4) on xit) is omitted.

In view of Heinz's example x= (cos pt, sin pt), yR<\ cannot be relaxed to

yR g 1 in this assertion. (Heinz's results on partial differential inequalities

involve the condition yR < 1/2.)

The remark concerning (2.7) and Lemma 3 (or the remark concerning

(2.2) and Lemma 2) imply

Corollary 2. Let a, R, 5, T, K be non-negative constants subject to 2Ra<\

and T7zS>0. Then the analogue of Lemma 3 holds with an M= Mia, R, S, K)

if condition (2.3) on xit) is omitted.

For the family of functions x = x(/; p, e), mentioned after Lemma 3,

27va=l+e. This shows that 1 in the inequality 2i?a<l cannot be replaced

by a larger constant.

3. A priori bound on [p, T—p]. It will first be shown that the inequality

(2.1) implies an a priori bound for |x'| on p^t^ T—p, where 0<ju<7\

LetO<p<T andO^t^T-p. The relations

it+ li- s)x"is)ds,

t+p — s^O, and (2.1) imply that

p | *'(/) |   g 2R + pit + p) - pit) - pp'it).

Hence

(3.2) | x'it) |   g (2ic + Ki)/n - p'it)        for 0 g / g T - p,

where O^p^Tm for |x| gi?.

Replacing (3.1), for p^t^T, by

xit) - xit - p) - px'it) = -   f    it - p - s)x"is)ds
J t-,i

leads to

(3.3) | x'it) |   g i2R + Ki)/n + p'it)        iorn^t^T.

Adding (3.2) and (3.3) gives

(3.4) | x'it) |   g (27v + Ki)/p       for p g t g T - p.

4. On (2.2). If, in addition to (2.1), the inequality (2.2) holds, then the

choice p= T/2 in (3.2) and (3.3) shows that, for O^tS T,

(4.1)       |*'(0|   ^ iMi + Ci)/(1 - 9),    where    Mx = 2(22? 4- Ki)/T.

Let M denote the value of iMi + Cx)/(1— 0), when T=S. Since x(i) is given
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on an interval of length T^S, it follows by applying the inequality \x'\ ^M

on every subinterval of length S, that M is the desired a priori bound.

5. Proof of Lemma 2. Let p=T/2 in (3.2) and (3.3) and let Mi = Mx(T)

be the constant defined in (4.1). Then (1.2) and (3.2)-(3.3) imply that

(5.1) | x'-x"\/4>(\ x'\) g  | x'\   g Mi ± p',

where + is required according as t^ T/2 or t^ T/2.

Defined $(s) by

(5.2) Hs) =  f udu/d>(u).
Jo

Then

(5.3) | 4>( | x'(t) | ) - $( | x'(T/2) | ) |   = \fx'-x"dt/4>(\x'\)  ,

where the integral is taken over the /-interval with endpoints / and F/2. It

follows, therefore, from (5.1) that the expression on the left of (5.3) is major-

ized by 2~xMiT+Ki. Since |x'(F/2)| gAfj by the case m=F/2 of (3.4), it

follows from (5.3) that

(5.4) | x'(t)\   ^ Mi       onOg/IT,

where M2 = M2(T) is defined by

Mi = $-» (— MiT + Ki + *(Afi)V

in terms of the inverse function 4>_I of the increasing function 4>. Clearly

M=Mi(S) is the desired a priori bound.

6. Below there will also be needed the following:

Lemma 4 (Scorza-Dragoni [10]). Let g(t, x, x') be a continuous and

bounded (vector-valued) function for O^t^T and arbitrary (x, x'). Then, for

arbitrary x0 and xt, the system of differential equations

(6.1) x" = g(t,x,x')

has at least one solution x = x(t) satisfying

(6.2) *(0) = Xo    and    x(T) = xT.

It has been pointed out by Bass [2] that this lemma is easily derived

from Schauder's fixed point theorem if one considers (6.1) as an inhomo-

geneous form of the linear homogeneous equation x" = 0.

