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Introduction. This paper contains the foundations of a general theory of

separable algebras over arbitrary commutative rings. Of the various equiv-

alent conditions for separability in the classical theory of algebras over a

field, there is one which is most suitable for generalization; we say that an

algebra A over a commutative ring £ is separable if A is a projective module

over its enveloping algebra Ae = A®fiA°.

The basic properties of separable algebras are developed in the first three

sections. The results obtained show that a considerable portion of the classical

theory is preserved in our generalization. For example, it is proved that

separability is maintained under tensor products as well as under the forma-

tion of factor rings. Furthermore, an £-algebra A is separable over £ if, and

only if, A is separable over its center C and C is separable over £. This fact

shows that the study of separability can be split into two parts: commutative

algebras and central algebras. The purely commutative situation has been

studied to some extent by Auslander and Buchsbaum in [l]. The present

investigation is largely concerned with central algebras. In the classical case,

an algebra which is separable over a field K, and has K for its center, is

simple. One cann'ot expect this if the center is not a field; however, if A is

central separable over £, then the two-sided ideals of A are all generated by

ideals of £.

In the fourth section we consider a different aspect of the subject, one

which is more analogous to ramification theory. If A is an algebra over a ring

£, the homological different §(A/£) is an ideal in the center C of A which

essentially describes the circumstances under which A®rRv is separable over

£(>, when p is a prime ideal of £. (Suitable finiteness conditions must be im-

posed in the statement of these theorems.) The general question of ramifica-

tion in noncommutative algebras is only touched on in the present paper;

various arithmetic applications will be treated in another publication.

In the classical theory of central simple algebras, the full matrix algebras

have a special significance. The proper analogue of the full matrix algebra in

the present context is the endomorphism ring Homje(£, £) of a finitely gener-

ated projective £-module £. It is easy to show for such a module £ that

rlomR(E, E) is separable over £, and central if £ is faithful. By analogy with

the classical theory, we introduce an equivalence relation between central

separable algebras over a ring £, under which the equivalence classes form
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an abelian group, the Brauer group ÖS(£) of £. Explicitly, the equivalence*

relation is the following: if Ax and A2 are central separable over £, then

Ai~A2 if there exist finitely generated projective faithful £-modules £1, £2

so that Ai®BHomK(£i, £i)=A2®fiHomB(£2, £2). The multiplication in (B(£)

is induced by the tensor product of the algebras. The fact that (B(£) is a

group depends on the following result proved in §2: if A is a central separable

algebra over £, then A is a finitely generated projective £-module, and

Ae = A<8>ßA° is naturally isomorphic to the endomorphism ring, HomB(A, A),

of A over £.

It has been pointed out to the authors that Azumaya in [3] anticipated

some of the results dealing with the formal properties of separable algebras

and the Brauer Group of rings mentioned thus far. Since, in effect, Azumaya's

definition of a maximally central algebra is a local version of what we call a

central separable algebra, some of our results can be obtained from his by

standard "localization" procedures. However, since our somewhat different

point of view leads naturally to its own form of proof, we have presented

these proofs even in those cases where the result can be deduced from

Azumaya's results.

A ring homomorphism /: £—>S induces a group homomorphism /*: (B(£)

—>(B(S). Some special cases of this homomorphism discussed in §§6 and 7 are

the following: if £ is a complete local ring with maximal ideal m, then the

canonical homomorphism R-+R/m induces an isomorphism (B(£)—>(B(£/m);

if £ is a regular domain with quotient field K, then the imbedding £—>£

induces a monomorphism (S>(R)—*(S,(K). An example is given of an integral

domain £ with quotient field K for which the map (B(£)—>(B(2v) is not a

monomorphism. It would be interesting to know under what circumstances

the map (B(£)—>(B(£) is in faGt a monomorphism. To mention another special

case, if k is a field, the map ($>(k)—>($>(k[x\), arising from k—>k[x], is an iso-

morphism if, and only if, k is perfect. (Rosenberg and Zelinsky have recently

given another proof of this result by means of the Amitsur complex.)

A lengthy appendix contains a Galois theory of commutative rings as

well as a theory of crossed-products relating (&(R) with the Galois cohomology

of £. Under suitable restrictions, if S is a Galois extension of £ relative to a

group of automorphisms G, then the sequence (1)—»272(G, U(S))—>©(£)

—>(B(S) is exact. (U(S) is the group of units of S.) There are several applica-

tions of this theorem in the body of the paper.

Since this paper presents the foundations of the theory, we have not in-

cluded any of its applications. There are a number of interesting applications,

especially to algebraic number theory, which will be presented in other pub-

lications.

1. Formal properties of separable algebras. Throughout this paper we

assume that all rings have units, that all modules are unitary, and that all

ring homomorphisms carry the unit into the unit.
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From now on £ will denote generically a commutative ring. A ring A

together with a (ring) homomorphism of £ into the center of A will be called

an R-algebra. We denote by A0 the opposite ring of A (i.e. A0 consists of a set

in one-to-one correspondence with A, the correspondence being indicated by

x—>x°, with addition being defined by x°+y0=(x+y)° and multiplication by

x°y°= (yx)°). It is clear that A0 is an R-algebra in a natural way. Now if 717

is a two-sided A-module, and we assume that the operations of £ are the

same on both sides, then this module structure can be described by means of

the enveloping algebra Ae=A®ÄA° of A over £ in the following way. We con-

sider M a left A"-module by means of (x®y°)m = xmy. It is easily seen that

this establishes a natural one-to-one correspondence between the two-sided

A-modules and the left Ae-modules which allows us to use these concepts

interchangeably.

In particular, A is a two-sided A-module and thus a left Ae-module, the

operation being given by (x®y°)(z)=xzy. We say that A is a separable R-

algebra if and only if A is a projective Ae-module. The rest of this section is

devoted to establishing some of the more formal properties of separable

algebras.

In general there is a A"-epimorphism ep:Ae—»A defined by (p(x®y°) =xy.

The kernel of fa which we denote by 7, is a left ideal in Ae which is generated

as a left ideal by the elements of the form x® 1 — 1 ®x°. Now suppose 717 is a

two-sided A-module and 717* the £-submodule of 717 consisting of all m in M

such that xm = mx for all x in A. Since <p:A*—>A induces an isomorphism

Ae/7=A, it is easily seen that the map of Honu«(A, 717)—>717 given by/—*/(l)

induces an isomorphism of HomA«(A, 717) with MA which we will consider an

identification. For instance, we have that HomA«(A, Ae) is the right annihilator

of J in Ae which we denote by A and HomA«(A, A) is the center of A which we

denote by C.
Now A is A'-projective if and only if the exact sequence 0—»7—>Ae—>*A—»0

splits. And this sequence splits if and only if there is a Ae-homomorphism

A—»A* such that A—»Ae—>*A is the identity on A. From this it follows that A

is Ae-projécrive if and only if <p: A'—-»A induces an epimorphism HoniA«(A, A")

—>Honu«(A, A)—>0. Thus identifying Honu'iA, Ae) with A and Honu«(A, A)

with C, we have:

Proposition 1.1. A necessary and sufficient condition for A to be R-separable

is that <p(A) = C.

It should be noted that A being the right annihilator of 7 is a right ideal

in Ae and that faA) is an ideal in C.
Since the operation of Ae on A commutes with the operation of the center C

on A we have a ring map v: Ae—>Homc(A, A) given by t](x®y°)(z) =xzy. The

homomorphisms <p and tj are related through the following commutative dia-

gram
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7)

A«-► Homc(A, A)

t¡)\    S4>o

A

where <po is defined by c/>0(co) =co(l) for all co in Homc(A, A). It is clear that

J is the set of all y in Ae such that n(y) as an element of Home(A, A) maps 1

on 0. It is also clear that if x is in A, then n(x) is in the submodule

Homc(A, Q oí Homc(A, A).

Proposition 1.2. If Ais separable over R then, considering Aas a C-module,

we have that C is a direct summand of A.

Proof. Let aQA, with <j>(a) = l. Put/=rj(a). Then, because aQA, we

have/£Homc(A, C). Since <j>(a) = 1, we have/(l) = l. Thus,/ maps A onto C

and leaves fixed the elements of C. It follows that Cis a C-direct summand of A.

Corollary 1.3. 7/A is R-separable and a is an ideal in C, then aAnC= a.

Proof. The result follows easily from the fact that C is a C-direct summand

of A.

Proposition 1.4. £e/ A and Y be R-algebras and f: A—>T an R-algebra epi-

morphism. If A is separable over R, then V is also separable over R and the center

of T is f(C) where C is the center of A.

Proof. We first observe that the epimorphism /: A—>r induces an epi-

morphism of £-algebras/':Ae—>re defined by/e(x®y°) =/(x)®/(y)°. Now if

M is a two-sided T-module, then it can also be considered a two-sided A-

module. Since/ is an epimorphism, we have that MA= MT.

