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1. Introduction. This paper describes a certain class of Galois connections

and discusses its relations with the property of complete distributivity in com-

plete lattices. A procedure for constructing Galois connections between com-

plete lattices is presented. The Galois connections constructed by this pro-

cedure are called tight Galois connections, and are characterized as those

which satisfy certain identities. All closure operations on complete lattices

are obtainable from tight Galois connections. If either of the complete lat-

tices involved in a Galois connection is completely distributive, then the

Galois connection is tight. Consequently, all Galois connections constructed

by the known procedure of Birkhoff are tight.

The identity mapping from a complete lattice to its dual lattice always

determines a Galois connection ; this Galois connection is tight if and only if

the complete lattice is completely distributive. This last observation leads

to a characterization of completely distributive complete lattices solely in

terms of the partial ordering on them. It also provides new insight into the

structure of these lattices, and enables us to prove a representation theorem

which is considerably more economical than the one previously known.

2. Definitions and notations. If £ is a family of subsets of a set, the inter-

section of £ is denoted by IT£, and the union of £ is denoted by X^£.

If £ is a complete lattice, then every subset £ of £ has a meet, which is

denoted by l~l£, and a join, which is denoted by L)£.

If 7 is any partially ordered set, a subset J of £ is called a lower semi-ideal

of L if x£7, y££, and y¿x together imply y£7. The definition of upper

semi-ideal is obtained by changing the direction of the inequality.

If £ and 717 are complete lattices and r: L-+M and »: M—>£ are mappings

such that (1) Xi — x2 in L implies r(xi)=r(x2) in M, (2) yi^y2 in 717 implies

n(yi)=n(y2) in £, (3) nr(x)=x in L, and (4) rw(y)^y in M, then the pair

[r, n] is called a Galois connection between £ and M. The theory of Galois

connections has been developed by Ore, Birkhoff, and Everett [l; 2; 3].

Recently it has been observed [4; 5] that Galois connections between £ and

717 correspond in a one-to-one manner with the complete join homomorphisms

from L into the dual of M. In particular, if A EL, thenr(LL4) =(1 {r(a)\aEA }.

If £ and M are complete lattices, then L X M is the complete lattice whose

elements are the pairs (/, m) with /££ and mEM, where (h, t»i)^(/2, tm2)

means that h — h and mi~m2.
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3. Tight Galois connections. Let 7 and M be complete lattices. Let 0 be

any subset of £ X M. Define 0+ to be the set of (I, m) in 7 X M such that for

every (u, v)Q6 either l^u or m^v. Define 0* to be the set of (/, m) in LXM

such that for every (u, v)Q0 either u^l or v^m. Then the following state-

ments are readily seen to hold for any subsets 8, 0i, 02 of LXM: (1) 0+ is a

lower semi-ideal in LXM, (2) 6* is an upper semi-ideal in LXM, (3) if

0iC02, then 02+ C0i+ and 02*C0i*, (4) 0C0*+ and 0C0+*. It follows that if C is
the complete lattice whose elements are the subsets of £ X M partially ordered

by set inclusion, then +: C—>C and *: C—>C together form a Galois connec-

tion. From the theory of Galois connections it is known that for any 8 QL X M

both 0+ = 0+*+ and 0*=0*+*, that +* and *+ are closure operations on C

with closed sets of the forms 0* and 0+ respectively, and that there is a dual

isomorphism between the complete lattices of closed sets under these two

closure operations.

Birkhoff [2, p. 54] has described a construction under which each binary

relation p between, two sets A and B induces a Galois connection between

the complete lattice of all subsets of A and the complete lattice of all subsets

of B. The Galois connection [ + , *] is induced in this manner by the binary

relation ß between LXM and LXM, if (h, mi)ß(h, m2) is taken to mean that

either /i^/2 or mi^m2.

Theorem 1. 7ei £ and M be complete lattices and let 8QLXM. For xQL

define r(x)=U{y|(x, y)Q8+] and for yQM define w(y)=U{x|(x, y)Q8+}.
Then [r, n] is a Galois connection between L and M, and 6+ consists of the pairs

(I, m) such that (I, m)^(u, v) for some pair (u, v) such that v = r(u) and

u = n(v).