7. In the remainder of the paper, the function p(t) in Lemma 2 will be

taken to be p(t) =a\x\ 2+K; <f>(s) will be a Nagumo function that is, a func-

tion 0 satisfying the conditions of Lemma 1.
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In order to be able to apply Lemma 4 below, it will be convenient to

have the following remark: Let fit, x, x') be a continuous (vector-valued)

function on a set

(7.1) DiR, T):     0 g t g T,        \ x\   ■£ R,     x' arbitrary,

and let f have one or more of the following properties:

(7.2) x-/4-|x'|2>0    when    x-x' = 0    and    | x |   > 0,

(7.3) x-f + | x'|2 > 0    when    x-x' = 0    and    | x \   = R,

(7.4) |/|   <,2a(x-f+  |x'|2) + 2i:,

(7.5) |/|   £0(|*'|).

Let M>0. Then there exists a continuous, bounded function g(t, x, x') de-

fined for 0 g / g T and arbitrary (x, x') with the corresponding set of properties

among the following:

(7.2') x-g+ | x'|2 > 0   when    x-x' = 0   and    |x|   > 0,

(7.3') x-g+|x'|2>0    when    x-x' = 0    and    | x|   2:2?,

(7.4') \g\   g 2a(x-g+ \x'\2) + K,

(7-5') |g|   g0(|x'|),    .

and, at the same time, satisfying

(7.6) git, x, x') = /(/, x, x') for 0 g / g T,   \ x |   g R,   \x'\   g M.

In fact, one obtains such a g as follows: Let 5(s), where 0gs< », be a

scalar continuous function which satisfies

3=1, 0 < 8 < 1,5 = 0 according as 5 g M, M < s < 2M, s 2t 2M.

Put

git, x, x') = 6( | x' | )/(/, x, x')        on DiT, R),

git, x, x') = (2?/ | x | )git, Rx/ | x | , x')        for | x |   > R.

On DiT, R), the relation

x-g+ | x'|2 = 5(| x'|)(x-/+  | x'|2) + (1 - 5(| x'|))| x'|2

makes it clear that g has the desired properties on DiT, R). Furthermore, the

validity of the properties for |x| =R implies their validity for |x| >R.

Note that (7.5), (7.4), respectively, imply that a solution x = x(<) of

x"=/(*, x, x') satisfies (1.2), (2.1) with p = a|x|2+2v.

8. The next desired result in the following theorem dealing with the

existence of solutions of nonlinear, nonsingular, boundary value problems

(under conditions more general than those in Lemma 4) for a system
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(8.1) x" =f(t,x,x').

Theorem 1. Let f(t, x, x') be a continuous function on D(T, R) in (7.1)

satisfying

(8.2) x-f+\x'\2^0   if   x-x' = 0   and    \ x\   = R.

In addition, let f satisfy (7.4) and (7.5), where a, K are non-negative constants

and 4>(s) is a Nagumo function. Let \xo\, \xt\ 2=i?. Then the system (8.1) has

at least one solution x = x(t) satisfying x(0) =x0, x(T) =xT.

In the case x is scalar, condition (7.4) can be omitted; [8].

In Theorem 1 and the assertions below,*(7.5) can be omitted if 2Ra<l.

Also, (7.4) can be omitted, if (7.5) is replaced by

(8.3) |/|   ^y\x'\2 + C,

where y, C are non-negative constants and yi?<l. Cf. the remarks concern-

ing (2.5) and (2.7) above.

Proof of Theorem 1. The proof will be given first for the case that /

satisfies (7.3) instead of (8.2).

Let M be the constant (with T = S) occurring in Lemma 2 (where

p=a\x\2+K). Let g(t, x, x') be a continuous bounded function for O^/gF

and arbitrary (x, x') satisfying (7.3'), (7.6) and, correspondingly, (7.4')

(7.5'). By Lemma 4, (6.1) has a solution x = x(t) satisfying the boundary con-

ditions (6.2).

Condition (7.3') means that r=|x(/)|2 satisfies r">0 if r' = 0 and r^R2;

cf. (2.6). Hence r(t) cannot have a maximum value ^R2 in the interval

0<t<T. Since r(0) = |x0|2, r(T) = \xT\2 satisfy r(0), r(T)^R2, it follows

that r(t)^R2 (that is, \x\ ^R) onO^t^T. In view of (7.4')-(7.5'), Lemma 2

is applicable to x(t). Hence, \x'(t)\ ^M for Og/^F.