If we define a: Homi-iT, Jl7)-*HomA.(A, M) by a(h)(y)=h(f(y)) for all h
in Homr«(r, M) and y in A, we have a commutative diagram

Homier, M) 4 HomA«(A, M)

i i
Mr = MA

where the vertical isomorphisms are the standard identifications. Thus a is

an isomorphism. Now the map r*—»r—>0 induces the commutative diagram

Homr.(r, Ve) -* Homr.(r, T)

la la

HomA.(A, V) -> HomA.(A, r) -> 0

with the bottom row exact since A is Ae-projective. Thus the top map is an

epimorphism which means that T is £-separable.
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Also since A is Ae-projective, we have that the epimorphism /: A—»T in-

duces the epimorphism HomA«(A, A)—>HomA«(A, T). But HomA«(A, T)

= Homr*(r, T) which is the center of T. Thus if C is the center of A, we have

that/(C) is the center of T.

Proposition 1.5. Suppose that £i and R2 are commutative R-algebras. Ai

is a separable Ri-algebra while A2 is a separable R2-algebra. Then Ai®rA2 is

either 0 or a separable Ri®RR2-algebra. Furthermore the center of Ai<8>bA2 is

equal to Ci®rCí where Ci is the center of Ai.

Proof. Set r=Ai®fiA2. Then, it is immediate that re = r<g>Ä1®Btro

=AÎ®rAJ where AJ=A,®h<AJ. Because the maps fa: AJ—>A, split, it is clear
that the map <j>: Y'—^Y also splits, so that T is a separable £i<g>£2-algebra.

In particular, if g, is an inverse to <p¿, then g = gi®Bg2 is an inverse to fa But

then we have d=fa(gi(l)A"¡), so that the center of Y is <b(&(l)Y') = Ci®BC2.

As a special case, we have:

Corollary 1.6. If A is a separable R-algebra and S is a commutative R-

algebra then A®rS is a separable S-algebra and the center of A®RS is C®rS,

C being the center of A.

A theorem of a somewhat different nature about separable algebras is

the following.

Proposition 1.7. Suppose that A d»d Y are R-algebras such that A®rY is

separable over R. If A is a projective R-module having R as a direct summand

(over R), then Y is separable over R. (See Proposition 2(7) of [S].)

Proof. Since A is a projective £-module, A" is also a projective £-module,

so that (A®Br)e^Aecg)re is a projective T'-module. But A®Y is a projective

(A®r)e-module, hence A®r is a projective T'-module.

Because £ is an £-direct summand of A, Y is a redirect summand of

A®Y. Combining this with the previous observation, we find that T is a

projective T'-module, i.e., Y is separable over £.

Remark. Using an argument similar to that of Lemma 4.7 of [l], one

can prove that if A is an £-algebra which contains £ and is a finitely gener-

ated projective £-module, then £ is an £-direct summand of A.

Theorem 1.8. Let il be a separable R-algebra which is projective as an R-

module, and let A be an R-algebra. If E is an ü®RA-module, then pdo®A(£)

^pdA(£) and thus l.gl. dim(Q,®A) ̂l.gl. dim(A).

Proof. Let A and £ be left fl®A-modules. Then clearly Homo®a (A, B)

CHoniA(.4, £). We consider HoitiaC4, B) as an ße-module as follows: if

(úi®(alE^" and/£HomA(.4, B) we define (ù}i®ul)f(a)=o)if((û2a). Obviously,
a necessary and sufficient condition for an element fE Horn a (.4, B) to be in

HomB®A(^4, B) is that 7/=0, where J is the kernel of <j>: ñe—»Í2. Since an ele-
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ment g£Homn«(fi, HomAG4, £)) is completely determined by g(l) and the

set of values of g(l) is exactly the annihilator of J in HomA(^4, £), it follows

that Homa»(fi, HomA(.4, £)) is naturally isomorphic to Homa®A(.4, £).

Let X be an fl® A-projective resolution of £. We have the identity

Homa«(ñ, HomA(X, £))=Homn®A(X, £), for any fi®A-module B. Since ñ is

ß'-projective, passing to homology, we have the isomorphim,

Homo«(i2, 22(HomA(X, £))) S Exta®A(£, B).

From the fact that fi is £-projective we deduce that fl®A is A-projective

and hence that X is a A-projective resolution of B. Therefore,

Homo«(0, ExtA*(£, B)) S Exta®A(E, B),

which gives the desired result.

This theorem may also be deduced from a standard spectral sequence (see

(5) on p. 346 of [4], or Proposition 2 of [5]).

2. Various criteria for separability. Except for the last theorem, this sec-

tion is concerned with A as an algebra over its center C. It is understood that

such objects as A" and v, etc., are formed over C.

The primary purpose of this section is to establish :

Theorem 2.1. 2/ A is considered as an algebra over its center C, then the

following statements are equivalent:

(a) A is a separable C-algebra.

(b) A"A = A«, where A = HomA.(A, Ae) = (Ae)A.

(c) £Äe map n: A'—»Homc(A, A) is an isomorphism and A is a finitely

generated projective C-module.

(d) The map n: A'—»Homc(A, A) is an isomorphism and C is a direct sum-

mand of A when A is considered a C-module.

Remark. It should be observed that statement (c) is the definition of a

maximally central algebra given by Azumaya in [3], provided one assumes

that A is C-free not just projective. Thus every maximally central algebra is

separable over its center.

Proof. (a)=>(b). In order to prove that (a)=>(b) we shall first establish

the following fact which is a special case of a more general theorem to be

proved later (see Corollary 3.2) : If A is separable over its center C and 3 is a

maximal two-sided ideal in A, then 3 = uA with a a proper ideal of C. For,

let a=3nC. Then 30= aA is contained in 3 and !$(>r\C= a by Corollary 1.3.

Since A is C-separable, it follows that A/3o is C-separable with center C/a

and is thus C/a-separable. In A/3o the ideal 3/3o is a maximal two-sided

ideal whose intersection with the center C/a is 0. Hence A/S^A/So/Q/Qo is

C/a-separable with C/a as its center. Since C/a. is the center of the simple

ring A/3, it follows that C/a is a field. But A/3o is a separable algebra over



1960] THE BRAUER GROUP OF A COMMUTATIVE RING 373

its center C/a which is a field. Thus we have that the Hochschild homological

dimension of the C/a-algebra A/3o is zero. Because C/a is a field, it follows

that A/3o is semi-simple with minimum condition. (See [4, Chapter IX,

Proposition 7.6].) Since A/3o is semi-simple with its center a field we have

that A/3o is simple, which shows that uA = 3o = 3-
Now suppose that Ae.4 9£A'. Since A is C-separable we have that A0 is

C-separable and thus Ae is C-separable with center C. Therefore A"A being

a proper ideal in A", we have that A'A CftA" where a is a proper ideal in C.

But <f>(AeA)=A<t>(A)=A, since A is C-separable, so that aA=A. This is im-

possible since oA.nC= a (see Corollary 1.3). Thus AeA =A".

(b)=>(c). We prove this implication by applying Theorem A.2 of the

Appendix to [2]. As observed previously C, the center of A, is HomA«(A, A).

Thus we have the following diagram :

f®l
HomA«(A, A«) ®c A-> Homc(A, C) ®c A

|t Ip
A« ——* Homc(A, A),

where t(/®x)=/(x) for all/in Honu'iA.A") andxinA, where^: HomA«(A,Ae)

—>Homc(A, C) is defined by yp(f) — n(f(l)), [note that /(l) is in A, thus

v(f(l)) is in Homc(A, C)], and p is defined by p(g®x)(y) =g(y)x for all g in

Homc(A, C), x and y in A. Therefore we are in the position described in Theo-

rem A.2 of [2] and we can conclude that r¡ is an isomorphism and A is a finitely

generated projective C-module if we show that Im t = £a«(A) =Ae. Since

HomA«(A, Ae)=A, it is easily seen that £A«(A) is precisely the two-sided ideal

generated by A in Ae [i.e., £A«(A) =Ae.4 ] which is Ae by hypothesis. Therefore

we have shown that (b)=>(c).

Before showing that (c)=>(d)=>(a), we prove the following proposition

from which these implications will follow easily.

Proposition 2.2. 7e/ Abe a ring with center C and let J be the kernel of the

epimorphism <po: Home(A, A)—»A defined by <i>o(co) =w(l). £Äe« the right anni-

hilator of J in Homc(A, A) is Homc(A, C) and A is a projective Homc(A, A)-

module if, and only if, C is a C-direct summand of A.

Proof. It is clear that J consists precisely of those co in Homc(A, A) such

that co(C) = 0. Therefore it is also clear that J Homc(A, C) = 0. Suppose co is in

Homc(A, A) and there is an x in co(A) which is not in C. Since x is not in C,

there is a y in A such that yx—xy^O. Define g in Homc(A, A) by g(z) =yz—zy.

Then g is in J and gco^O. Thus the right annihilator of J is precisely

Homc(A, Q.
Now if A is Homc(A, A)-projective, then 7 is a direct summand of

Homc(A, A). Thus there is an co in 7 such that co2=w and 7 = Homc(A, A)w.
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Since Homc(A, A)co(l — co) =0, we have that 1—w is in Homc(A, C) and

(1 — c<j)(c) = c for all c in C. Thus C is a C-direct summand of A.