Proof. If Xi^x2 in £, then since 0+ is a lower semi-ideal in LXM, r(x2)

= U{y|(x2, y)Q8+) ^U{y| (xi, y)Q8+) =r(x/) in M. Similarly, if yiáy2 in

717, then w(y2) ^«(yi) in L. If x£7 and (x, r(x)) is not in 0+, then there is a

(u, v)Q8 such that x not ^u and r(x) not ^v. By the definition of r(x), this

would imply that there is a y such that (x, y)Q8+ and x not ¿w and y not

^v. This would contradict the definition of 0+, and we conclude that (x, r(x))

Q8+. Therefore nr(x) =U{'/| (t, r(x))Q8+}^x. Similarly, if yQM, then

rn(y)7iy, and it is proved that [r, n] is a Galois connection between 7 and

M. If (/, m)Q8+, then (/, m)^(l, r(l))è(nr(l), r(l)) = (nr(l), rnr(l)). If (/, m)

^ (u, v) where v = r(u), then since (u, v) = (u, r(u))Q8+ and 0+ is a lower semi-

ideal, (/, m)Q8+.

Theorem 1 shows that every relation 0 between two complete lattices 7

and M determines, using 0+, a Galois connection [r, «] between 7 and M.

Dually, every relation 0 between L and M determines, using 0*, a Galois

connection between the dual of £ and the dual of M.

The construction described in Theorem 1 differs from that of Birkhoff.

In Birkhoff's construction a relation between two sets A and B induces a
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Galois connection between the family of all subsets of A and the family of all

subsets of B. In the present construction a relation between two complete

lattices £ and M induces a Galois connection between the same two lattices,

and it is not required that either of the lattices be the lattice of all subsets of a

set.

C. J. Everett [3, p. 517] has proved that if A and B are sets, then every

Galois connection between the family of all subsets of A and the family of all

subsets of B can be obtained using Birkhoff's construction. One wonders

whether, for arbitrary complete lattices £ and 717, every Galois connection

between £ and Tkf can be obtained by the present construction. Without some

further condition the answer is in the negative; the identity mapping of the

five element nonmodular lattice onto its dual provides one counterexample.

It will be shown, however, that whenever at least one of the lattices £ and 717

is completely distributive, every Galois connection between £ and 717 is

obtainable by the present construction. Since the lattice of all subsets of a

set is completely distributive, every Galois connection obtainable using Birk-

hoff's construction is also obtainable using the present construction. It will

also become apparent that there are certain identities which are satisfied

by all Galois connections produced by either Birkhoff's construction or the

present construction but are not satisfied by all Galois connections.

Theorem 2. If [r, n] is a Galois connection between complete lattices L and

717, then the following four conditions are equivalent :

(I) £Aere  e;c75/5  a  subset d  of LXM such  that for  every  xEL,  r(x)

=V.{y\(x,y)ee+}.
(II) For every xEL, r(x)=C\{(i{r(t)\t not =u}\u not =x}.

(III) £Aere exists a subset 6 of LXM such that for every y EM, n(y)

= U{x\(x, y)£0+}.
(IV) For every y EM, n (y) =H{U{»(/) | / not ^v}\v not ^y}.

If either L or M is completely distributive, then all four conditions are satisfied.

Proof. (I) implies (II). For every x £ £, r(x) = \J{y\(x, y) £ f7+]

= U|y|(x, y)£0+*+} =U{y|for every (u, v)E0+*, ii x not =u, then y^v\

= H j v | for some u not — x, (u, v) £f7+*} = D {Í1 {v \ (u, v) £0+*} | u not = x}

= n{U{r(Z)|z not ^«}|7<not =x}.

(II) implies (I). Let 0 = {(u, v)\v ^ U{r(/)| / not = u} }. Then

U{y| (x, y)£0+} =U{y|whenever 7>^U{r(/)|/ not ^u} and x not =u, then

y^v} =n{U{r(/)| / not gw}|7inot =x} =r(x).

In a similar manner, it can be proved that (III) and (IV) are equivalent.

For any Galois connection [r, n], n(y) = 0{x\r(x) ^ y} and r(x)

= U{y|»(y)^3c}. If r(x) = 0{y\(x, y)£0+}, then (x, y)£0+ if and only if

yúr(x). Therefore »(y) = U{x| (x, y)£0+}. This shows that (I) implies (III).