By virtue of (7.6), it follows that x = x(t) is a solution of (8.1). Hence

Theorem 1 is proved provided that (7.3), rather than (8.1), is assumed.

In order to remove this proviso, note that if e>0, the function f(t, x, x')

+ ex satisfies the conditions of Theorem 1 as well as condition (7.3). It is only

necessary to replace K, <j> in (7.4), (7.5) by K + eR, <f> + eR, respectively. Hence,

by what has been proved,

x" = f(t, x, x') + ex

has a solution x = xt(t) satisfying the boundary conditions. It is clear that

\xt(t)\ $R and that, for a suitable N independent of e (<1), |x/(/)| ^N ior

O^t^T. Ascoli's selection theorem shows that there exists a sequence

«i, «2, • ■ • such that 0<€„—>0 as «—>a> and that x(t) =lim xe(t), as e = en—*0,

exists and is a solution of (8.1) and (6.2). This completes the proof of Theo-

rem 1.

Remark. In Theorem 1, let (8.2) be strengthened to
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(8.4) X-/+ | x'|2 2t 0       if x-x' = 0,

and let

(8.5) xT = 0.

Then, for the solution x = x(<) just obtained, r= |x(/)|2 satisfies

(8.6) r 2t 0,        r'gO.

For if (8.4) is first replaced by (7.2), it is seen that rit) has no maximum

on 0<t<T. Hence r(i)gmax(r(0), r(7"))=r(0). Since r(7")=0, the same

argument applies if 0</<F is replaced by any subinterval t0<t<T. This

gives (8.6) if (7.2) holds. If (8.4) holds, the proof of Theorem 1 shows that

r= |x«(/)|2 satisfies (8.6). But these inequalities are not lost during the limit

process e = €„—»0.

9. In this section, there will be proved a theorem analogous to Theorem

1, but the assumption (8.2) will be replaced by conditions on the magnitude

of | x01, | xT I and T.

Theorem 2. Let f satisfy the conditions of Theorem 1 except that (8.2) need

not hold. Let x0, xt, R and T be such that

(9.1) |8 = max(| x01 , | xT | )

satisfies

(9.2) aB2 + B + KT2/& g R.

Then (8.1) has at least one solution x = x(/) satisfying x(0) =xo, x(7") =xr.

One can obtain the following assertion:

Corollary. Let f be defined and continuous on DiT, R) and satisfy (8.3)

for some non-negative constants y, C such that yR<l. Let B in (9.1) and T

satisfy

(9.3) T/32 + 2(1 - yR)B + CT2/4 k 222(1 - yR).

Then (8.1) has at least one solution x = x(<) satisfying x(0)=xo, x(F)=xr.

Theorems 1 and 2 can be considered to be the ordinary (vector) analogue

of Nagumo's results [9] for a partial (scalar) differential equation.

Proof of Theorem 2. Let M be the constant supplied by Lemma 2 (with

T = S and p = a|x| 2+K) and let git, x, x') be the function supplied by §7.

By Lemma 4, (6.1) has a solution satisfying (6.2). Let y = yit) be the

linear (vector) function satisfying

(9.4) y(0) = x0    and   y(7) = xT,

so that
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xit) = yit) -   I     Git, s)x"is)ds,
J o

where TGit, s) is iT-t)s or /(7"-s) according as 0g5g/g T or O^t^s^T.

By (6.1) and (7.4'), x satisfies the differential inequality in (2.4). Thus G2:0

implies

(9.5) |x(0|   g  \yit)\  + I    Gil,s)iar"is) + K)ds.
J a

In this inequality, r" can be replaced by (r — u)", where u = uit) is the linear

function determined by

(9.6) «(0) = r(0) =   | x0|2,        w(7) = riT) =   | xT|2.

Thus, by (9.5),

| xit) |   g  | y(<) |   + aiuit) - r(0) + 2-12C(7' - *)<•

Since |y(/)| gmax(|x0|, \xT\) =8, «(/) gmax(|x0|2, |xr| 2)=/82 and r2t0,

(9.7) | x(0 |   g j8 + a/32 + 2:r2/8.

By condition (9.3), |x(/)| gJ? for Og/gT. Also, |x'(<)| gM by Lemma 2.