On the other hand, if C is a C-direct summand of A there is a map co in

Homc(A, C) such that <a(c)=c for each c in C. Define the Homc(A, A)-map

j: A—»Homc(A, A) by j(x)(z) = xa(z) for all z in A. Then it is clear that <p0j is

the identity on A. Thus A is a projective Homc(A, A)-module.

Now we return to showing that (c)=»(d). By the hypothesis in (c) we

know that A is a finitely generated projective C-module. Therefore we know

by Proposition A.3 of [2] that A is a projective Homc(A, A)-module. Thus

by the above we know that C is a C-direct summand of A, which shows that

(c)=Kd).
(d)=>(a). Since the diagram

Ae-> Homc(A, A)

fa\        i/0o

A

commutes and we are assuming that r¡ is an isomorphism, in order to show

that A is Aa-projective it suffices to show that A is Homc(A, A)-projective.

But this follows from Proposition 2.2 since we are also assuming that C is a

C-direct summand of A. Thus the full circle of implications has been estab-

lished, proving Theorem 2.1.

Theorem 2.3. If A is an R-algebra [R not necessarily the center of A], then

A is separable over R if, and only if, A is separable over its center C and C is

separable over R. (See Proposition 3 of [5].)

Proof. Suppose first that A is separable over £. Since we always have an

epimorphism A ® rA°—>A ® cA° whose kernel annihilates A, the fact that A is

A®;eA0-projective implies that A is A<S>cA°-projective. Thus A is a separable

C-algebra.

By Theorem 2.1, A is projective over C, hence A®rA° is projective over

C®rC. But C is a C-direct summand of A and thus also a C®ÄC-direct

summand of Ae. This shows that C is projective over C®rC or that C is

£-separable.

Suppose that C is separable over £ and A is separable over C. Now the

sequence 0—»70—>C®rC—*C—>0 splits over C®rC. If we tensor each term of

the sequence with A®rA° over C®rC, the sequence which results will split

over A®ÄA°. We get then

0->7i->A ®ÄA0-»(A®ÄA°) ®c®ficC->0.

Now by Chapter IX, Proposition 2.1 of [4] we know that (A®BA°) ®c®cC is

isomorphic to A®cA° as A®cA°-modules. Thus A<g>eA0 is projective over

A®bA°. Combining this with the fact that A is projective over A®CA0 it

follows that A is projective over A®kA°. Thus A is £-separable.
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3. Two-sided modules over a separable algebra. Combining the results of

the previous section with the information about modules over the ring of

endomorphisms of a projective module contained in the appendix of [2], we

obtain a description of the two-sided modules over an algebra which is central

separable (i.e., separable over its center).

Suppose A is a ring with center C and M a two-sided A-module or equiv-

alent^ a left Ae-module. We have already identified HomA«(A, M) with MA,

the set of m in M such that xm = mx for all x in A. It should be observed that

ML is a C-submodule of M but not in general a A-submodule of M. We have

a natural map g: A®cMi—*M defined by g(x®m)=xm. Since we consider

A®cMA a Ae-module by means of the operations of A" on A, it is easily seen

that g is a A'-homomorphism.

Theorem 3.1. 7ei C be the center of A. Then the following statements are

equivalent :

(a) A is separable over C.

(b) The map g: A®c(Ai)A—>A' is an epimorphism.

(c) For every Ae-module M, the map g: A®CMA—>M is an isomorphism.

Proof. We first observe that the image of g : A ® (A*)A—>A" is A'A. Since

A is separable over C if and only if A".4 =Ae (Theorem 2.1) it follows that

(a) and (b) are equivalent. Since (c) obviously implies (b), we need only show

that (a) implies (c).

If A is separable over C, then by Theorem 2.1 we know that A is a finitely

generated projective C-module. It is clear that A is also a faithful C-module.

Therefore Proposition A.6 of [2] can be applied to fi = Homc(A, A). Thus

we have that if M is a left A'-module, then h: A®cHomu(A, M)—>M, defined

by h(x®f) =/(x) for all x in A and/ in HomníA, M), is an isomorphism. Since

A is C-separable, we know that A' = Homc(A, A). (See Theorem 2.1.) Now

g: A®cHomA«(A, M)-^>M can be described by g(x®f) =f(x) = (x®l)/(l)

= x/(l). Identifying HomA«(A, M) with AfA, we obtain the desired isomor-

phism, which shows that (a) implies (c).

Corollary 3.2. If Ais separable over its center C, then there is a one-to-one

correspondence between ideals of C and the two-sided ideals of A. Every two-

sided ideal of A has the form bA with b an ideal of C and bAC\C= b.

Proof. Let 3 be a two-sided ideal of A. Then it is easily seen that 3A

= 3C\C. If we denote this ideal by b, the theorem shows that 3 = &A. Since

bAi~\ C=b for any ideal b in C, we have the desired one-to-one correspondence

and the corollary is proved.

Let r be a ring having center C and let A be a C-subalgebra of I\ Then T

may be considered a two-sided A-module. It is easily seen that TA is a subring

of T which is called the commutant of A in Y,
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Theorem 3.3. Let Y be a ring with center C and A a subring of Y having C

for its center and separable over C. Then g: A ® cYK—*Y is an algebra isomorphism

and TA has center C. If in addition Y is C-separable, then YK is C-separable and

the commutant of YL in Y is A.

Proof. By Theorem 3.1 the map g:A®cYk—*Y given by g(x®y)=xy

(where x is in A and y is in TA) is an isomorphism. It is clearly an algebra map.

Since every element of the center of TA commutes with Y, we see that the

center of TA is C.

Assume now that Y is C-separable. Since A is C-separable we know that

A is a finitely generated projective C-module and C is a C-direct summand of

A. Thus it follows from Proposition 1.7 that TA is C-separable since r^A® cTA.

Let A' be the commutant of TA in Y. It is clear that ACA'. Applying to TA

what we have proven, we find that A'®cFA is isomorphic with Y. Hence ten-

soring the exact sequence 0—»A—»A'—»A'/A—>0 with TA over C, we obtain

A'/A®crA = 0. Since TA is centred separable over C, it follows that C is

a direct summand of TA, and therefore that A'/A is a direct summand of

A'/A®rA = 0. Thus A=A', which completes the proof of the theorem.

Corollary 3.4. Let A be separable over its center C. Then every algebra endo-

morphism is an automorphism.

Proof. Let/: A—»A be an algebra endomorphism. Then the kernel of/ is

of the form fA where f is an ideal in C. Since / is the identity on C, we have

f = 0 or / is a monomorphism. Let Y be the image of /. Then Y is a central

separable C-subalgebra of A. Thus T®Ar=A where Ar is separable over C.

Now Ar is separable over C and thus is a finitely generated projective C-

module with C contained as a C-direct summand. Now if m is a maximal

ideal in C we have, passing to the local ring Cm, that r®cCm®cinCm®cAr

=A®cCm.(2) Now over a ring with only one maximal ideal, all finitely gener-

ated projective modules are free. (This follows easily for instance from Chap-

ter VIII, Theorems 5.4' and J.3 of [4].) Thus, counting ranks, we have that

Cm®Ar=Cm. Since this is true for all maximal ideals m in C, we conclude

that Ar= C or r=A. Therefore/ is an isomorphism.

Theorem 3.5. Suppose that Y is separable over its center C. Let A and fi be

subalgebras of Y such that A®cfi is isomorphic to Y, under the mapping x®y

—*xy. Then A and fi are both separable over C and C is the center of each of them.

Furthermore A is the commutant of fi and fi the commutant of A.

Proof. Since the center C of Y is a C-direct summand, there is a projection

/ of T on C. The restriction of / to A is a projection of A onto C so that C is a

direct summand of A. Similarly, C is a direct summand of fi. It follows from

(') If 5 is a multiplicatively closed subset of C with 0 £ 5, we denote by Cs the ring of

quotients of C with respect to 5. If p is a prime ideal of C, we write Cp instead of Cc-p.
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this, and from the fact that r=A®cß, that A and ß are C-direct summands

of T. Since T is projective over C, the algebras A and ß are also C-projective.

Hence by Proposition 1.7 we conclude that A and ß are separable over C.

Because the elements of A and ß commute, it follows that C is the center

of both A and ß, and that ß is contained in the commutant TA of A in Y. By

Theorem 3.3 we have A®TA=r. Consequently A®rA/ß = 0, and there-

fore ß = TA.

The similarity between the theorems of this section and certain results in

the classical theory of simple algebras is apparent. In order to obtain further

analogues, additional hypotheses must be imposed on the center of the

algebra.
Let C be a commutative ring and M a finitely generated projective C-

module. If m is a maximal ideal in C, then Mm = M® Cm is a finitely generated

projective Cm-module. Since Cm has a unique maximal ideal, it follows that

each Mm is a free Cm-module. We shall say that M is of rank « if, for each

maximal ideal m, the module Mm is a free Cm-module on precisely w gener-

ators.