Similarly it can be shown that (III) implies (I).

The inequality r(x) iSD {U{r(/)|/ not   á«}|« not   =x}   holds for any
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complete lattices £ and M. It will be shown next that if M is completely dis-

tributive, then the reverse inequality also holds.

First let us show that if £ is any complete lattice and xQL, and if / is a

function which assigns to each / not ^x an element/(i) such that f(t) not

Ut, then U{/(i)|f not ^x} ^x. For let t0 = (J{f(t)\t not ^x}; if t0 not fex,

then according to the hypothesis on f, f(t0) not ^t<¡; but according to the

definition of to, f(to) uto, and we have a contradiction.

Now suppose that M is completely distributive and let £ be the set of

functions/ such that/ assigns to each u not ^x an element/(w) such that

f(u) not á«. Then n{U{r(<)|/ not £u}\u not ^x} =\J{C\{r(f(u))\u not

^x}|/G£}=U{r(U{/(M)|w not ^x})\fQF} £r(x), by the result of the
preceding paragraph. Therefore, complete distributivity of M implies condi-

tion (II).

In a similar manner it can be proved that complete distributivity of L

implies condition (IV).

A Galois condition satisfying the conditions (I)-(IV) of Theorem 2 will be

called a tight Galois connection.

One reason for studying Galois connections is that they lead to closure

operations. The following theorem shows that we will obtain all closure opera-

tions even if we restrict our attention to tight Galois connections.

Theorem 3. 7e¿ L be a complete lattice and let C be the set of closed elements

of L under some closure operation on 7. Let M be the complete lattice of all sub-

sets of C. For xQL, define r(x) to be the set of closed elements c of L such that

x^c. If yQM, define n(y) to be the meet of y in L. Then [r, «] is a tight Galois

connection between L and M, and an element x of Lis a member of C if and only

if x — nr(x).

Proof. If xi^x2 in £ and cQC, then x2^c implies Xi^c. Therefore r(x2)

^r(xi). If yi^y2 in M, then w(y2) =ny2^nyi = M(yi). If xQL, then nr(x) is

the meet of the set of closed elements c such that x^c. Therefore x^«r(x).

Furthermore wr(x) is the closure of x and the closed elements x of £ are pre-

cisely those for which x = nr(x). If yQM, then r«(y) is the set of closed ele-

ments c such that Dy^c. Therefore y^rn(y). This shows that [r, «] is a

Galois connection. Since M is the lattice of all subsets of a set, M is com-

pletely distributive, and [r, w] is a tight Galois connection.

From Theorem 2 it follows that if a complete lattice is completely dis-

tributive, then any Galois connection in which it is involved is a tight Galois

connection. The following theorem shows that for any complete lattice which

is not completely distributive there is at least one Galois connection involving

it which is not tight.

Theorem 4. Let L be a complete lattice and let LD be its dual lattice. Let

I: L^>LD be defined by I(x)=xfor xQL. Let ID: LD-*L be defined by ID(y)
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= y for yELD. Then [I, ID] is a Galois connection between L and LD which is

tight if and only if L is completely distributive.

Proof. That [7, ID] is a Galois connection is easily checked. If £ is com-

pletely distributive, then [7, ID] is tight by Theorem 2. It only remains to be

proved that if [7, ID] is tight, then £ is completely distributive. For the sake

of clarity, all inequalities will be expressed in terms of the partial ordering

on £; no further reference to the ordering on LD will be made.

For xEL, define K(x) to be the intersection of the family of lower semi-

ideals 7 in £ such that U7^x. It is known [6] that £ is completely distribu-

tive if and only if \JK(x)=x for every xEL. Make the further definitions:

£(d)=U{/|/ not ^d}, 7V(o)=n{/|/ not ga}, for d££.

First it will be proved that U {7V(d) | a not = x} = U {b\ R(b) not = x}, for

every x££. Let b be such that £(¿») not =x. Then there is an d, namely

R(b), such that a not = x and b ^ 7V(d). Hence U{A7(d)|d not = x}

^U{o|£(o) not ^x}. Next let a be such that a not =~x. Then £7V(d) not

= x, and there is a b, namely N(a), such that b = N(a) and £(6) not =x.