It follows from (7.6) thatx = x(/) is a solution of (8.1). This proves Theorem 2.

10. In some of the theorems to follow, the bounded interval O^t^T is

replaced by 0 g / < <=o.

Theorem 3. Let fit, x, x') be defined and continuous on

(10.1) DiR): 0g/<oo,   | a: |   g 2? < °o, x' arbitrary.

For every T>0, let f satisfy the conditions of Theorem 1 on DiT, R), where the

constants a, K and Nagumo function 0(s) which occur can depend on T. Then,

for every xo in the sphere |x0| ^R, there is at least one solution x — xQ) of (8.1)

which satisfies x(0) =x0 and exists for J2t0.

Remark. If, in addition (8.4) is assumed in Theorem 3, then r= |x(£)|2

satisfies (8.6). Also, if

(10.2) x-/+  | x'|2 2r 0,

then

(10.3) r 2: 0,        r' ^ 0,       r" 2t 0.

For a scalar equation in which/ does not depend on x', this type of theo-

rem goes back to A. Kneser [6]; cf. [7]. For the scalar analogue of Theorem 3

in which the conditions (7.4), (7.5) on DiT, R) are replaced by a Nagumo

condition (7.5) alone, see [3]. For an/ linear in x and independent of x',
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see [12]; for the general linear case, [4]. For a nonlinear system, see [2],

where/ is subject to a majorant linear in |x'|,

(10.4) l/l   g y|x'|   +C,

on D(T, R). In contrast to (10.4), Theorem 3 implies that it is sufficient to

require on each D(T, R) an inequality of the form (8.3) if 7i?<l. There is,

of course, no limitation on R if 7 can be chosen arbitrarily small, that is, if

f(t, x, x')/ I x' |2 —> 0 as   I x' I  —* co

uniformly for bounded / and |x| =i?.

Remark. In some of the papers just mentioned, it is assumed that

x-f(t, x, x') ^ 0.

In this case, the conditions (7.4), (7.5) on / on D(T, R) are satisfied if, for

example, (8.3) holds on D(T, R) with arbitrary constants 7=7(F)>0,

C=C(F)>0. (A restriction of the type yR<l is not needed.)

Proof of Theorem 3. Let m = l, 2, • • • . By Theorem 1, (8.1) has a solu-

tion x — xm(t) on O^t^m satisfying x(0)=xo, x(jw)=0. Let m^T. Then, by

Lemma 2, there is a constant M=Mt such that |x'm(/)| ^M for O^t^T.

Hence the sequences {xm(t)}, {x'm(t)}, {x'^(t)}, where m^T, are uniformly

bounded and equicontinuous on O^t^T. Theorem 3 follows from Ascoli's

selection theorem applied to a sequence of intervals O^t^T, where F—>».

The assertion concerning (8.6) follows from the Remark at the end of §8

and that concerning (10.3) follows from (2.6).

11. The next theorem gives a sufficient condition for the solutions x = x(t)

of (8.1) given by Theorem 3 to satisfy

(11.1) x(t) ->0    as    i—> a..

Theorem 4. Letf(t,x,x') be defined on D(R). For every number m, 0<m<R,

let there exist a non-negative function a(t) =a(t, m) for large t satisfying

(11.2) x-f(t, x, x') ^ a(t) ^ Ofor large t,Q <m g  | x |   g R, x' arbitrary,

la(t)dt = co.

Let x = x(t) be a solution of (8.1) on t^0. Then (11.1) holds.

This is an analogue of (IV) in [3] dealing with scalar equations.

Remark. Let/(f, x, x') satisfy the conditions of Theorem 3 and, in addi-

tion, let the constants a, K and the function <p(s) be independent of F. Let

x = x(t) be a solution (8.1) satisfying (11.1). Then

(11.4) x'(/)-»0    as    <-»«.

For, by Lemma 2, x'(t) is bounded for large t and, by (7.5), x"(t) is bounded
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for large t. The relation (11.4) then follows from the simplest Tauberian

theorem (Hadamard) which states that Mi^Const(M0M2)112 if M0, Mi, M2

are the least upper bounds for the moduli of a C2 function and its first and

second derivatives on T^t<<», respectively.