Theorem 3.6. Suppose Cis a commutative ring such that every finitely gener-

ated projective C-module of rank one is free. If C is the center of A and A is

separable over C, then every algebra endomorphism of A is an inner automor-

phism.

Proof. Let / be an algebra endomorphism of A. We make A into a A'-

module in a new way by defining (x®y)(z) =f(x)zy. We will denote this new

module structure by X. Then applying Theorem 3.1, we have that g: A®e(X)A

—>A given by g(x®y)=f(x)y is an isomorphism. Here (Ä)A consists of all y

in A with the property/(x)y = yx for all x in A. Since C is a C-direct summand

of A and g is an isomorphism, we have that (Ä)A is a direct summand of Ï.

Thus (A)A is a finitely generated projective C-module which is clearly of rank

one. Therefore (S)A is free on one generator so that (X)A= Cr for some r in

(Ä)A. Therefore the map from A to itself given by x—>/(x)r is an isomorphism,

so that r is a unit in A. Since f(x)r = rx for all x in A, we have/(x) =rxr~l and

hence/ is an inner automorphism.

Remark. The hypothesis on the ring C in Theorem 3.6 is satisfied for

example by local and semi-local rings (not necessarily noetherian), as well

as by noetherian unique factorization domains.

The fact that a finitely generated projective module of rank « over a

semi-local ring is free of rank » is an immediate consequence of the general

observation: Let £ be a commutative ring and o an ideal contained in the

radical of £. If £ is a finitely generated projective £-module such that

E/aE is a free £/a-module of rank w, then £ is a free £-module of rank w.

This observation can be proven as follows: Let xi, • • • , x„ be elements of E

which map onto free generators of E/aE. Nakayama's lemma implies that
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Xi, - - ■ , Xn generate £. Let 0—►£—►£—>£—>0 be an exact sequence, with £ a

free £-module of rank n. Since £ is projective, the sequence splits so that K

is finitely generated. Since Xi, ■ • ■ , xn map onto free generators of E/aE,

it follows from tensoring the exact sequence with R/a that £®£/a = 0. Ap-

plying Nakayama's lemma again shows that K = 0.

4. The homological different. Let A be an £-algebra with center C. In §1

we associated to A the ideal <f>(A) of C, where A is the right annihilator of 7

in A" and 7 is the kernel of the mapc/>: A*—»A defined by <f>(x®y") =xy. Because

<I>(A) has properties similar to those of the classical different, we shall call

faA) the homological different of A over £, and will denote it by §(A/£). It is

essential to keep in mind the fact that $(A/£) is an ideal of the center C,

not of £. By Proposition 1.1, we know that A is separable over £ if, and only

if, £(A/£) = C.

Proposition 4.1. If S is a commutative R-algebra which is such that the

ideal generated by the image of §(A/£) 7» C®rS is the unit ideal, then A®rS

is separable over S.

Proof. If we set r=A®B5, then it is clear that Y'=A'®RS and the map

fa : Yc-+Y coincides with <f> ® 1. The exactness of the sequence 0—*J—»A*—>*A

—>0 implies the exactness of J®S—>Ye—>*T—»0 from which it follows that the

image of A ®S in Y' is contained in the right annihilator A' of J', the kernel

of fa. The hypothesis of the proposition asserts that fa of the image oí A® S

contains the unit element of Y, from which we obtain lE<f>'(A'). Thus, Y is

separable over S.

There are two special cases of Proposition 4.1 which merit some attention.

Corollary 4.2. If a is an ideal of R which is such that aC+!g(A/R) = C,
then A/aA is separable over R/a.

Corollary 4.3. If M is a multiplicatively closed system of R whose image

in C does not contain 0 and has a nonempty intersection with §(A/£), then

A®rRm is separable over Rm.

By imposing suitable finiteness conditions, the content of Proposition 4.1

can be strengthened so as to yield localization properties of §(A/£).

Proposition 4.4. Let R be noetherian and A an R-algebra which is a finitely

generated R-module. If S is a commutative R-algebra which is a fiat R-module,

then §(A®S/S) = £(A/£) ®RS.

Proof. The hypotheses of the proposition imply the isomorphism

S®r Honu«(A, A<)=Homs®A«(5®A, 5®Ae). (See for example Lemma 2.4 of

of [2].) Since we may identify A with HomA«(A, A'), the result follows im-

mediately.

Corollary 4.5. Let R be noetherian and A an R-algebra which is a finitely
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generated R-module. Then, a necessary and sufficient condition that A be separable

over R is that A®Rmbe separable over Rmfor every maximal ideal m of R.

Proof. The necessity of the condition has already been established in

Corollary 1.6. If A®£m is separable over £m, then, using the fact that £m

is a flat £-module, Proposition 4.4 shows that C/§(A/£)®£m = 0 for every

maximal ideal tn of £. It follows that £(A/£) = C, i.e., that A is separable

over £.

One cannot in general replace "maximal" by "minimal" in Corollary 4.5(') ;

it is possible to do so under suitably restricted conditions. We shall only con-

sider the question of separability over the center.

Proposition 4.6. Let the center C of A be. an integrally closed noetherian

domain and let A be a finitely generated projective C-module. If, for every mini-

mal prime ideal )) of C, we have A®C^is separable over Cp, then A is separable

over C.

Proof. Let K be the field of quotients of C. It is clear that the center of

A®K is K itself. Also, A®p£ is separable over K because A®c2v = (A®cCp)

®ctK, and A®cCs is separable over C„. Therefore A®£ is a central simple

algebra over K. Consequently, Ae ® K = (A ® K)' is isomorphic to

Homx(A®£, A®£), so that the mapping n: Ae—>Homc(A, A) is a monomor-

phism because Ae is a torsion-free C-module.

Since, for each prime ideal p of C, we have n ® 1 : A" ® C*

—»Homcp(A® Cp, A®CP) is an isomorphism, it follows that the annihilator

in C of Homc(A, A)/»;(Ae) is not of rank one. In view of the fact that A" is

isomorphic to its second dual with respect to C, it follows from this that the

annihilator of Homc(A, A)/?/(Ae) is all of C, i.e., v is an epimorphism. (See

Proposition 3.4 of [l].) It now follows from Theorem 2.1 that A is separable

over C.

Having considered the consequences of the separability of A®£m over

£m, we turn to the question of A/mA over £/m.

Theorem 4.7. Let R be noetherian, and A an R-algebra which is a finitely

generated R-module. A necessary and sufficient condition that A be separable

over R is that A/mA be separable over £/m for every maximal ideal of R.

Proof. The necessity of the condition has already been established in

Proposition 1.4. In view of Corollary 4.5, we need only prove the sufficiency

of the condition under the assumption that £ is a local ring. It is well known

(*) For example, let R be a regular local ring of dimension §3. There exist nonprojective

finitely generated modules E with £ = £**. Then A = Homs(JE, E) is a maximal order in a full

matrix algebra (Proposition 4.2 of [2]). Since E is not projective, it follows from Theorem 4.3 of

[2 ] that A is not projective and therefore not separable over JR. If p is any minimal prime ideal of

R, then R9 is a discrete rank one valuation ring and A® up is a maximal order over /?,, in a full

matrix algebra and is therefore separable.
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that A is Ae-proj écrive if, and only if, every £-derivation from A to an arbi-

trary Ae-module is inner. (Proposition 3.2, Chapter IX of [4].) Because Ae

is a finitely generated £-module, we may restrict ourselves to derivations into

finitely generated Ae-modules. (See Chapter VI, Proposition 2.5 of [4].)

We shall consider first the case where £ is a complete local ring. Let £ be

a finitely generated Ae-module and D an £-derivation of A into £. Then D

induces a derivation of A/mA into £/m£ which is inner because A/mA is

separable over £/m. Hence there is an element e0££ such that Di(x) =D(x)

— (xe0 — eox)EmE, for every xEA. But 7?i is an £-derivation of A into m£,

so that there is an eiEvuE with the property that D2(x) =Dx(x) — (xei — eix)

£m2£. Continuing this process defines a sequence en of elements of £ with

the following properties: (a)- e„Emn£, (b) D(x) — 2~l"-o (xei—ejx)Emn+lE.

Since £ is complete and £ is a finitely generated £-module, £ is also complete

so that e= 2~^ô g» is defined and is an element of E. But it is also clear that

D(x) — (xe — ex)EmnE for every », so that D(x) — (xe — ex) = 0, or D is inner.

Thus, A is separable over £.

Now suppose that £ is a local ring and A an £-algebra which is a finitely

generated £-module such that A/mA is separable over £/m. Denote the

completion of £ by R, and A®£ by Â. Then (Â)e=Ae®£.
Let £ be any finitely generated Ae-module. Then we have, by Lemma 2.4

of [2], that £®ExtA.(A, £)£iExtA.(Â, £®£). But because Â/mÂ=A/mA, we

know that Â is separable over £, so that ExtA«(Â, £®£) = 0. However,

ExtA«(A, £) is a finitely generated £-module. Consequently the fact that

£®ExtA.(A, £) = 0 yields the conclusion that ExtA«(A, £)=0, i.e., that A is

separable over £.