Hence U {7V(d) | d not à*} ^U{o|£(o) not èx}.

Second it will be proved that for every x££, wEK(x) if and only if

R(w) not — x. If x = R(w), then x^U{/|/ not ^w}. Since \t\t not =w} is a

lower semi-ideal, and w is not a member of it, w cannot be a member of K(x).

Conversely, if w is not a member of £(x), then there is a lower semi-ideal

J such that U7 — x and w is not in J. Then 7 £ {/|Z not — w}, and U7

^U {/|/ not =w} =R(w). Therefore, x^£(w).

The hypothesis that [7, ID] is tight can be expressed in the form

x = U{n{/|/ not í=7í}|w not ^x), by condition (II) of Theorem 2. Using

the results of the two preceding paragraphs, we then obtain x = U {N(u) \ u not

=^x} =U \w\R(w) not ^x} =U(£(x)), for every x££. It follows that £ is

completely distributive.

The following theorem characterizes completely distributive complete lat-

tices solely in terms of the partial ordering relation.

Theorem 5. 7» order that the complete lattice L be completely distributive

it is necessary and sufficient that whenever u not =^v in L there exist elements p

and q in L such that u not ^p and v not ^q and for every xEL either x^p or

x~=q.

Proof. By Theorem 4, L is completely distributive if and only if [7, ID]

is tight. By definition, [7, ID] is tight if and only if there exists a relation

0 £ £ X LD such that x = 7(x) = C\{y\ (x, y) £ 0+}, and y = 7fl(y)

= U|x| (x, y)£0+j. Here, as before, our statements are expressed in terms

of the ordering on £. By Theorem 1, 0+ consists of the pairs (tí, v) such that

u~x and v — x for some x££. Simplifying, 0+ consists of the pairs (u, v)

such that u^v. If u not ^v, then (u, v) is not in 0+, and since 0+ = 0+*+, (u, v)

is not in 0+*+. This implies that there is a pair (p, q) in 0+* such that u not
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^p and v not ^g. But (p, q) is in 0+* if and only if whenever g^/i then either

p^g or q^h. It then follows easily that (p, q) is in 8+* if and only if for every

x£7 either xiSp or x^q.

4. Representation theory. Let 7 be any complete lattice. An ordered pair

(p, q) of elements of 7 will be called a blanket if and only if for every xQL,

either x^p or x^q.

A blanket (p, q) will be called a minimax blanket if and only if pi<p

implies that (pi, q) is not a blanket and qi>q implies that (p, qi) is not a

blanket.

A blanket (p, q) will be said to separate the elements u and v oí L if and

only if m not ¿p and v not ^q.

Theorem 6. Let L be a complete lattice. For xQL, define R(x) = 0{t\t not ^x}

and N(x)=f\{t\t not ax). Then [£, N] is a tight Galois connection between

L and its dual. A blanket (p, q) is a minimax blanket if and only if p — R(q)

and q = N(p), or, equivalently, (p, q) = (£(x), NR(x)) for some x. If there is a

blanket which separates the elements u and v of L, then there is a minimax

blanket which separates u and v.

Proof. Using the notation of Theorem 1, let 6={(t,t) \tQL}. Then

0+= {(x, y)\ior every tQL, either x^t or y^/j. Now £(x)=U{/|/ not ^x}

= n{y|if t not ^ x, then y ^ t) = V\{y\(x, y) Q8+). Similarly, N(y)
= U{x| (x, y)Q8+). It follows from Theorems 1 and 2 that [£, N] is a tight

Galois connection between £ and its dual. Therefore R = RNR and a pair

(p, q) satisfies p = £(g) and q = N(p) if and only if (p, q) = (R(x), NR(x)) for

some x.

We next show that for every x££, (£(x), NR(x)) is a minimax blanket.

By the definition of N, if u not ^ £(x), then u ^ NR(x). Therefore

(£(x), NR(x)) is a blanket. If p<R(x), then by the definition of £, p not ^t

for some t not ^x. Since NR(x) ^x, t not ^NR(x) and (p, NR(x)) is not a

blanket. If q>NR(x), then q not ¿t for some t not ¿j£(x) and (£(x), q) is

not a blanket. Therefore, (£(x), NR(x)) is a minimax blanket.