Proof of Theorem 4. Let r(t) = | xit) |2. Since (11.2) holds for large /, r

satisfies r"2:0 for large t. Suppose, if possible, that (11.1) fails to hold. Then

there exists a constant m such that 0<m^r(t) ^R for large t. Let ait) be the

function belonging to the number m. Then

qit) = 2(x-f(t, x, x') + | x'\2)/r,    where    x = xit)    and    r =  | x(t) |2,

satisfies

(11.5) qit) 2t 2a(t)/m for large t.

Note that r — r(t) satisfies the linear equation

(11.6) r"-q(t)r = 0;

cf. (2.6). But the boundedness of rit) and (11.3), (11.5), (11.6) imply that

(11.7) r(/)->0    as   /-> °o

(Weyl; cf., e.g., [13, pp. 601-602]). This contradicts r2^?re>0 for large t.

Hence Theorem 4 is proved.

12. This section deals with the uniqueness of solutions of (8.1) given by

Theorems 1-3. In order to obtain a uniqueness criterion, consider the linear

system of differential equations

(12.1) y" = A(t)y + B(t)y',

where Ait), Bit) are real matrices and y is a vector. It is easily verified that,

by virtue of (12.1),

1 2

yy"+ \y'V =   y'H-B*y    + yAy - B*yB*y/A,

where B* is the transpose of B. Thus a sufficient condition (cf. [4]) for every

solution y = yit) of (12.1) to satisfy

(12.2) |,0)|   2:0,        (|y(0|2)"2i0,

is that

(12.3) 4 A - BB* 2t 0,

where "Q^0" for a matrix Q means that "y-Qy^O (or, equivalently,

y(Q+Q*)y^0) for all real vectors y." The fact that (12.3) implies (12.2)
leads to the following uniqueness theorem:

Theorem 5. Let f(t, x, x') be defined on DiT, R)  [or D(R)] and possess
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continuous partial derivatives with respect to the components of x and x'. Let

F(t, x, x') and G(t, x, x') denote the Jacobian matrices

(12.4) F(t, x, *') = (df/dx),        G(t, x, x') = (df/dx'),

and suppose that

(12.5) 4F - GG* ̂  0.

Then (8.1) has, at most, one solution which satisfies x(0)=xo and x(T)=xt

[or which satisfies x(0) =x0 and exists for t^O].

Of course, if an a priori bound | x' | ^ M is known for the possible solutions

involved, then (12.5) is only required for 0^/= F [or £3:0], |x| ^R, \x'\ ^M.

In the case that x is a scalar and / does not depend on x', the proof of

Theorem 5 will show that the conditions on/can be replaced by the assump-

tion that f(t, x) is nondecreasing in x for fixed t.

Proof of Theorem 5. Note that if there are two such solutions x = Xi(t)

and x = x2(r), the difference y = x2 —Xi satisfies a linear equation (12.1), where

A(t) =  f Fds,        B(t) =  f Gds,
Jo -I o

and the argument of F, G in these integrals is

(12.6) (t, 5X2W + (1 - s)xi(t), sxi (t) + (1 - s)x{ (I)).

For any (constant) vector y, Schwarz's inequality (applied to each component

of B*(t)y) gives

| B*(t)y\2 ^  f   | G*y|2<f5,
J o

where the argument of G* is (12.6). Hence

y(^A - BB*)y fc y  f   (4F - GG*)dsy;
J o

that is, (12.3) follows from (12.5). Consequently, y(t) =x2(t) — Xi(t) satisfies

(12.2).
If either y(0)=y(F)=0 or y(0)=0 and y(t) exists and is bounded for

t^O, then (12.2) implies y(/)=0. Hence Theorem 5 is proved.

13. This section gives a "continuity" theorem for the solutions furnished

by Theorems 1-3; namely:

Lemma 5. Letf(t, x, x') andfi(t, x, x'),f2(t, x, x'), • • • be continuous func-

tions defined on D(T, R) [or on D(R)] such that

(13.1) fn(t, x, x') -+f(t, x, x')    as   n -* co
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uniformly on compact subsets of D(T, R) [or of D(R)]. On D(T, R) [or on

every D(T, R) ], let f satisfy the conditions of Theorem 1 [with constants a, K and

Nagumo function <j>(s) depending on T]. Let |x0|, |xr| ^R. Finally, let

(13.2) x" =fn(t, x, x')

possess a solution x = xn(t) on O^t^T satisfying x(0)=Xo, x(T)=Xt [or on

0 ^t < °° and satisfying x(0) =x0]. Then there exists a sequence of positive inte-

gers rex<re2< • • ■   such that

(13.3) lim x„(t) = xit),   where   re = nk,

exists uniformly on O^t^T [or compact subsets of 12t 0 ] and is a solution of

(8.1) satisfying x(0) =x0, x(T) =xT [or x(0) =x0].