5. The Brauer group. The following proposition contains a number of

properties of finitely generated projective modules which will be needed be-

low. Since these statements are each readily verified, we shall omit their

proofs.

Proposition 5.1. Let R be a commutative ring. If E is a finitely generated

projective R-module with annihilator a in R, then Homjí(£, E) is separable over

R and its center is R/a. If £' »5 another finitely generated projective R-module,

then E ® BE' is a finitely generated projective R-module and HomB (E ®E',E®E')

=Homjî(£, £)®ieHom/e(£', £'). If both E and E' are faithful, then E®E' is

also faithful.

If £ is a commutative ring, we denote by Ct(£) the isomorphism classes

of all algebras having £ as center and separable over £, and by CLo(R) the

subset of et(£) consisting of the algebras HomB(£, £) where £ is any finitely

generated projective faithful £-module. By Proposition 1.5, Ct(£) is closed

under the operation of tensor product over £, and by Proposition 5.1 the

same is the case for Cto(£).

We introduce an equivalence relation in Ct(£) as follows: If Ai and A2 are

in d(£), then Ai is equivalent to A2, denoted by Ai~A2, if there are algebras
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ßi and ß2 in Ct0(£) such that Ai®flßir=A2®Rß2. Proposition 5.1 shows that

this is a proper equivalence relation. We denote by ffi(£) the set of equivalence

classes into which ft(£) is partitioned. Again, by Proposition 5.1, the opera-

tion of tensor product over £ is compatible with the equivalence relation so

that there is induced an associative and commutative multiplication in (B(£).

The equivalence class which contains £ itself is clearly an identity for this

multiplication.

If A£Ct(£) then clearly A0 is also in a(£). By Theorem 2.1 we have that

A is a finitely generated projective faithful £-module and that A®bA°

=Homß(A, A). Therefore it follows that A®sA°'~£ so that the equivalence

class of A0 is an inverse to that of A in (B(£). Thus, we have proved:

Theorem 5.2. (B(£) is an abelian group.

If £ is a field, then (B(£) as defined here coincides with the group of

algebra classes of K, i.e., <8>(K) is the Brauer group of K. By analogy, we

shall call the group (B(£), as defined above, the Brauer group of the ring £.

It is convenient to know precisely which algebras are equivalent to £.

We have:

Proposition 5.3. If AQd(R) then A~R if, and only if, AQño(R).

Proof. If AQCL0(R) then certainly we have A~£. Suppose on the other

hand that A<~£. Then there are finitely generated projective faithful £-

modules £i and £2 such that A®ßHomÄ(£i, £i)=HomB(£2, £2). This iso-

morphism imbeds Hom/¡(£i, £i) into Homfi(£2, £2) and enables us to consider

£2 as a HomÄ(£i, £i)-module. By Proposition A.6 of [2] there is a finitely

generated projective (necessarily faithful) £-module £3 such that £2=£i ® nE3.

From this it follows that HomB(£2, £2)i^HomB(Ei, £1) ®BHomÄ(£3, £3) and

in such a way that HomB(£i, £1) is imbedded in Homß(£2, £2) in the same way

as it was under the isomorphism HomÄ(£2, £2)=A®fiHomÄ(£i, £1). It fol-

lows that both A and HomB(£3, £3) are the commutants of Homfi(£i, £1) in

HomB(£2, £2) and consequently, A = HomÄ(£3, £3).

Corollary 5.4. If Ai and A2 are in (x(R) then Ai~A2 if, and only if,

Ai®RAlQa0(R).

Proof. The corollary follows immediately from the proposition and the

fact that Cto(£) is multiplicatively closed.

Suppose that 5 is a commutative £-algebra. Corollary 1.6 shows that the

operation A—>S®rA induces a map from Ct(£) to Q,(S). This mapping sends

Ct0(£) into Qo(S) because of the following fact:

Proposition 5.5. If E is a finitely generated projective R-module and S is a

commutative R-algebra, then S®rE is a finitely generated projective S-module

and Homs(S®fl£, S®ß£)=S®ßHomÄ(£, £). If, in addition, £ is a faithful

R-module, then S®rE is a faithful S-module.
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Proof. The proposition follows from the elementary properties of projec-

tive modules; the proof will be omitted.

It follows from the above remarks that the operation A—»5®rA induces

a homomorphism from (B(£) to (B(5) whenever S is an £-algebra. In particu-

lar, if /: £—»S is a ring homomorphism, then there is induced a homomor-

phism /*: (B(£)-KB(S).
If A is a central separable algebra over £ whose algebra class in <R(R) is

in the kernel of /*, we shall say that A is split by S, or that 5 is a splitting ring

of A.
There are two facts about splitting rings of a general nature.

Theorem 5.6. Let Abe a central separable algebra over R and S a maximal

commutative subalgebra of A. If S is separable over R, then A is a finitely generated

projective (left) S-module and Homs(A, A)=5®jeA°. Consequently A is split

byS.

Proof. Since A is a finitely generated £-module, A is certainly finitely

generated over S. Set fi = Homs(A, A), so that fi=A®jeA°. Considering

S®rA° as a subalgebra of fi, the fact that 5 is a maximal commutative sub-

algebra of A shows that the commutant of 5®rA° in fi is S itself, i.e.,

Homs® A°(A, A) =S. We form the trace ideal £s®a°(A) in S®A0 and we shall

now prove that £s®A»(A) = 5®A0. For, we may then apply Theorem A.2 of

[2], from which it will follow that A is 5-projective and that Homs(A, A)

^5®A°.
To prove the assertion about £s® a°(A) we consider the following diagram :

7o    —>     7i    —>      7

■L *L 4,

S ®S-+S® A°-> A® A0

I fa i «Ai J, <b
S    -»      A     ->      A

in which fa is the restriction of <b to 5®A° and 7,- is the kernel of fa:. If we

denote by .4i the right annihilator of 7i in 5®A0, then it is readily verified

that Ïs®a°(A) is the two-sided ¡deal generated by Ai, i.e., that £s®a°(A)

= (S®A°).4i. One also readily verifies that 7i is generated as a left ideal in

5®A° by/(70). Consequently, if .40 is the right annihilator of 70 in S®S,

we have/(.4o) C-4i- But 5 is separable over £, so that <po(Ao) = S. There-

fore, we have lEfa(Ai). Now £s®a°(A) is a two-sided ideal in the algebra

5®A0 which is central separable over S. There is therefore an ideal a in 5

such that îa®A«(A) = a(5®A°) or that (S®A°)Ai = a(5®A°). Applying fa to
both sides, and using the fact that lEfa(Ai), we find that oA=A. Since A is a

finitely generated faithful S-module, it follows that a = S and therefore that

£s®a°(A) = 5®A0, completing the proof of the theorem.
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Theorem 5.7. £ei A be a central separable algebra over R and S a splitting

ring of A. If R is a subring of S and S is a finitely generated projective R-mod-

ule, then there is an algebra equivalent to A which contains S as a maximal

commutative subalgebra.

Proof. Since S splits A it splits A0, so that there is a finitely generated

projective faithful S-module £ such that 5®A°=Homs(£, £). Because S is a

finitely generated projective £-module which contains £, it follows that £

is a finitely generated projective faithful £-module. We have 5 ® A0

= Homs(£, E) CHom¿e(£, £). Let Y he the commutant of A0 in HomB(£, £).

Then by Theorem 3.3 we have r®A° = Homß(£, £) and therefore that T^A.

Also it is clear from the definition of Y that SQY. Finally, suppose that

xQY commutes with the elements of S. Then, considering x as an element

of Homß(£, £), the fact that x commutes with 5 means that x£Homs(E, £)

= 5®A0. The fact that x is in Y means that x commutes with A0 and there-

fore that x is in the center of 5®A°. But the center of 5®A° is S, whence

xQS. Thus 5 is a maximal commutative subalgebra of Y and the proof is

complete.

The remainder of the paper is principally concerned with properties of the

homomorphism /*: (R(R)—+<ñ(S) arising from various special ring homo-

morphisms /: £—>5.

6. Local rings(4).

Proposition 6.1. 7e/ Rbe a local ring with maximal ideal m and A a central

separable algebra over R. If A/mA~£/m (over R/m) and some primitive idem-

potent of A/mA can be lifted to A, then A~£.

Proof. Denote by x—»x the map from A to A/mA. Let e be an idempotent

of A such that I is a primitive idempotent of A/mA. Then Ae is a direct sum-

mand of A so that Ae is a free £-module. The annihilator of Ae in A is a two-

sided ideal and therefore by Corollary 3.2 has the form ctA with a an ideal

of £. But Ae is a free £-module so that its annihilator in £ is 0. This shows

that a = 0 and therefore Ae is a faithful A-module. In particular A is a sub-

algebra of Homfi(Ae, Ae) and the result will follow if we prove that A coincides

with Homfi(Ae, Ae). Now, A and Hom«(Ae, Ae) are both central separable

over £ so that HomÄ(Ae, Ae)^A®Br where Y is the commutant of A in

HomB(Ae, Ae). It is clear that r = HomA(Ae, Ae). We need to show therefore

that r = £. Since £CT and T is a free £-module, it is sufficient to prove that

the rank of Y over £ is one.