If (p, q) is any blanket, then whenever x not eg, x must be ^p. There-

fore p^R(q). Similarly, q^N(p). Now (R(q), q) and (p, N(p)) are blankets.

Therefore, if p>R(q) or q<N(p), then (p, q) is not a minimax blanket. It

follows that if (p, q) is a minimax blanket, then p = R(q) and q = N(p).

Let u and v he elements of 7 which are separated by the blanket (p, q).

Since p^R(q) and u not ^p, u not :S£(g); and since NR(q)^q and n not

^q, v not ^NR(q). Therefore « and v are separated by the minimax blanket

(£(g), NR(q)).
Completely distributive complete lattices can now be characterized by

the following condition: whenever u not ^v in 7, there is a minimax blanket

(£(x), NR(x)) in £ which separates m and v. In the representation theory for

these lattices the minimax blankets are useful, since they are readily located
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in specific examples and since they have the separation property just ex-

pressed. Some time ago, in answer to a question of Birkhoff, a subdirect-

union representation theorem for completely distributive complete lattices

was proved [6]. Now, using minimax blankets, it is possible to render the

proof of this theorem more perspicuous while greatly reducing the nunber

of chains required in the representation.

Theorem 7. Every completely distributive complete lattice is isomorphic with

a closed sublattice of the direct union of a family of complete chains.

Proof. Let £ be a completely distributive complete lattice and let P be

the set of all minimax blankets (£(/), NR(t)) for /££. Define

(£(/i), NR(ti))\(R(t2), NR(t2))

to mean that £(/i) not =NR(t2). We show first thatX is idempotent, X=XoX.

If (£(/i), 7V£(/i))X(£(/2), 7V£(/2)), then 7V£(/2) not ^£(/i). Since £ is

completely distributive, there is a minimax blanket (£(x), NR(x)) which

separates 7V£(/2) and £(/i). Then NR(t2) not ^£(x) and £(/i) not =NR(x),

so that (£(/i), 7V£(/i))X(£(x), 7V£(x))X(£(/2), 7V£(/2)). Therefore, A£X o X.

Conversely, if (£(/i), 7v£(Zi))X(£(x), 7V£(x))X(£(/2), 7\T£(/2)), then £(/x)

not =NR(x), so that we must have £(x)^£(Zi). If NR(t2)=R(ti), then

NR(t2)^R(x). But 7V£(/2) not =R(x). Hence 7V£(Z2) not =R(h), and

(£(Zi), 7V£(Zi))X(£(Z2), 7V£(Z2)). Therefore X o X£X.

The relation X on the set P is transitive and antisymmetric, but it is not

necessarily a partial ordering, since it need not be reflexive. Nevertheless,

we may define chains in X in the usual manner: a subset C of £ is called a

chain in X if and only if £i£C and £2£C implies either Bi = B2 or £iX£2 or

£2X£i. Furthermore, every chain in X is contained in a maximal chain in X.

Let T be the set of maximal chains in X. If C£T and d££, let m(C, a)

be the set of (£(Z), 7V£(Z))£C such that there exists an (£(x), 7V£(x))£C

such that (£(Z), 7V£(Z))X(£(x), 7\T£(x)) and £(x) not =a. If C£r, let

£<?= \m(C, d)|d££}. We show next that Fc is a complete chain in the rela-

tion of set inclusion on the set of subsets of C.

If tk(C, d) not £tm(C, b), then there exists an (£(Z), 7V£(/)) which is a

member of m(C, a) but not a member of m(C, b). If (£(y), NR(y))Em(C, b),

then we cannot have (£(/), 7V£(/))X(£(y), NR(y)); for, since XoX£X, this

would imply that (£(/), NR(t))Em(C, b). Since we also cannot have

(£(/), 7V£(/) = (£(y), NR(y)), we must have (£(y), 7V£(y))X(£(/), NR(t)) and

(R(y), NR(y))Em(C, a). It follows that 7»(C, b)Em(C, a), and it has been

proved that Fc is a chain.

If C£r and A EL, then £{?»(C, d)|a£^l} = m(C, IU). For
(£(/), 7V£(Z))X(£(x), 7V£(x)) and £(x) not =UA if and only if for some aEA,

(£(/), 7V£(Z))X(£(x), NR(x)) and £(x) not =a. This proves that Fc is a com-
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plete chain in which if FQFC, U7= 2~lF and i"l£= 2~1 {"»(C, b)\bQL and
m(C,b)Q\\F).