In order to see this, consider only the case of the nonsingular boundary

value problem x(0) =Xo, x(7") =Xt- The considerations in the singular case are

similar.

Lemma 5 is an immediate consequence of Lemma 2. In fact, the inequality

(13.4) |/B-/|   g 1

together with the inequalities for/in (7.4) and (7.5) imply that

| /n |   ^ 2a(x-/„ +   \x'\2) + K+1 + 2Ra, I /„ I    ̂  0( I x' I ) + 1.

Let M denote the constant furnished by Lemma 2, where p(t), <p(s) are re-

placed by a|x| 2+K + l+2Ra, <p(s) + l, respectively.

In view of assumption (13.1), the inequality (13.4) holds for O^t^T,

x\ ^R,  \x'\ ^M if re is sufficiently large. It follows from Lemma 2 that

x'| ^M for 0|(gr and large re. Hence there exists a sequence of positive

integers wx<«2< • • • such that lim x„' (0) exists as re = «*—><». Lemma 5 now

follows from standard theorems.

14. Existence of periodic or almost periodic solutions is usually proved

under conditions which assure that all solutions exist for t^O. Recently,

Seifert [ll] has given an existence theorem for almost periodic solutions in

which this is not the case. Theorem 7 of the next section can be considered

an analogue of his result for systems (even though the scalar case of Theorem

7, without modification, does not yield Seifert's theorem which involves a

differential equation of a rather special form). In this section, there will be

obtained a similar theorem for the existence of periodic solutions.

Theorem 6. Let f(t, x, x') be defined for — °o <t< <x>, \x\ ^R, x' arbitrary

with the properties: (i) f is continuous and periodic in t of period 1 for fixed

(x, x'); (ii) the Jacobian matrices (12.4) exist and are continuous; (iii) / satisfies

(8.2); (iv) / satisfies (7.4) and (7.5) with non-negative constants a, K and

Nagumo function <p(s) independent of t, x; finally, (v) if M is the constant sup-
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plied by Lemma 2 (with some fixed S>0 and p(t)=a\x\2+K), then (12.5)

holds for -co <*<co, |x| £R, \x'\ ^M.

Then (8.1) has at least one periodic solution of period 1. If x = Xi(t) and

x = x2(/) are bounded solutions for -co </< co , then \xi(t) — x2(0 | = const (and

const = 0 if "SO" in (12.5) is replaced by ">0"). Ifx = Xi(t) and x = x2(t) are

bounded solutions for t^O or t^O, then \xi(t)—Xi(t)\ g |xi(0) — x2(0)|.

Remark. When x is a scalar, one can improve Theorem 6 slightly: condi-

tion (7.4) can be omitted in (iv); in which case, M in (v) should be replaced

by the M supplied by Lemma 1. If, in addition, f(t, x, x') =f(t, x) does not

depend on x', the differentiability assumptions (ii) and (v) can be replaced

by the condition that/ is nondecreasing in x for fixed / (and uniqueness results

if / is increasing in x).

Proof of Theorem 6. By Theorems 3 and 5, the equation (8.2) has a unique

solution on /SO satisfying x(0) =xo for any x0 in the sphere |x0| ^R. Let

this solution be denoted by x = x(/, x0). Define a map x0—>xi of the sphere

[x0| ^R into itself by putting Xi = x(l, x0). It is clear from |x'(/, Xo) | g M and

from the uniqueness of the solution x = x(f, xo) that the map xo—»Xi is con-

tinuous. Hence, by Brouwer's fixed point theorem, there exists a point

xo = x* such that x(l, x*) =x*.

The periodicity of / implies that if x = x(/) is a solution of (8.1), then

x = x(/ + l) is also. In particular, x(t+l, xa)—x(t, xi). For the fixed point

xo = x*, we have x(/ + l, x*)=x(t, x*), i.e., periodicity of period 1. This gives

the existence assertion of Theorem 6.

The "uniqueness" assertions have nothing to do with the periodicity of

f. If x = Xi(/), x2(t) are two solutions of (8.1) for — =o </< co , then the proof

of Theorem 5 shows that r= |Xi —x2|2 satisfies r"^0 for all t. But the bound-

edness of r, 0grg4i?2, implies therefore that r(t) is a constant. (If ">0"

holds in (12.5) it is seen that r">0 for some t unless r = 0.) The stability

assertion concerning |xi — x2| for (^0 or r^O follows similarly. This com-

pletes the proof of Theorem 6.

15. An analogous theorem for almost periodic solutions is the following:

Theorem 7. Letf(t, x, x') be defined for — » <K», \x\ ^R, x' arbitrary

with the properties (j) f(t, x, x') is uniformly continuous for — co </< co,

|x| ^R, x' bounded and is uniformly almost periodic in t for fixed (x, x');

(ii) the Jacobian matrices (12.4) exist and are uniformly bounded and uniformly

continuous for — co </<co, |x| gi?, x' bounded; and conditions (iii)-(v) of

Theorem 6 hold.

Then (8.1) has at least one uniformly almost periodic solution.

The last parts of Theorem 6 concerning uniqueness on — co </< co and

stability for / S 0 or t g 0 are valid here. Also, the Remark following Theorem 6

on the scalar case is applicable to Theorem 7.

Theorem 7 is a consequence of Theorem 3, the proof of Theorem 5 and
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results of Amerio [l]; cf. [l] for references to Favard. By Theorem 3, (8.1)

possesses solutions x = x(t) on 0^;£ ». Also, by Lemma 2, any solution of

(8.1) satisfies |x'(/)| gM if x(t) exists on an interval of length 2:5. In par-

ticular, |x'(/)| gMon 0^/^ °o. The boundedness of x(/) and x'(t) on /2t0 for

some solution implies, by  [l], the existence of a solution x = Xi(t) for — co

<a<°o.

If x = xi(t), x2(t) are two solutions of (8.1) for — oo <t< co, then, as in

the proof of Theorem 6, |xx(/)—x2(/)| =const.

Letfi(t, x, x') belong to the closure of the set {f(t+s, x, x'): — °o <5< oo }

with respect to the sup norm for — °o </< co, |x|^2?, |x'|gil7. It is clear

that fi has properties (i)-(v) analogous to those of/ (if, in (i) and (ii), "x'

bounded" is replaced by "|x'| gil7"). Thus, if x = xi(t) and x = x2(/) are two

solutions of x"—fi(t, x, x') for — °o <t< °°, then |xx —x2| =const.

It follows from [l] that if x = xx(/) is any solution of (8.1) on — co <£<co,

then xi(t) is uniformly almost periodic. This completes the proof of Theo-

rem 7.

16. Let x, z be vectors, not necessarily of the same dimension, and let

x' be a vector of the same dimension as x. Let R, Q be positive constants and

E the (t, x, x', 2)-set:

(16.1) E:0£t£T, \x\SR,x'       arbitrary, |z|   ^ 2Q.

Let X, Z be continuous vector valued functions on £ of the same dimension

as x, z, respectively. The system of differential equations

(16.2) x" = Xit, x, x', z),       z' = Z(t,x,x',z),

will now be considered.

The following conditions will be imposed on X:

(16.3) x-X(t, x, x', z) +  | x'|2 2: 0 if x-x' = 0    and     \ x\   = R;

there exist non-negative constants a, K and a Nagumo function 0(s) such

that

(16.4) \X\   g 2a(x-X+  | x-'|2) + K, \x\   ^0(|x'|);

the Jacobian matrices

(16.5) Fit, x, x', z) = (dX/dx),        Git, x, x', z) = idX/dx')

exist, are continuous and satisfy (12.5) on E.

For Z, it will be supposed that there exist continuous, positive functions

ait), ris) for Og/^T, Q2^s^i2Q)2, respectively, satisfying

(16.6) 2|z-Z|   g<r(/)r(| z|2)for0 £t ^ T,Q ^ \ z\ ^ 2Q, (x, x') arbitrary,

/• T /. (2Q)2ait)dt<  j ds/ris) <  oo,
0 J Q2



508 PHILIP HARTMAN [September

and that the Jacobian matrix (dZ/dz) exists and is continuous on E.

Theorem 8. Let |x0|, |xr| ^R, \z0\ gO\ The system (16.2) has at least one

solution x = x(t), z = z(t) which satisfies

(16.8) x(0) = Xo,        x(T) = xt    and   z(0) = z0.

It is clear that the first inequality for X in (16.4) is redundant if the

second is of the form |X\ ^y\x'\ 2 + C and 7i?<l. It is also clear that Theo-

rem 8 leads to an analogue of Theorem 3.

The proof of Theorem 8 depends on Lemma 5 and on Schauder's fixed

point theorem.

17. Proof of Theorem 8. Let 77 be the Banach space of vector functions

(x(/), z(t)) on O^t^T with the product topology arising from x(i)EC2,

z(t)ECx. Let M be the constant furnished by Lemma 2 (with S=T and

p=a|x|2+70 and let N be a bound for |X\, \Z\ on the set

(17.1) EM:0^t^T,    |*|   ^ R,     \x'\^M,     \ z\   £ 2Q.

Let u(e) =WAf(e) be defined by

(17.2) w(t) =  max sup | Al\ ,
j=x,z

where AJ=J(t, x, x', z)—J(t*, x*, x'*, z*) and sup refers to (t, x, x', z),

(/*, x*, x'*, 2*) in EM and subject to |/ —1*\ ge, |x —x*| ^Me, \x' — x'*\

^Ne, \z-z*\ ^Ne.

Let 770 be the subset of 77 consisting of vector functions (x(/), z(t)) which,

for Og/gF, satisfy |x| ^R, \x'\ |I, |x"| £N, \z\ ^2Q, \z'\ ^N and

I j(t) ~ j(t*) |   ^ «>(«) if 0 g t, t* £ T, | t - t* |   g e and j = *", z',

and, in addition, satisfy the boundary condition (16.8). Clearly, 770 is a

compact, convex subset of 77.

Define a map 7,:770->770 as follows: if (x(t), z(t))EHo, let L(x(t), z(t))

= (x(t), z(t)), where z(t) is defined as the unique solution of

(17.3) z' = Z(t, x(t), z(t), z),        z(0) = z0,

and x(t) is the unique solution of

(17.4) x" = X(t, x, *', z(t)),       x(0) = x0   and    x(T) = xT.

In order to see that L is well defined, note that (17.3) defines z(t) uniquely,

at least for small /SO, since (dZ/dz) exists and is continuous. Actually, z(t)

is defined for Og/gF (and satisfies \z(t)\ <2Q). For otherwise, there is a

subinterval to^t^h of 0g/=F on which <2^|z|^2<2 and \z(to)\=Q,

\z(h)\ = 20;. But if 5(0= |z(012, then s' = 2z-Z(t, x(t), z(t), z) satisfies |5'|

^o-(t)r(s). An integration of this differential inequality over the interval

to^t^ti leads to
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/. <l /» (2Q)2*il)dt 2:  j ds/ris),
to Jo}

which contradicts (16.7). Also, (17.4) has a unique solution x = x(<) by the

existence Theorem 1 and the uniqueness Theorem 5. Finally, (x(2), zit)) is

in 77o.

The mapping L: 770—>770 is continuous. In order to see this, it is sufficient

to show that if (x„(0, zn(0)> « = 1, 2, • • • , is a sequence of elements of 770

such that (x„, z„)—»(x, z) in 77, as re—>», and (x„, z„) =7,(x„, z„), then (x„, z„)

—>(x, z)=7(x, z) in 77. That z„—»z in C^O, T) is clear from (17.3) and the

uniqueness of the solution of (17.3). Thatx„—»xin C2(0, T) follows from (17.4)

and Lemma 5.

Schauder's fixed point theorem implies that there is a point (x(2), z(/))£77

which is a fixed point of the map L. The point (x(/), zit)) is a solution of

(16.2) satisfying (16.8). This gives Theorem 8.
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