Considering £/m as an £-algebra, we apply Proposition 5.5 to obtain:

£/m ®« HomÄ(Ae, Ae) ^ HomÄ/„,(£/m ® Ae, £/m ® Ae).

Therefore we have:

(4) For convenience of exposition we assume in this section that the local rings are noether-

ian, although this hypothesis is not always necessary for the proofs given.
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HomÄ(Ae, Ae)/m Homje(Ae, Ae) = Homß/OT(Ae/mAe, Ae/mAe).

But it is clear that Ae/mAe=(A/mA)e = (A/mA)ê, while HomA/m((A/mA)ê,

(A/mA) e)= A/mA because e is a primitive idempotent. Thus the rank over

£ of HomB(Ae, Ae) is the same as the rank of A over £, whence Y has rank one.

Corollary 6.2. If R is a complete local ring with maximal ideal m, then

the homomorphism (B(£)—KB(£/m) induced by £—»£/m is a monomorphism.

Proof. In view of the above proposition we need only prove that an idem-

potent of A/mA can be lifted to A. The usual procedure in the case of nilpotent

radical works equally well in the case where £ is complete. See p. 54 of [6].

Theorem 6.3. Let Rbea local ring and A a central separable algebra over R.

Then A has a splitting ring S which contains R as a subring, is a separable R-

algebra and is a finitely generated free R-module. Furthermore, in case R is com-

plete, S is also a local ring(s).

Proof. Let m be the maximal ideal of £. Let £ be a separable field exten-

sion of £/m which splits the central simple algebra A/mA. Set L = R/m($),

and let / be a monk irreducible polynomial with coefficients in £/m having

6 as a zero. Finally, let £ be a monic polynomial with coefficients in £ which

maps onto/, modulo m. If Si = R[x]/(F), then Si has the following properties:

(a) Si contains £ and is a finitely generated free £-module, (b) Si/mSi = £,

so that Si is a local ring with maximal ideal mSi, (c) Si is a separable £-

algebra (see Theorem 4.7), (d) the algebra class of A®Si is in the kernel of

the map (B(Si)-»(B(Si/mSi).
The existence of the ring Si disposes of the theorem in case £ is complete.

Namely, Corollary 6.2 combined with (d) above shows that Si is a splitting

ring of A in that case. In general, the existence of Si shows that it is sufficient

to prove the theorem under the additional hypothesis that A/mA is a full

matrix algebra over £/m. We shall now add this hypothesis, and suppose

that A/mA is the ring of « X» matrices over £/m.

Let IF be a maximal commutative subring of A/mA of dimension « over

£/m, of the form £/m[a], and separable over £/m. The existence of such a

W can be seen in the following way: if £/m is a finite field, then £/m has an

extension of degree w (necessarily separable) which can be imbedded in the

algebra of » X» matrices as a maximal commutative subring. If no such sub-

field of A/mA exists, then the subalgebra of all diagonal matrices may be

taken as W, and a may be chosen as a diagonal matrix with distinct elements.

With W and its generator a chosen as above, let ß be an element of A

which maps onto a under the map A—»A/mA. Let S be the £-submodule of

A generated by 1, ß, • ■ ■ , ßn~x. Because £ is a local ring, and because

1,   a, • ■ ■ ,   a"-1   are   linearly   independent   over   £/m,   it   follows   that

(6) This proof is based on a suggestion of J.-P. Serre.
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1, j8, • • • , ßn~l can be extended to a set of free generators of A over £. There-

fore we find that 5 is a free £-module of rank « having 1, p\ • • • , d"-1 as free

generators and also that 5 is a direct summand over £ of A.

We assert that 5 is a subring of A. To prove this, it is sufficient to show

that ßnQS. Let R he the completion of £ and Â = £®A. Since Â/mÂ = A/mA,

it follows from Corollary 6.2 that Â~£ so that Â = Hom/j(£, £) with £ a

free £-module of rank «. Considering ß as an endomorphism of £, its char-

acteristic polynomial <j> is a monic polynomial of degree « with coefficients in

R and we have <f>(ß) = 0. (The usual proof of the Cayley-Hamilton Theorem

applies equally well to the endomorphisms of a free module over any com-

mutative ring.) Thus, we have ßnQR®S. Since 5 is a direct summand of A,

it follows therefore that ßnQS and that 5 is a subring of A.

Since 5 is a direct summand of A, we have 5C\mA = mS, so that S/mS = W.

Therefore, by Theorem 4.7, S is separable over £.

All that remains is to show that 5 splits A. Let S' he the commutant of

5 in A. In view of the fact that IF is a maximal commutative subalgebra of

A/mA, we have S' = S+ST\(mA). We may describe S' in another way. Con-

sider A as a left S-module. Since A is £-free, and 5 is both £-free and £-

separable, it follows from Theorem 1.8 that A is a projective 5-module, and

therefore that ß = Homs(A, A) is a central separable 5-algebra. We have

A®BA° = HomB(A, A)Dß, and the subalgebra 5®BA° of A®«A0 is clearly

contained in ß. Now, S®bA° is a central separable algebra over S. It is

obvious that the commutant of S®rA° in ß is S'. It follows from Theorem 3.3

that S' has 5 for its center and is separable over S. In addition, Theorem 3.3

shows that (5®BA°)®s5' = ß.

Now, S'i\(mA) is a two-sided ideal in S', so that there is an ideal b in 5

with bS' = (ST\mA). But bS'nS=b, while ST\mAr\S=mS so that b = mS,
and therefore 5' = 5+m5'. It follows immediately that S' = 5. In view of the

relation (S®rA°)®sS'= ti, we find that 5®fiA0 = ß=Homs(A, A) and there-

fore we conclude that S splits A. This completes the proof of the theorem.

Corollary 6.4. If Ris a local ring and A a central separable algebra over

R, then A is split by a Galois extension of R. In case R is complete, A has such a

splitting ring which is also a local ring.

Proof. If S is the splitting ring whose existence is proved in Theorem 6.3,

then 5 may be imbedded in a Galois extension of £ (see Theorem A.7). If

£ is complete, we may proceed differently. If m is the maximal ideal of £,

then A/mA is a central simple algebra over £/m. Let 7 be a Galois field exten-

sion of £/m which splits A/mA and let £ = £/m(0). If/ is a monic irreducible

polynomial with coefficients in £/m such that f(0) = 0, let £ be a monic poly-

nomial with coefficients in £ which maps onto / through the homomorphism

£—»£/m. Set S=R[x]/(F). Then, because £ is complete, Corollary 6.2 shows

that 5 splits A. In addition, S is a Galois extension of £ with respect to the



386 MAURICE AUSLANDER AND OSCAR GOLDMAN [December

group of all automorphisms of S over £. This follows easily from the fact

that £ is complete and that £ is a Galois extension of £/m.

Let G be the Galois group of L over £/m and let G' be the group of all

automorphisms of S leaving the elements of £ fixed. Since mS is the maximal

ideal of S, there is a natural homomorphism/ : G'—»Gsuch that wa(w) =j(a)r(w),

where 7r: S—*L is the canonical homomorphism. It follows from Hensel's

lemma that £ splits into linear factors in S and also that 7r(«i), • • • , r(an)

are the zeros of/ where o¡i, • • • , an are the zeros of £. It follows immediately

that j is a monomorphism. A further application of Hensel's lemma shows

that j is also an epimorphism. We may now identify G' with G, considering

j as the identity map.

Let A be the trivial crossed product formed from S and G, (see appendix),

and A* the one formed from L and G. Then we have the following commuta-

tive diagram :

5
A ->HomB(S, S)

1 1«*  S*

A* -* HomÄ/m(L, L)

i

0

In the diagram, the vertical maps arise from the canonical map 7r:S—>£.

Also, Ô* is an isomorphism because £ is a Galois extension of £/m relative to

G. It follows from Proposition 5.5 that the kernel of m is m HomB(S, S). Since

S* is an epimorphism, we find 5(A)+m HoniR(S, S) = Hom/e(S, S), and hence

by Nakayama's lemma, we have 5(A)=Homs(S, S). Thus S is an epimor-

phism. Finally, if the rank of S over £ is », then both A and HomB(S, S)

are free £-modules of rank »2 so that 5 is also a monomorphism. The fact

that ô is an isomorphism shows therefore that S is a Galois extension of £

relative to G.

If S is a Galois extension of the local ring £ with group G, then, because

S is semi-local, Theorem A.15 of the appendix shows that (1)—>H2(G, U(S))

—>(B(£)—>03(S) is exact. Furthermore, Corollary 6.4 shows that (B(£) is the

union of the groups T72(G, U(S)) as S ranges over the Galois extensions of £.

The finid result of this section has already been proved by Azumaya

(Theorem 31 of [3]).

Theorem 6.5. If R is a complete local ring, then the homomorphism (B(£)

—»(B(£/m) is an isomorphism.

Proof. Corollary 6.2 shows that the map (B(£)—>(B(£/m) is a monomor-

phism, hence we need only show that it is an epimorphism. If £ is a Galois

extension of £/m, we have already seen several times that there is a local
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Galois extension 5 of £ such that S/mS — L. Furthermore, if G is the Galois

group of £ over £/m, then the group of automorphisms of 5 over £ is iso-

morphic to G. Thus the result will follow if we can prove that H2(G, U(S))

—>H2(G, ¿7(7)) is an epimorphism. That this is in fact the case follows easily

from the completeness of £.

We observe first that mn5/mB+15 and m"/mn+l®R/mS/mS are isomorphic

G-modules. Therefore, for gJsl, we have 72«(C-, mn5/mn+15)^27«(G, S/mS)
= 0.

Set Sn = l+mnSQU(S). Then (l)->5i-»í/(5)-»í/(L)-»(l) is an exact

sequence. Now the multiplicative group Sn/Sn+i is G-isomorphic to the addi-

tive group mn5/mn+1S (for w^l) and hence, for q^l, H"(G, Sn/Sn+i) = (1).

From this we shall deduce Hq(G, Sî) = (l), for q^l. Namely, suppose

fQZ*(G, Si). Then there is a giQC^^G, Si) such that fbgiQZ"(G, Si).
Continuing this process leads to a sequence gi, g2, • • • , g„, • • • such that

gnQC"~KG, Sn) and/5(gig2 • • • gn)QZ"(G, Sn+i).
Now, gi, gig2, • • • , H?_i gi, • • ■ forms a Cauchy sequence in Cq~1(G, Si)

so that, because S is complete, there is a gQCv~1(G, Si) with g = lim Ylt=i £»'•

We have g(gig2 ■ • • gn)~lQC^(G, Sn+i).

Set h=fbg. Then A=/5(gi • • • g»)S(ggi ' • • • g»1), while fô(gi, • • ■ g„)
QZ*(G, Sn) and ¿Kggi"1 • • • gñl)QZ"(G, Sn+i). Consequently, hQZ*(G, Sn)
for every «^ 1 and therefore h = 1. It follows that 77S(C-, Si) = (1).

From the exact sequence (1)—>Si~+U(S)—>U(L)—>(1), we have

-^ H-(G, Si) -+ H"(G, U(S)) -* H*(G, U(L)) -+ H*+\G, Si) -+

and therefore, for q^ 1, we have H"(G, U(S))^H<>(G, £(£)), which completes

the proof of the theorem.

7. Separable orders. Let £ be an integral domain with quotient field K

and A an algebra having £ as center and separable over £. Then A ® rK is

separable over K and has K for its center, so that A®K is a central simple

algebra over K. Since A is a finitely generated £-module, it follows that A

is an order in A®£. (See [2] for the definition and basic properties of orders.)

Proposition 7.1. Let R be an integrally closed noetherian domain with quo-

tient field K and A an R-algebra having R for its center and separable over R.

Then A is a maximal order in A®K.

Proof. Let Y be an order in A®£ containing A. Denoting by TA the corn-

mutant of A in T, we have by Theorem 3.3 that r=A®ÄrA. Now if an ele-

ment of A®£ commutes with every element of A, it must be in the center K

of A®£. Consequently, TA is a subring of K and is a finitely generated £-

module. Since £ is integrally closed, it follows that TA = £ and hence that

T = A. Thus A is a maximal order.

A ring £ is called a regular domain if £ is a noetherian domain such that,

for every prime ideal p of £, the ring of quotients R» is a regular local ring.
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Theorem 7.2. T/£ is a regular domain with quotient field K, then the homo-

morphism (S>(R)—>(S>(K) induced by the inclusion map R—>£ is a monomor-

phism.

Proof. Suppose that A is a central separable algebra over £ such that the

algebra class of A is in the kernel of the map (B(£) —>(B(£). Then A®£ is a full

matrix algebra over K and A is a maximal order in this algebra. By Theorem

2.1, we know that A is projective over £. We now apply to this situation

Theorem 4.3 of [2] which asserts that under the present circumstances,

A = Homs(£, £) with £ a finitely generated projective £-module. Thus

A~£ and hence the kernel of the map (&(R)—>(B(£) consists of the identity

element alone. The mapping (B(£)—>(B(£) is therefore a monomorphism.

Remark. If £ is an integral domain with quotient field K, the mapping

(B(£)—>(B(£) need not be a monomorphism. We shall show that this is so by

an example.

Let k be the field of real numbers, and R = k[x, y] with x2+y2 = 0. Then

£ is an integral domain. Let A be the algebra of quaternions over the reals k,

and A=A®t£. Then A is a central separable algebra over £. If m is the ideal

of £ generated by x and y, then A/mA^A, so that AnuR. Now, — 1 is a square

in the quotient field K of £, i.e., — 1 = (x/y)2, and consequently £ is a split-

ting field for the quaternions A. It follows that £ is a splitting ring for A also.

Thus in this case the mapping (B(£)—*(B(£) has a nontrivial kernel. In gen-

eral, it is an open question under what circumstances the map <B(£)—>(B(£)

is a monomorphism.

Proposition 7.3. Let R be an integrally closed noetherian domain with quo-

tient field K and 2 a central simple algebra over K. If 2 contains an order which

is separable over R, then every maximal order of 2 which is projective as an R-

module is separable over R.

Proof. Let A be an order in S which is separable over £, and Y a maximal

order which is a projective £-module. By Proposition 7.1, A is also a maximal

order. Let p be a minimal prime ideal of £ and form A®£p and r®£„. These

are orders in 2 over £„. The maximality of A and Y assure the maximality of

A®£„ and T®£p (Proposition 1.2 of [2]). Furthermore, £„ is a discrete rank

one valuation ring, so that A®RV and r®£„ are isomorphic (Proposition 3.5

of [2]). Since A is separable over £, it follows that A®£„ is separable over £„

so that r®£p is also separable over £,,. Therefore, by Proposition 4.6, we

conclude that Y is separable over R.

It should be remarked that the condition that Y be a projective £-module

is essential for the validity of the result. (See footnote 3.)

Let £ be a regular domain with quotient field K, and let p be a minimal

prime ideal of £. Then, by Theorem 7.2, the homomorphisms (B(£)—*(S>(Rp)

—>(B(£) are monomorphisms. It will be convenient to treat these maps as

identifications, so that we shall write (B(£) C®(£») C®(£).
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Proposition 7.4. Let Rbe a regular domain with dim £^2(8). £Ae», as p

ranges over the minimal prime ideals of R, we have (B(£) =nöä(£>,).

Proof. Since (B(£)C®(£P) we have of course (B(£)CH«(£„). In order to

prove the inclusion in the other direction, let A be a central division algebra

over K whose algebra class in (B(£) is in (B(£p), for every minimal prime ideal

p of £. Let A be a maximal order over £ in A. The maximality of A implies the

equality A =A** (Proposition 1.3 of [2]). Because £ is a regular domain of

dimension =2, it follows that A is £-projective (Corollary to Proposition 4.7

of [2]).
Let p be a minimal prime ideal of £. There is a central separable algebra

Y9 over £p such that rp®£<~A. Since A is a division algebra, it follows that

Tp®£ is the algebra of » X« matrices over A, for some ». Because A®Rp is a

maximal order over £p in A, it follows from Theorem 3.8 of [2] that the

algebra of » X» matrices over A®Rp is a maximal order in Y9®K. By Proposi-

tion 3.5 of [2], any two maximal orders in r,j®£ are isomorphic. Hence Y9

is isomorphic to the algebra of »X« matrixes over A®Rp, that is, Y^=A®Rp

®Homst)(£, £) with £ a free £|,-module of rank ». It follows from Theorem

3.5 that A®£rj is separable over £p. This being the case for every minimal

prime, it now follows from Proposition 4.6 that A is separable over £. Since

A=A®£, we find that the algebra class of A is indeed in ÖS(£), which com-

pletes the proof of the equality CB(£) = ("!«(£<>)•

It should be remarked that the condition on the dimension of £ was used

in the proof only to insure that A contains a maximal order which is £-

projective. It is not known at the present time whether the restriction on the

dimension of £ is actually necessary.

We turn now to a different situation involving homomorphisms between

Brauer groups. Let £ be a field and £ = £[x], with x an indeterminate over

K. From the homomorphisms £—►£—>£, we deduce homomorphisms (B(£)

-XB(£)->(B(£). Since £-►£->£ is the identity on K, we have: (B(£)-XB(£)

is a monomorphism, (B(£)—»(B(£) is an epimorphism and the sequence splits,

so that (B(£) is the direct product of (B(£) and the kernel (B'(£) of (B(£)
-+(B(£).

Theorem 7.5. 7/A is a central separable algebra over K[x], then the algebra

class of A 75 7« the image of (B(£) if, and only if, there exists a separable exten-

sion L of K of finite degree such that A is split by L[x]. The mapping (&(K)

—>(&(K~[x]) is an isomorphism if, and only if, K is a perfect field.

Proof. Suppose first that the class of A is in the image of <$>(K)-*($>(K[x]).

Then there is a central simple algebra 2 over K such that 2®x£[x]'~A.

There is a separable extension field £ of finite degree over K which splits 2.

Clearly then L[x] splits A.

(•) dim R = max dim Rp, as p ranges over the prime ideals of R.
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Assume now that A is split by £[x] with £ separable over K. Then, by

extending 7 if necessary, we may suppose that £ is a Galois extension of K,

with Galois group G. Referring to Theorem A.8 of the appendix, we see that

7 [x] is a Galois extension of K [x] with group G, for we have 7 [x] = £ ® x£ [x]

and £ is a Galois extension of K with the group G. Since 7[x] is a principal

ideal ring, we may apply Theorem A. 15 of the appendix, and conclude that

A is equivalent to a crossed product Y formed from the Galois extension

7[x] of £[x] and a cocycle fQH2(G, ¿7(7[x])). But the units of £[x] are the

nonzero elements of £, so that/£272(G, ¿7(7)), and therefore T = r0®i:£[x],

where Y0 is the crossed-product formed from 7 over K and /. Thus A~To

®£[x], and the algebra class of A is in the image of (B(£) in (B(£[x]).

Now suppose that £ is a perfect field. If K is the algebraic closure of K,

then by Tsen's theorem [9], we know that (R(K(x)) — (1). Since £[x] is a

regular domain, it follows from Theorem 7.2 that (8(K[x]) = (l) and there-

fore every central separable algebra over £[x] is split by £[x]. But, if Ais

such an algebra, the fact that £[x] splits A shows that A is already split by

7[x] with £ an extension of finite degree over K. Since K is perfect, 7 is a

separable extension of K. Thus if K is perfect, we find that the mapping

(&(K)—>(&(K[x]) is an epimorphism and hence an isomorphism.

If K is not perfect, we shall show that the kernel (B' of <B(£ [x])—XB(£) is

not trivial by explicitly constructing a nontrivial element of the kernel.

Let y be a root of yp—y — x = 0, and ß = £(x)(y) where p is the character-

istic of K. It is well known that ß is a cyclic extension of £(x) of degree p,

and it is easily verified that the integral closure of £[x] in ß is £[x][y]

= £[y]. Since the discriminant of the polynomial defining the extension is

— 1, it follows that K[y] is unramified over £[x], so that K[y] is a Galois

extension of £[x] with the same cyclic Galois group (see Proposition A. 6).

Assuming that K is not perfect, let cQK with cQK". Then a simple cal-

culation shows that c as an element of £(x) is not a norm from ß. Thus, c

determines a crossed-product 2 over K(x) which is not trivial. Using the fact

that K[y] is a Galois extension of £[x], the non-norm c determines a crossed-

product A over £[x]. Since A®£(x) =2 and 2 is not the trivial algebra, it

follows that A is not a trivial algebra over £[x]. Now A is generated over

£[x] by elements a and ß with the relations: a" — a = x, ßp = c, ßa=(a + l)ß.

The image Ä of A under the map £[x]—>K is generated over K by elements

a and ß with the relations âv — 5 = 0, /S" = c and ßä=(ä+l)ß. We shall show

that S is a full matrix algebra over K. Let L = K(t) with tp = c and let «',

d'GHomic(£, L) he defined as follows: a' is the derivation of 7 over K given

by a'(tn) = — ntn and ß' is multiplication by t. Then one verifies directly that

a' and ß' satisfy the same relations over K as do 5 and ß, so that there is a

homomorphism from A to Homx(£, 7) under which ä—»a' and jS—»#'. Since

X is a central simple algebra over K of dimension p2 and Homx(7, 7) also

has dimension p2 over K, it follows that A?^Homj¡:(7, 7). Thus, the class of
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A is a nontrivial element of (B'(£[x]). This completes the proof of the theo-

rem.

Some further facts can be proved about (B'(£[*]).

Proposition 7.6. If L is a separable extension of K, then the restriction of

the map ($>(K[x])—>(&(L[x]) to (S>'(K[x]) is a monomorphism, and maps

(8>'(K[x]) into (&'(L[x\). If p is the characteristic of K, then every element of

<S>'(K[x]) has order a power of p.

Proof. Since ©(£) and ®'(£[*]) have only the identity element in com-

mon, the first part of Theorem 7.5 shows that L[x] cannot split any non-

trivial element of GS'(£[*]) if £ is separable over K. That (B'(£[x]) maps into

(B'(£[x]) is immediate.

Let c be a nontrivial element of (B'(£[*]). If K is the algebraic closure of

K, then c is split by £ [x], so that there is an extension £ of finite degree over

£ such that c is split by L[x]. Let £o be the maximal separable extension of

£ in L. Then the mapping (B(£[x;])—>(B(£0[x]) is a monomorphism on the

subgroup (B'(£[:k]), so that the image d of c in (B'(£o[x]) has the same order

as c. Now, d is split by L[x] so that the image d" of d in <S,(L0(x)) is split by

L(x). Since the mapping (&(Lo[x])—*(&(Lo(x)) is a monomorphism, the order

of d' is equal to the order of d, hence to that of c. But £ is a purely inseparable

extension of £o so that [£: £o] =ph and therefore [L(x) : L0(x)] = ph. Because

L(x) is a splitting field of d", it follows that the order of d" divides pk. Thus

the order of c is a power of p. This completes the proof.

Proposition 7.7. If R is a regular domain of characteristic zero, then (B(£)

—>(B(£[x]) 75 aw isomorphism.

Proof. From the sequence (B(£)—>(B(£[x])—>(B(£) it follows that the map

<Z(R)—>&(R[x]) is a monomorphism, so that we need only show that the map

(B(£[a;])—>(B(£) is a monomorphism. Let £ be the quotient field of £. Then

we have the commutative diagram :

&(R[x]) -> (B(£)

i i

a(K[x]) -» Os(K)

in which both vertical maps are monomorphisms because £ and R[x] are

regular domains(7), while the lower horizontal map is an isomorphism. It

follows that the upper horizontal map is a monomorphism.

Remark. The proof of the above Proposition 7.7 makes use of the hypoth-

esis that (B(£[x])—>03(£) is a monomorphism. Consequently by Theorem 7.5

(') The fact that regularity of R implies regularity of R[x] is well known and can be de-

duced easily from the theorem that a ring of quotients of a regular domain is regular. See, for

example, D. G. Northcott, J. London Math. Soc. vol. 33 (1958) pp. 36-39.
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we must suppose that £ is a perfect field. This explains the hypothesis that

£ be of characteristic 0. Namely, an integrally closed noetherian domain £

whose quotient field is perfect and of nonzero characteristic is a field. For if

£ is not a field, localizing £ with respect to a minimal prime ideal would give

a discrete rank one valuation ring whose maximal ideal is principal, generated

by some element x. It is clear that xllp cannot be in the field of quotients

of £.

8. Valuation rings. In this section, £ will denote a discrete rank one

valuation ring with maximal ideal m. We shall denote £/m by k and the

quotient field of £ by K.

Proposition 8.1. Suppose that k is a perfect field and A is a central separa-

ble R-algebra such that A/mA is a division algebra. Then A = K ® A is a division

algebra and A is the only maximal order in A. If L is any subfield of A (con-

taining K) and S is the integral closure of R in L, then S is a discrete rank one

valuation ring and is separable over R, and L is separable over K.

Proof. The fact that A is a division algebra and that A is the only maximal

order in A both follow directly from the hypothesis that A/mA is a division

algebra (see Theorem 3.11 of [2]).

Let £ be a subfield of A containing K, and S the integral closure of £ in 7.

If a is an element of S, then the ring R[a] is a finitely generated £-module

and is therefore contained in some maximal order of A. Since A is the only

maximal order, it follows that aQA, so that we have SQA. It follows from

this, and from the fact that 5 is integrally closed, that Lf~\A = S. Therefore

A/5 is a torsion-free £-module and hence a free £-module. Therefore 5 is a

direct summand of A as an £-module, so that (mA)C)S = mS. Thus, S/mS

is a subring of A/mA. Since A/mA is a division algebra, it follows that S/mS

is a field extension of the perfect field £/m and hence, by Theorem 4.7,

5 is separable over £. Also, because S/mS is a field, we have that mS is a

maximal ideal in 5, so that 5 is a discrete rank one valuation ring. It follows

immediately that £ is separable over K, completing the proof of the proposi-

tion.

Denote by £ the completion of £. Then £ is again a discrete rank one

valuation ring with maximal ideal m = m£. Also, K = K®R is the quotient

field of R. Since both £ and £ are regular domains, we have by Theorem 7.2

(1)->(B(£)-KB(£) and (1)-XB(£)-»(B(£) are exact. We also have the follow-

ing diagram which is obviously commutative :

(1) -» (&(R) -> (&(K)

I l
(1) -«<*)-+ «(£).

Proposition 8.2. £Ae kernel of the map (R(K)—*(R(Ê) coincides with the

kernel of <B(£)-XB(2¿).
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Proof. It is clear that ker((B(£)->(B(£)) Cker((B(£)->(B(£)). Suppose

that 2 is a central simple algebra over £ such that 2 ® K is a full matrix

algebra over K. Let A be a maximal order in 2 over £. Then, