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1. Introduction. Elsewhere(2) we consider the problem of characterizing

all the solutions x, in a free group on generators ai, a2, ■ ■ ■ , ar, of a given

equation w(x, ai, a2, ■ ■ ■ , ar) = 1. The totality of solutions can be described

as the set of all values assumed by a certain finite set of group theoretic ex-

pressions upon substituting integers for certain parameters appearing in these

expressions as exponents. As a trivial example, the solutions of x~xai1xai= 1

are all values assumed by a\ as v runs through the integers. The general re-

sult, and our method of obtaining it, has led us to the study of such expres-

sions, or "words," that contain certain parameters vi, v2, ■ ■ ■ , va as ex-

ponents. These words may be taken in a natural way as representing elements

of a group G that admits additional algebraic operations of raising an element

g of G to an exponent a, where a is any element of the ring Z[vi, v2, ■ • • , Vd]

of all polynomials in indeterminates in vi, v2, ■ ■ ■ , Vd with integer coefficients.

More generally, if X is any associative ring with 1, we call a group G an

X-group if it is equipped with additional operations g—*g-a for each a in X,

subject to the following axioms:

r1 = g,     g-(a+il) = rv",     g-laf) = ig-a)-f,     g(hg)- = (gh)-ag.

We hasten to note that if n is an integer, the axioms imply g-n=gn, so that

we may omit all dots. Like the power maps, g—>g", these operations are not

required to define endomorphisms: we do not require that (gh)a — gah'x. The

last axiom requires that, like the power maps, these operations commute with

all inner automorphisms: (g~xhg)a = g~xh"g.

The appropriateness of these axioms to our purpose is demonstrated by

the fact, proved below, that for X = Z[vi, v2, ■ ■ ■ , Vd], a word w in the letters

Oi. a2, ■ ■ ■ , aT containing parameters vi, pit • • • , v* assumes the value 1 in

the free group on ai, o2, • • ■ , ar under all substitutions for the parameters if

and only if it reduces to the "empty word" 1 by virtue of the given axioms.

The main result of this paper is the solution of an extended word problem

for free X-groups, X = Z[vi, Vi, • • • , v*]. An effective process is exhibited

whereby, given a word o>, as above, an element a in X is determined such

that, under any substitution of integers for the vit u> assumes the value 1 if

and only if a assumes the value 0.
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Although we study X-groups only for X = Z[i>x, v2, • • • , vd], ^2t0, and,

indeed, only free X-groups, we believe the concept is of some more general

interest. For X = Z, the ring of integers, the concept of X-group reduces to

that of ordinary group. For X = Zm, the integers modulo some m, the .XT-

groups are just those ordinary groups in which all elements have order divid-

ing m. For X the field of rationals, the X-groups are just those groups in

which "extraction of roots" is always possible and unique; questions related

to this have been studied by B. H. Neumann [7], A. I. Malcev [6], R. Baer

[l], P. G. Kontorovich [4], and others, in particular, recently by G. Baums-

lag [2], who gives further references. Baumslag considers more generally the

case that X consists of those rationals that can be written with denominator

a product of primes belonging to some prescribed set. For X the field of real

numbers, the formalism of X-groups is at least superficially suggestive of

certain considerations in the local theory of Lie groups.

Taking a quite different approach, P. Hall [3] and also M. Lazard [5]

have introduced groups admitting exponents from a ring more general than

the ring of rational integers, and it is clear that there is some overlap between

the groups considered by them and X-groups. It may also be noted that V. A.

Tartakovski [8] has made use of a limited class of what we call parametric

words.

Finally, I want to record that, although the connection is perhaps remote,

my interest in the present problem derives from a question of A. Tarski,

whether the "elementary theory" of free groups is decidable.

2. Parametric words. The existence of a free X-group F, for any X, on

any number of generators ax, a2, • • • , ar follows from the fact that the axioms

for X-groups can be written as identical equations. However, confining our-

selves henceforth to the case that X = Z[vx, v2, ■ ■ • , vd], 0*2:0, we shall need

a more constructive description of the free X-group F in terms of "parametric

words" representing its elements.

The elements of the ordinary free group F0 on generators ax, a2, • • • , a,

are represented by "words" or "formal products" tt = aJJ ■ ■ ■ a%, n 2:0,

e,-= ±1, of letters a\. (Rigorously, one may define a word to be a sequence

of letters.) A word is reduced if it contains no letter followed by its inverse.

Every element of Fo is represented by a unique reduced word. The obvious

procedure for replacing a given word by a reduced word representing the same

group element provides an affirmative solution to the word problem for

ordinary free groups.

We shall attempt to parallel all this for the free X-group F, defining first

the concept of "parametric word," then a subset of "normal words," and

finally solving for F the generalization stated above of the word problem.

We begin with the observation that the ordinary subgroup F0 of F gener-

ated by ax, a2, • • • , ar is in fact free on these generators. To see this, let

G be the ordinary free group on a set of generators 6X, b2, • • • , br. If p is any
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retraction of X onto Z, for example that defined by setting all pvt = 0, then

we can make G into an X-group G' by defining ga = g'ia for all g in G and a

in X. Since F is the free X-group on generators ai, ai, ■ • ■ , ar, and G' is an

X-group generated by 6X, b2, ■ • ■ , br, there exists an X-group homomorphism

<j> of F onto G' for which c6a,- = c),-, i= 1, 2, • • • , r. But then the restriction of

<6 to Fo is an ordinary group homomorphism of F0 onto G, and it is in fact

clear that it is an isomorphism, whence it follows that F0 is free on the gen-

erators ax, a2, • • • , ar. We remark in passing that, taking F0 in the role of

G, every retraction p of X onto Z induces a retraction p of F onto F0, under

which pig") = (pg) ̂ "K
Starting with F0, we define an ascending chain of ordinary subgroups of

F by letting Ft+i be the ordinary subgroup of F generated by all ga where g

is in Ft and a is in X. The union of this chain, as a subset of F containing the

generators and closed under all the X-group operations, must constitute all

of F. It follows that each element w of F is contained in some Ft; if t > 0, w may

be represented by an expression w = w",w22- • • co°n where the co,- are expres-

sions representing elements of F,_x and the a, are in X. If we take the ordinary

words co representing elements of F0 as words of height 0, the way is open to

define inductively what we mean by a word of height t, representing an ele-

ment w of Ft. In view of this induction, supposing the word problem solved

for F(_x, we may more conveniently replace the w,- by the elements «>,• in

Ft-i that they represent, and, tentatively, define a word of height t, for OO,

to be a "formal product" w — w^w^ ■ ■ • wn", re 2:0, where all wt are in F(_x,

and all a,- are in X. Rigorously, we may interpret the "formal product" as a

sequence of ordered pairs, w= ((w1( ai), (w2, a2), • • ■ , iwn, an)); but in prac-

tice no ambiguity will arise from the more suggestive product notation.

The desirability of amplifying this tentative definition of a "word" be-

comes apparent as soon as we attempt to single out a subclass that is in some

reasonable sense "reduced." For these we should like to ensure that, under

any retraction p, there is no cancellation between adjacent factors p(m>"0-

The example a = aiia2ai)a shows that we must consider separately retractions

p according to the sign of pa. We are led thus to replace co by three "words

with side conditions": (co, pa>0), (co, pa = 0), (co, pa<0). In anticipation of

iterating this sort of trichotomy, we take as our formal definition of a word

a pair (co, C), where co is as before and Cis any finite set of formal expressions

of the type pa<pB or pa = pB, for a and 8 elements of X.

It is clear what it means for a given retraction to satisfy a given set of

condition C. The values of a word (co, C), where u represents the element w

of F, are all elements pw in F0 for p satisfying C. The values of a set of words

are those of its members. Our aim is to define a class of "normal words,"

and to show that any given word effectively determines a finite set of normal

words which is equivalent to it in the sense of having exactly the same set of

values. But we shall use a more constructive definition of equivalence. Two
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sets of words will be called equivalent if it is possible to pass from one to the

other by a succession of steps of the following three kinds.

(El) replace (co, Ci), • • ■ , (co, Cn) by (co, Di), • • ■ , (a, Dk) where exactly

the same retractions satisfy one of the Ct- as satisfy one of the Dj;

(E2) replace (co, C) by (co', C) where C contains the condition pa = p@ for some

a and /3 in X, and co and co' differ only in that one contains a at certain places

where the other contains /3;

(E3) replace (co, C) by (co', C) where co = co' follows from the axioms for X-

groups.

We note that (El) with h=l and fc = 0 permits us to delete a word (co, C)

in case C is inconsistent, that is, is satisfied by no retraction p. Likewise the

case h = 1 and k = 1 permits us to replace C by any equivalent set of conditions,

with the result that we need not pay close attention to the precise manner of

formulation of the conditions C.

We define a normal word of height 0 to be any pair (co, C) where co is an

ordinary reduced word representing an element of F0, and C any consistent

set of conditions. The definition of a normal word of height /, for />0, re-

quires a number of clauses, which we now formulate.

In a normal word (co, C), where co = w"' • ■ • ze£", we shall require that

wS 1, and that a, = 1 for odd i. Changing notation, we can write

CO   =   UlVl  UiVi     ■   •   •  UmVm  Um+l

where all ut and v{ are in Ft-i, all a, are in X, and m S 0.

Our first condition is the following:

(NO) each w,- is represented by some £t-, and each Vi by some rji, such that all

the (£,-, C) and (rji, C) are normal words of height /— 1.

The next condition enforces a certain measure of uniqueness on the parts

vf. Before stating it, we define a word (t), C) to be primitive if it is not equiva-

lent to any word (f3, G) where fi^ +1. We now state the next condition:

(Nl) C contains all the conditions pa,-> 0, and C does not imply a condition

pat<k for any i=l, 2, • • ■ , m, and k in Z; each (r\i, C) is primitive, and, if

/S2, is not equivalent to any word (f, C) of height t — 2.

In particular, the latter part of Condition Nl will ensure that no vf1 can

be absorbed into adjoining «, or Ui+i.

Our next condition will turn out to be an immediate consequence of Con-

dition NO; but, since we are deferring all proofs to later sections, we state it

here separately.

(N2) For each vt there exist two letters L(vi) and R(vi) such that, for all p

satisfying C, the element pvt in F0 is represented by a nontrivial reduced word

beginning with L(vi) as left letter and ending with R(vi) as right letter; and each

u^l must satisfy the analogous condition.

A product Ci02 • • • a„ will be called reduced (relative to C) if each a^l
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possesses letters L(ai) and R(ai) in the manner of Condition N2, and if, for

1 SiSj^n, al+i = fl,+2 = • • • =a,_i= 1 implies R(ai)L(aj) y^l; in short, in the

product there is no cancellation. We shall often insert a dot, writing a-b, to

express that the product ab is reduced relative to C. In particular, writing

a-a expresses that a is cyclically reduced, that is, it does not begin and end in

letters that are inverse to each other. With this we can state the condition

that excludes the possibility of cancellation between factors in a normal word:

(N3) UiViViU2v2v2 • ■ • umvmvmum+i is reduced relative to C.

There remains some ambiguity in the normal form as stipulated thus far

in that a part of one factor may be transferred to an adjacent factor. The

equation ai(a26Ti)a= (aia2)aai, which is an instance of one of the axioms, shows

that we can not hope to resolve this ambiguity in a symmetric manner. We

choose to "shift" the parts v"{ as far to the left as possible:

(N4a) ifu^l, l^i^m,R(ui)^R(vi);

(N4b) ifUi = l, l^i^m, R(vi)^R(vi+i).
Condition N4 is compatible with a weakened form of the symmetric

counterpart of N4a, requiring that no m,-+i begin with the whole of preceding

vt:
(N5) for l^i^m, (£,+i, C) is not equivalent to any (r)£, G) where J"

represents an element z of Ft-i, and w,+i = i>,--z, reduced relative to C.

We note that the corresponding weakened counterpart of N4b, requiring

that, if Ui=\, not vi+i = Vi-z, is incompatible with the remaining conditions;

for this would lead to the following vicious circle of "reductions":

xa(xy)P —* xa+xy(xyy~x —» xa+1(yx)'3_1y —* x"(xyy~xxy —> xa(xy)".

A word of height t, for i>0, will be called normal if it satisfied all the
conditions NO, Nl, N2, N3, N4, N5 set forth above.

3. Reduction to normal form.

Theorem I. There exists an effective procedure for associating with each

word an equivalent finite set of normal words.

The theorem will be proved by induction on the height of the given word.

For words of height 0 the assertion is obvious. Let t>0 and assume

Proposition 1. If (co, C) is a word of height t—1, then (co, C) is equivalent

to a set of normal words (coi, Ci), • ■ ■ , (co„, C„).

From this we must derive the corresponding assertion, Proposition 1', for

words of height /. In fact, we shall take as our induction hypothesis not only

Proposition 1 but also certain auxiliary Propositions 2, 3, • • ■ , 7, concerning

words of height t—1, from which we must derive not only Proposition 1', but

also the corresponding Propositions 2', 3', • • • , 7'. All of these propositions

are obvious for t = 0.
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In this section we derive Proposition 1' from 1, 2, • • • , 7, and in the

next section derive 2', 3', • • ■ , 7' from the same hypothesis. It will be evident

from inspection that the reduction process is effective.

At various stages of the reduction process that will be described below,

we shall have occasion to replace a word ico, C) by three words (co, Ci), ico, C2),

(co, C3) obtained by adjoining to Ceach of the conditions pa <0, pa = 0, pa>0.

The argument from this point on will deal separately with each of these three

words. To simplify notation we shall drop subscripts and instead of saying

that we are in case Cx, C2 or C3, we shall say rather that C contains pa<0,

pa = 0 or pa>0. Clearly this is permissible provided we can effect the reduc-

tion of (co, C) to some normal (co', C) by making, at a finite number of junc-

tures well determined by co, for a determined by a), the assumption that C

contains one or another of pa < 0, pa = 0 and pa > 0.

This convention, whereby we regard Cas unchanged throughout the argu-

ment, enables us to suppress mention of C. In this spirit we shall speak of the

word co instead of the word (co, C). We shall write a<0, a = 0, a>0 to express

that pa<0, pa = 0, pa>0 belongs to C. We shall speak of all p, rather than of

all p that satisfy C. It is worth emphasizing that we must not suppose that C

contains one out of an infinite set of alternatives. Thus, although all pa = k

for some k in Z, we can not suppose that C necessarily contains one of the

inequalities pa^k. Ii Cdoes contain such an inequality, we write aGZ, and

we write a(JZ to express that C contains no such inequality.

We now state those propositions that make up the rest of the induction

hypothesis.

Proposition 2. If iw, C) is a word of height t — l, representing Wj^l in F,

and is not equivalent to (1, C), where 1 here denotes the "empty" word, then there

exist letters Liu, C) and Rico, C) such that, for all p satisfying C, the reduced

word representing pw in F0 begins with 7,(co, C) as its left letter and ends with

Ri<u, C) as its right letter.

Apart from our convention regarding C, we should have to say rather

that arbitrary (co, C) is effectively equivalent to a finite set of words (co,-, Ci),

each with the property asserted by the proposition. In view of our conven-

tion, we can simplify the statement of the proposition by suppressing all

reference to C. In view of the fact that we are assuming Proposition 1 we

can go further: not only does every co of height / — 1 represent an element w of

Ft-i, but every w in Ft-i is represented by normal (co, C) for some co. (Liter-

ally, C has been chosen so that this is true for every w that comes up for our

consideration.) Thus we can as well speak of all w as of all co, and restate the

proposition more perspicuously.

Proposition 2 Restated). If w is in F<_x and wt^\, then there exist letters

Liw) and 2?(w) such that all pw begin with L(w) and end with Riw).
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(The fact that w= 1 implies co= 1, as well as conversely, follows from the

original statement of the proposition, since 1 has no first or last letter.)

Proposition 3. If a is in Ft-i there exist b and c in Ft-i such that a = b~l-c-b

reduced, and c is cyclically reduced ithat is, c2 = c-c).

Proposition 4. If a is in Ft-i, then there exist b in Ft-i and a in X such

that a = b", and b is primitive ithat is, b = ce implies 8= ± 1)-

Proposition 5. If a and b are in Ft-i, b cyclically reduced, primitive, and

not in Ft^i, then there exist ax, bi, bi in F<_x and k in Z such that b = bi-bi,

a = ai-b2bk reduced, £2:0, bi^l, and, if ai^i, 7?(ax)^2?(&x).

Proposition 6. If a and b are in Ft-i, ay^b, both are cyclically reduced,

primitive, and not in F<_2, then there exist ai,a2,bi, b2 in Ft-i and h, k in Z such

that
a = ai-a2,       b = bi-b2,       a2ah = b2bh, h 2: 0, k 2: 0,

ai ^ 1,       bo* 1,    and   22(ax) ̂  RQ>i).

Proposition 7. If a and b are in F<_x and ab = ba, then there exist c in

Ft-i and a, 8 in X such that a = ca, b = c&.

To begin the proof of Proposition 1', we suppose given a word (co, C) of

height t, and must replace it by an equivalent normal word (co', C). That is,

we are given a product representation

Pi      P2 Pn

w = wi w2  ■ • ■ wn , n 2: 0, w, G Ft-i, Bi S X,

for an element w of Ft, and, by means of the axioms, must transform this into

a representation satisfying the conditions NO, 1, 2, 3, 4, 5 for normality.

Condition NO follows immediately from Proposition 1 and our convention

on C. For this proposition ensures that each w, is represented by a finite set

of normal (coy, Q) equivalent to (co,, C), and under our convention we suppose

C is already one of the Cj, so that w,- is represented by a normal word (co,-, C).

To establish Condition Nl, we first delete any af»' = l. By Proposition 3

we may replace each part wp by ZiV^zi1, where i\ is cyclically reduced, and,

by Proposition 4, after changing notation, we may suppose vt primitive. We

now have a product of factors u in F<_x and factors V, which we may suppose

are not in Ft-u where the v are cyclically reduced and primitive. Replacing

any succession of factors wx, u2, • ■ • , uk all in F,_x by a single factor

u = UiU2 • • • uk in Ft-i, and inserting factors 1 if necessary, we have

W  =   UiVi UiVi    ■   ■   •  UmVm Um+i,

satisfying all the clauses of Condition Nl except that possibly some a,<0.

This is simply remedied by replacing »"< by »,"**' where z\' =zr~' and a,' = —a,-.
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Condition N2 follows immediately from NO together with Proposition 2.

To establish Condition N4, we again proceed by induction on i, assuming

R(vj^iUj)^R(vj) for all/<■*' (and, if i>0, Ui^l, that R(ui) t* R(vi). For *' = 0

this is trivial, and for i = m we are done. If the hypothesis holds for i and

fails for i + 1 there are two cases.

Case 1. w,=^l. By Proposition 5 we can write»,- = iV&2, Mi = a1i>2z;f reduced,

kEZ, £S0, bi^l, and, if Oi^l, R(ai)5*R(bi). Then

UiVi Ui+i = (IiJ2(6i&2)        Ui+i

= ai(l>2bi) '   biUi+i

i /«>■' i
=  UiVi   Ui+i

where ui =Oi, »/ =b2bi, u'f+i = biUi+i,ai =at + k. Clearly Conditions NO, 1, 2, 3

are preserved, as well as the hypothesis for /<i. Moreover, if u{ =a,-^l,

the hypothesis holds lor j = i, since then R(vi-iu-) =R(ai)9^R(bi)=R(vl). If

ui = 1, we are reduced to Case 2, below.

Case 2. Ut—1. By Proposition 6 we can write i',_i = a1-a2, z\ = tVt>2,

a2Vi-i = b2v*, h, kEZ, h, £S0, ai, a25^1, i?(ai)^i?(&i). Then

«t-l   "i aj-i-h-l . ,<*.+*
jj,-_i Vi ui+i = Wj_i        aibi(bi02)      Ui+i

= Vi-i        ai(t>ibi)      o2ui+i

«»'-l  I   /«•' '
= Vi-i UiVi   Ui+i

where «/ =Ci, vi—b2bi, w/+i = &2«t+i, a,'_i = a,-i — A — 1, a/=a,+&. Clearly

NO, 1, 2, 3 are preserved, and the condition on j'<j. For/ = i, we verify that

R(vi-iu')=R(ai)?*R(bi)=R(v'). This completes the induction on i.

To establish Condition N5, by the symmetric counterpart of Proposition 5

we can write z\ = cv&i, w!+i = z)*&2ai reduced, kEZ, &S0, bi^l, and, if «i^l,

L(ai) 9^L(bi). Then »"''k,-+i = z>?''+i6>iai = v"'ui+i where ai = a,+£, ui+i = biai.

Clearly none of Conditions NO, 1, 2, 3, 4 are lost. It remains to show that

u'+i = Vi-w, w in Ft-i, is impossible. But this gives bi-ai = b2-bi-w reduced,

whence ai = bi-w, which contradicts the conditions that bi^l and that, if

ai^l,L(ai)^L(bi).

This completes the proof of Proposition 1' from Propositions 1, 2, • • • , 6

(and 7).

4. Proof of the auxiliary propositions. We continue to argue on the basis

of Propositions 1 through 7, together with 1', which was established in the

preceding section.

To prove Proposition 2', let w in F,, wj*1. By Proposition 1' we can sup-

pose w = Uiv"1 ■ ■ • umv%\mum+i, normal. Then, for any p, pw = pu^pvi)""1 ■ ■ •

(pvm)<""»pum+i, where, by N2, 3, this product is reduced. It follows that if
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Uit*\, pw begins with Liui), and with Livi) otherwise; similarly pw ends with

R{um+i) if um+i5*l, and with 7c(z/m) otherwise.

Corollary. 7/a = ax-a2 • • • a„ reduced, all a,- are in Ft, and not all a, = l,

then a^l.

To prove this, after deleting any a,= l, we reason as before that for all

p,pa = pai ■ ■ ■ pan, whence L(a) =L(ax), 2?(a) =R(ax), and consequently a 5^1.

We state now a lemma whose proof is contained in the algorithm given

above for establishing Condition N3.

Lemma A. If a and b are in Ft, then there exist ax, c, and b2 in Ft such that

a = ai-c, i> = c-1-&2, and a& = ax-c>2.

An important consequence follows.

Lemma B. 7/a, b, c and d are in Ft and a-b — c-d, then there exists e in Ft

such that either
a = c-e    and    d = e-b,

or
c = a-e    and    b = e-d.

Proof of Lemma B. By Lemma A, we can write a = e-a2, c = e-c2, a~lc

= a2x-c2. If a27^1, c2t^1, then b~1a~1cd = b~1a2~1c2d is reduced and, by Proposi-

tion 2' (since it clearly has left and right letters), b~larxcd?±\, contrary to

hypothesis. By symmetry, we may suppose that a2 = l. Then a = e, c = a-c2,

and ab = cd = ac2d implies that b = c2-e.

To prove Proposition 3', let aGFt. By Lemma A, we may write a = ai-c,

a = c~1-a2, a2 = ai-a2. Lemma B applied to the relation ai-c = c~1-a2 presents

two alternatives. First, suppose ai = c~1-e, a2 = e-c then a = c~x-e-c where

a2 = a~1-e-e-c, whence e-e and e is cyclically reduced, as required. Otherwise,

c~1=ai-e, c = e-a2. Then Lemma B applied to c = e~1-ail, c = e-a2 gives, after

replacing e by e_1 if necessary, e — e~1-f, and substituting, e=f~~l-e-f. Apply-

ing p to this equation gives p/=l, and then to the equation e = e~l-f gives

pe = pe_I whence pe = 1, e = 1 and a — 1, cyclically reduced.

Lemma C. If a = uva, b = wz?, normal, in Ft, then either u = w and v = zor else

there exist c in F(_x and h, kGZ, h, £2:0, such that arlb = v-(-'r-h'>•c-zi>-k reduced.

Proof. By Lemma A we can write u = e-u2, w — e-w2, u~}w = u2~1-Wi. If

m2?^1, w2?±\, then a~ib = v~a-u~1-w2-zP reduced and we are done. By sym-

metry, it suffices to consider the case that m2= 1, where a~1b = v~a-u2~1-w2-zP.

By Proposition 5, we can write v — vi-v2, w2 = vkViW3 reduced, where v2^l and,

if w39^l, Liw3)y^Liv2). Then a~lb = v~aw2z^ = v-{a~k~l)vrlw3z^, reduced pro-

vided w37^\. Henceforth suppose w3=l, whence a~lb—v2~1iv2vi)a~k~lz^. If

Z7^v2vi, Proposition 6 yields a~xb = v2liv2vi)-ac = zti = v-a'v2-lczfi' reduced, for

some c in F(_x and a'=a — h', B' = B — k'. Finally, suppose also that z = v2vi.

Since w3=l, w = uvkvu while by Condition N4 for the normality of wz&,
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R(w) ^R(viVi). Weconclude first thatt>i= 1, whence z = Vi = v, and second that

& = 0, whence w = u.

Lemma D (Uniqueness of normal form). If a = Uiv"x ■ ■ ■ Vmmum+i,

b = Wiz{x • • • zinwn+i, both normal and in Ft, then a = b implies that m = n and

that Ui = witVi = Zi, and ai = l3ifor all i=l, 2, ■ ■ ■ , m.

Proof. Induction on m+n. If m = ra = 0, then a = uu b = wi, and the con-

clusion is trivial. We also consider separately the case that only one of m, n

is 0, say m = 0 and «>0. In this case urxWiz\l has, using Proposition 5, a

reduced form w'zf for some u' and 0', hence a~xb has a reduced form different

from 1, and, by the corollary, a~xb^l. For the induction argument, suppose

m, n>0. Unless Ui = Wi and Vi = zi, Lemma C provides for a~xb a nontrivial

reduced form, whence a~xb^l. Suppose then that ui = wu Vi — Zi. If also

ai = i3i the conclusion follows by the induction hypothesis applied to a'

= UiVp • • ■ um+i and b' = WiZ22 ■ • ■ wn+i- In the remaining case we may sup-

pose by symmetry that 7 = 0:1 — |3i>0, whence, after cancelling, we have

a' — vlu2V22 ■ ■ ■ um+i equal to b'. If 7£Z, the product for a' is normal, and

the induction hypothesis gives 1 =w2, and vi = z2, which together with Vi = Zi,

contradicts N4 for b. If yEZ, the product for a' becomes reduced when we

replace t»iW2z?2 by a reduced product u'2z\ , and again the induction hypothesis

gives w2 = u2 =v\u2, 7>0, which, together with Zi = vi, contradicts N5 for b.

Define a' to be a cyclic conjugate of a if, for some b and c, a = b-c and

a' = cb. This relation is transitive, although not symmetric. For suppose

a = b-c, a' = cb = d-e, and a" = ed. By Lemma A, c = c'-f, b=f~x-b', and

a' = c'-b' = d-e. By Lemma B, and symmetry, we may suppose that c' = d-g,

e = g-b'. Then a=tx-V-d-g-f reduced, while a" =gb'd=(gf)(f~xb'd).

Lemma E. Let a, in Ft, not have any cyclic conjugate a power of an element

of F<_i. Then there exist integers iSO and m>0, and, for each positive integer

i, elements Ui, Vi in Ft-i and an element ai in X such that, writing ai — u^,

(1) for all h^k + 2, the normal form of ah begins

ah = aia2 ■ • ■ ak • ■ ■ ;

(2) for all i>t, ai+m = a{;

(3) for sSt,

(aia2 ■ ■ ■ as)~xa(aia2 • ■ ■ a8) = a,+ias+2 ■ ■ ■ as+m, normal.

Proof. For a in Ft, define 1(a) =n, the "length" of its normal form

a = WiZil ■ • - Wn+i. For /(a) SI, define a' = (wizfx)~xa(wiZi1). If no cyclic con-

jugate of a is in Ft-i, evidently 1(a) S/(a') SI.

Case 1. 1(a) = 1. It will suffice to prove the assertion of the lemma for

any cyclic conjugate u~xau of a, where u is in Ft-i. Replacing o = Wizf'w2,

normal, by the normal form of zflWiWi we can suppose Wi = 1. If w2 = wbr1zrk
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where Zi = bib2, in accordance with Proposition 5, conjugating by brlz~k we

can suppose that a is cyclically reduced. If w2 = wb2z\ in accordance with

Proposition 5, conjugating by z\ we can suppose that £ = 0. Thus we may

assume a = ibib2)^wb2, normal and cyclically reduced, where bi^i and, if

w^l, Riw)piRibi).

If w^l, conditions (1) and (2) are realized with

ah = ibib2)ewib2bi)0b2wib2bi)^b2wib2bi)ff ■ ■ • .

Suppose w—1. Since a— ibib2yb2 is not a power of the element &xc>2 in

F(_x, we conclude that b2^\ as well as 6X^1. We show next that bib2^b2bi.

For bib2 = b2bi would imply that both &x and b2 commuted with the primitive

element z = bib2, hence bi = zl, b2 = z{, where y, 8^0 and both have the same

sign and sum 1; but y, 5>0 and y-f-5 = l is impossible. It follows therefore

by Proposition 6 that we can write

bib2 = cx-c2,        b2bi = dvd2,        c2ibib2)h = d2ib2bi)k,

with re, kGZ, h, £2:0, cx, d^\, Rid)^Ridi).
Comparison of lengths in F0 of images of c2ib\b2)h and c2ib2bi)k shows that

h = k; moreover, if h = k>0, the terminal segments p(&xc>2) and pib2bi) of

equal length must coincide for all p, giving pibr^b2lbib2) — 1, whence, by

Proposition 2', b\lb21bib2 = 1, which has been shown impossible. We conclude

that h = k = 0, whence c2 = d2. If c2 = d2=l, then Ribib2) ̂ Rib2bi) and

ah = ibxhYibibiYbiibibiYbiibibiY ■ ■ ■ , normal.

Otherwise, the normalizing process gives

a   = ibib2) b2ibib2) b2 = ibib2) ib2bi) b2

= ibib2)     Ciid2di) b2

= ibibi)     Ciid2di)   V, normal,

for some 8' and b'. Similarly,

aibihy-'a = ibihY^ciid^yb", normal,

for some 8" and b". It follows that

a- = ibib2y-lciid2d1y"[b"id2d1y"]h-3b"ididi)f>'b',

normal, realizing (1) and (2).

For Z(a) = 1 this establishes that, for some ax, a2, a3 and some d in Ft,

for all h 2:4,

a   = axa2«3   cf normal.
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Hence
h-i h h+l h-i

aaia2ai   d = aa   — a      = aia2a$   d,

whence aaia2 = aia2a3, that is (aia2)~xa(aia2) =a3, which establishes (3).

Case 2. l(a)=l(a')>l. Write a^bicj1 ■ ■ • bmcl\mbm+i normal, m>l. Now

a  — o2c2  • • • omcm om+iOiCi

is reduced to its normal form

a  = did  • - • amem am+iem+idm+2

by normalizing the part c^bm+ibiCi1. The hypothesis that 1(a) = l(a') implies

that this part has length 2, whence from the nature of the normalizing proc-

ess it follows that em = cm and that R(em+idm+2) =R(ci).

We iterate this to find the normal form

a      =   U3V3    •   •   •  Um+lVm+l Um+iVm+2 w

of a" = d3el3 • ■ • e^fidm+idifip by replacing e%tf\dm+id2el* by its normal form

v^lum+iv^iw. From em = cm we infer that, even if m = 2, d2 = b2 and e2 = c2.

From this and the normality of c1'1i>2c22, together with R(em+idm+2) =R(ci) we

conclude that the part in question can fail of normality only by N5, and the

process for establishing N5 shows that vm+i = em+i, vm+2 = em+2, and w=l.

If we define ai = b\clx, a^aV?, and o1+m = o,- = u,v^ for iS3, the normality

of the products aia2fl3 ■ ■ ■ ak requires only the observation that, since e2d3ei

was normal, and vm+2 = ei, u3 = d3, vm+3 = e3, then v'ffigUiV'Ztfi is normal as it

stands. It is now clear that (1) and (2) hold, and that a" = (aia2)~xa(aia2)    ,

= 0304 • • • am+2, reduced.

Case 3. l(a)>l(a'). Since 1(a) S/(a') S/(a") S • • • SI, clearly for some

k<l(a) and 6 = o(*>, 1(b) =l(b'), whence b satisfies (1), (2), (3). Thus bh

= bib2 ■ ■ ■   normal, bi = w{zf\ with bi+m = b{ for i>t and

c = (bib2 • ■ • bi)~xb(bib2 • ■ ■ bi) = bt+ibt+i ■ ■ ■ bt+m.

Replacing b by its cyclic conjugate c, we have the same conditions with t = 0,

and b cyclically reduced. Thus, for some p and q, a = p-q and c = qp. By

Lemma A, q = q'-e, p = e~x-p', c = q'-p'. Further, a = e~x-p'-q'-e, reduced,

whence ah = e~x-p'-(q'-p')h~x-q'•e = erx-p'-bh-x-q'■e = e-1-p'-bih • • • , re-

duced. Since e~x-p'-bi-b2 is reduced, the normal form of e~x■ p'• bi• w2 ends

with the same letters as biw2, whence the normal form aia2 • • ■ an of e~l-p'

•h-b2 ends in zf2, and ah = aia2 • ■ ■ oa&3&4 • • • , normal. Thus a satisfies (1)

and (2), while for (3) it suffices to note that d = aia2 ■ ■ ■ akb3bi ■ ■ ■ b3m

= e~xp'b3, whence dbd~x = e~xp'bp'-xe = e~xp'qpp'-xe = e~xp'q'e = a, and

b = d~xad.

Proof of Proposition 4'. Let a be in Ft. If some conjugate p~xap = ba, b in
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F(_i, then by Proposition 4, b = c9 for some c primitive, whence c' = pcp~1 also

is primitive and a = c'^a. Otherwise we suppose that a has no cyclic conjugate

a power of an element in Ft-i, whence, by Lemma E, /(a) 2:1. If a = b" for

some b in Ft, then b satisfies the same condition, and hence (1), (2), and (3)

of Lemma E. In view of (3), we can replace & by a cyclically reduced con-

jugate whence, if b = bib2 ■ ■ ■ bm normal, then b2 = hb2 - ■ ■ bmbi • ■ ■ bm nor-

mal, and lib2)=2lib). Now, if a>l, a = b2-b"~2. In general, /(«•») 2:/(«)

+/(t»)-l, /(wu)2t/(M). Thus we have /(a) 2:/(&2) =2/(6) >/(&). We conclude

first that if /(a) = l, then a = ba for a>l is impossible, and a is primitive.

Second, if a is not primitive, then a = b" for some b and some a>l, and

we argue by induction on length that b — c^ for some primitive c, whence

a — caS, as required.

Proof of Proposition 5'. We show first that if b in Ft is cyclically reduced

and primitive, and b is not in Ft-i, then no cyclic conjugate b' of b is a power

of an element in Ft-i. For, if b' were such a power, since V is primitive, b' it-

self would be in F(_x. Then, for some p and q, b = p-q, b' = qp, and, since b is

cyclically reduced, b' = q-p. From the fact that b' is in F(_x, that is, lib') =0,

we conclude that p and q are in F(_x, whence b is in Ft-i, contrary to hypoth-

esis.

To prove Proposition 5', we suppose a in Ft, and b in Ft, cyclically re-

duced, primitive, and not in F(_x. It follows from the above and Lemma E

that /(&*) 2: h for all h in Z. Choose «>/(a), whence libh) >/(a). By Lemma A

we may write a = c-d, b~h = d~1-e, ab~h = c-e. Now e=\ would imply d~1=b~h,

hence a = c-d = c-bh and /(a) 2:/(&*), a contradiction. Hence e?^l. Now choose

a new &2:0, minimal such that, for some c, d, e, a — c-d, b~h = d~1-e, ab~h

= c-e, and es^l. Since b~h = d~1-e and ep^l, we conclude that «>0. Now

b-bh~1 = e~l-d, and one alternative under Lemma B is that e~l = b-f, bh~l

=f-d. Then &-<*-» =<*-!./-> and, since ab-h = c-e = c-f-1-b~1, <*&-<*-» =c-/-1,

whence the minimality of ^ implies that/=l. This gives a = c-d = c-bh, and,

since c-e = c-&~\ 2?(c) ^2?(i>), as required for Proposition 5'. The other alter-

native is that b = e~l-f and d=f-bh~1. In this case we have a = c-d = c-f-bh~l,

b = e~l-f, e~l9^l, and, since c-e, Ric) 5^2?(e-1), again satisfying Proposition 5'.

Lemma F. Let a and b be in Ft, and neither have as cyclic conjugate a power of

an element of Ft-i. Then either a = ch, b = ck for some cGFt, h, kGZ, h, £2:0, or

a~hbh = a-1 ■ c■ b for some cGFt, hGZ, «2:0.

Proof. By Lemma E, paralleling the notation of the lemma, ah = aia2 • • • ,

bh = b\b2 ■ ■ ■ , normal, where, for some integers £2:0 and m, m'>0 we have

that a,-+m = a,- and 6,-+m' = 6, for all i>t, and also that, writing p = aia2 • ■ ■ at,

q = hb2 ■ ■ • bt,a' = p~1ap = at+iat+i • • • at+mandb'= q~1bq = bt+ibt+i ■ • •&(+»•'•

If any first a^bi, then Lemma C yields a<+12ai+11a~'c)it>,+1&,+2 = ai+12-c-c),-+2 re-

duced, hence, for large h, a~hbh = a~1-c'-b reduced, as required for Lemma F.

If, on the other hand, aj = c>,- for all *, we have aj+„ = a,- where re = (m, m'),
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and also p = q. Writing d = at+iat+2 • • ■ at+n it follows that a'—dm,n and

b' = dm'ln, whence a = ch, b = ck where c = pdp~l, h = m/n, and k = m'/n.

Proof of Proposition 6'. We are given a and b in Ft, cyclically reduced,

primitive, and neither in F<_i. The reasoning that began the proof of Proposi-

tion 5' shows that both a and b satisfy the hypotheses of Lemma F. If, in

accordance with that lemma, a = ch, b = ch, then, since a and b are primitive,

a = b±x. Either a = b, or a = b~x and a~xb = a~x-l -b reduced, whence the con-

clusion of Proposition 6' holds. Otherwise, by Lemma F, some a~hbk = a~x • c • b

and again Proposition 6' holds.

Proof of Proposition 7'. We are given a and b in Ft such that ab = ba.

Case 1. Suppose neither a nor b has as cyclic conjugate a power of an

element in Ft-i. Then the same is true of a~x and b~x. Unless a = ch and 6 = c*

for some c in F< and h, k in Z, three applications of Lemma G yield an integer

h>0 such that

ah0h — a.Cl.h!       bha~h = b-c2-arx,       a~hb~h = a~x-c3-b~x,

all reduced. We note that it follows from Proposition 3' that, if as^l, h>0,

then ah begins and ends with L(a) and R(a). It follows that

a2Kbna-2hb-2h = ah+xcib2Cia-2c3b-ih+x)

without cancellation between the seven factors displayed, whence, by the

Corollary, a2hb2ha~2hb~2h ̂ 1, a2h and b2h do not commute, which contradicts

ab = ba. This establishes the conclusion in Case 1.

Case 2. One of a and b, say a, is conjugate to a power of an element in

F(_i. Conjugating a and b simultaneously, we can suppose a itself if a power

of an element in F<_i, a = v", v in Ft-i, and we can suppose further, apart from

the trivial case a = l, that a>0 and v is cyclically reduced and primitive.

Case 2A. a in Z. Then a is in Ft-i. If 1(b) = 0, then b is also in Ft-i and

the conclusion follows by Proposition 7; in view of Proposition 4, in fact,

b = v? for some p. Suppose l(b)=n>0, and b = wiz^1 • ■ ■ wn+i normal. From

the normalizing process we see that ba will have a normal form beginning

with Wiz\ for some /3. The normal form of ab will begin with some r(qp)& where

Zi = p-q, pT^l, and awi — r-q-(p-q)k reduced, for some k in Z. By Lemma D,

from ab = ba we conclude that Wi = r and Zi — qp. An argument in the proof

of Lemma E shows that Zi = p-q = q-p primitive, p9*l, implies ff=l. Thus

awi = r(pq)k = Wiz\, and a = Wiz\wrx. Since WiZi is normal, if Wi^l then

R(wi) y*L(zi)-x and L(wrx) =R(wi)-x9^R(zi)~x, and a = wizkwrl is reduced,

but not cyclically reduced, contrary to the hypothesis on a. Thus Wi = l,

a = z\, whence a commutes with Z>' = w2z22 • • ■ wn+i. By induction on the

length of b we conclude that b' = v& for some j3, whence b=vfH+fil, as required.

Case 2B. a is not in Z. Then a=va is normal. Again we reason by induc-

tion on 1(b). The case 1(b) =0 falls under Case 2A with a and b interchanged.

Let b have normal form as before, with 1(b) = n>0. If wi = l and zi = z> the
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conclusion follows by induction on lib) as before. Otherwise, by Lemma C,

vaWiZi1=va'-c-Zi reduced, and the normal form of ab begins with va" for some

a". To examine the normal form of ba, we observe that the normal form of

WnZ^Wn+iV will begin with w„z^ for some 8', unless z^Wn+iV = Zn"qipq)y

= Znniqp)fq=iqp)sq where v = p-q, and z±1 = q-p. In this case, zf°wn+x

= iqp)sqipq)~" = qipq)' = qv', and b = Wiqv', whence a commutes with Wiq in

Ft-i, and the initial case of the induction gives Wiq = v$, whence b = v&+'.

Thus, even if re= 1, the normal form of ba will begin with WiZi for some 8"■

Since ab = ab, this contradicts Lemma D unless wx=l and zx = z>x.

This completes the proof of Proposition 7', and with it the proof of

Theorem I.

5. Conclusions. Our main result is the following.

Theorem II. There exists an effective procedure that associates with each

expression e, made up out of the symbols ax, a2, • • • , ar by means of the X-group

operations, where X = Z[vi, v2, • ■ ■ , vd], an element a in X, in such a way

that, if w is the element of the free X-group F represented by e, and p is any re-

traction of X onto Z, then pw=l if and only if pa = 0.

Taking into account the X-group axioms, we can replace e by an expres-

sion e' representing the same group element w, where e' = e"1^2 • • • e£", n 2: 0,

all at in X, and where each e, represents an element w( of Ft, for some fixed

/2:0. Let co = w"'w^2 • • • «£", and let C be the empty set of conditions. Then

(co, C) is a word of height t + l, and, by Theorem I, (co, C) is equivalent to a

finite set of normal words (cox, Ci), (u2, C2), • • • , io3k, Ck). We may suppose

these words indexed in such a way that, for some h, O^h^k, cox=l, w2

= 1, • • • , Wh = 1, while none of coA+1, coA+2, ■ • • , coA is the empty word. Since

every retraction p satisfies the vacuous set of conditions C, it follows from the

definition of equivalence that every retraction satisfies one of Cx, C2, • ■ ■ , Ck.

If p satisfies some C,- for l^i^h, then pw = pl = l; while if p satisfies some

Ci for i>h, then pw = pWi, where zt\- is the element represented by co,-, and

from conditions N2 and N3 for the normality of Wi, it follows that pwt has a

left letter and a right letter, and hence pWi^l.

For each i, after transposing, we can write the finite set of equations in

d in the form paix = 0, pa,-2 = 0, • • ■ , paimi = 0, w,-2:0. Define ai = a21+a%

4- • ■ • +a2mi, and set a = axa2 • ■ • on. If pw= 1, then p satisfies some d, for

1 ̂ i^h, hence pa,-,- = 0 for j= 1, 2, • • • , mf, pa,- = 0, and thus pa = 0. Suppose

conversely that pa = 0. Then re2:1, and paj = 0 for some i, l^i^h, whence

pa,7 = 0 for7 = 1, 2, • • • , m,-. Now (co, Ci) is equivalent to (1, Ci), by virtue

of (E2) and (E3) alone, which make no reference to any inequalities con-

tained in d; that is, co can be transformed into 1 by means of the X-group

axioms together with substitutions implied by the equations «,x = 0, ai2

= 0, • • • , aim. = 0. Since pa,-,- = 0 for j'=l, 2, • • • , w„ it follows that pw
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= pl = l. Thus we have shown that, for every retraction p, pw=l if and

only if pa = 0, which completes the proof to the theorem.

We conclude by justifying an assertion made in the introduction that, for

X = Z[vi, v2, • ■ • , vd], cFSO, the axioms given for X-groups are neither too

strong nor too weak in the sense that an expression € representing an element

of the free X-group F reduces to 1 by virtue of these axioms if and only if,

under every substitution of integers for Vi, v2, ■ ■ • , vd, « is transformed into

an ordinary word representing the element 1 of the ordinary free group Fo.

It is clear that the axioms are not too strong: if they permit us to trans-

form one expression e into a second e', surely e and e' represent the same

element of F0 under each substitution. To show that the axioms are strong

enough we must show that if e represents an element w of F such that pw—1

under all retractions p, then in fact w=l, the trivial element of F. Returning

to the notation used in the proof of Theorem II, we have that pa = 0 for all

p. This implies that a = 0, identically in X, whence /fSl and a,- = 0 for some

i, l^i^h. But ai = a2n+a2i2+ ■ ■ ■ +a2mi = 0 implies that a,j = 0 for all

j=l, 2, • ■ ■ , m^ so that C< in fact contains no nontrivial conditions. But

now, as before, co reduces to 1 by means of the axioms together with the

trivial condition 0 = 0, that is, by means of the axioms alone.
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