Next it will be shown that if C£r and A QL then fl{m(C, a)\aQA]
= m(C, ÍL4). If (£(0, NR(t))Q(]{m(C, a)\aQA\, then there exists a bQL

such that (£(/), NR(t))Qm(C, b) and m(C, b)Qjl{m(C, a)\aQA). Then
(£(/), NR(t)) Q C and there exists an (£(5), NR(s)) Q C such that

(£(0, NR(t))\(R(s), NR(s)) and R(s) not ^b. Since XCXoX there exist

(£(m), NR(u)) and (R(y), NR(y)), both in C, such that (R(t), NR(t))

\(R(u), NR(u))\(R(y), NR(y))\(R(s), NR(s)) and R(s) not ^b. It follows

that (£(y), NR(y))Qm(C, b) ; hence (£(y), NR(y))Qm(C, a) for every a£¿.

This implies that for every aQA, R(y) not ^a, and we must have NR(y) ^a

for every aQA. Therefore, NR(y)^CiA. Now £(w) not ^NR(y); hence

R(u) not ^fU. We conclude that (R(t), NR(t))Qm(C, ÍL4). This proves

that f\{m(C, a)\aQA} Qm(C, C\A). Since m(C, f\A)Qm(C, a) for every
aQA, we also have that m(C, f\A) QC\ {m(C, <z)|a£.4 }.

Let D be the direct union of the family of complete chains {Fc\ CQY\.

For every aQL, let <pa he the member of D such that for every CQT, <pa(C)

= m(C, a). Let L*= {<¡>a\aQL}. The mapping a—*<pa is a one-to-one mapping

of L onto £*. For suppose a9£b, with a not ¿b. Then there is an (£(/), NR(t))

which separates a and b, so that a not ^R(t) and ¿> not ^.NR(t). Now there

is an (£(/), NR(l)) which separates a and £(/), and we have a not ^£(0

and £(/) not ^NR(l). Therefore (R(t), NR(t)) X(£(0, /V£(0)- Let G be a
maximal chain in X containing both (R(t), NR(t)) and (£(/■), NR(l)). Then

(R(t), NR(t)) is a member of m(d, a). Since è not ^NR(t), b^R(t), and it

follows that (£(0, NR(t)) is not a member of m(G, b). Therefore m(G, a)

9±m(Ci, b), and (paJ^cpb.

Finally we prove that 7* is a closed sublattice of D and that the mapping

a—xpa preserves joins and meets. If A QL and C£r, then U{c/>0|aE.4 } (C)

= V{<pa(C)\aQA}=U{m(C, a)\aQA } = £{m(C, a)\aQA}=m(C, UA)
= <í>UA(C),andnic6(í|a Q A} (C) = ï\{<pa(C)\a Q A } = V\{m(C,a)\a Q A)
= m(C, f\A) —<pnA(C). This completes the proof of Theorem 7.

The present proof is based on the relation X between minimax blankets,

while the proof given in [6] was based on the relation p which holds between

elements x and y of 7 if and only if xQK(y), where K(y) is defined as in the

proof of Theorem 4. Making use of an observation made in that proof, we

can describe the relation p in terms of the function £, and we have that

xpy if and only if £(x) not ££y. It can then be seen that each maximal chain

in X determines a maximal chain in p in the following manner: if

|(£(i), NR(t))\tQT] is a maximal chain in X, indexed by T, then

{NR(t)\tQT\ is a maximal chain in p. Since different maximal chains in X

determine different maximal chains in p, the number of maximal chains in X

cannot exceed the number of maximal chains in p. Consideration of simple
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examples suggests that in many cases a substantial reduction in the number

of chains will be achieved by using X instead of p. For example, if £ is the

lattice of subsets of a set with » elements, »> 1, then there are only » maximal

chains in X while there are m(2"_1 —1) maximal chains in p. Or if £= UX U,

where U is the unit interval, then there are only two maximal chains in X

while there are infinitely many maximal chains in p. It is apparent that the

new representation is considerably more economical than the old.
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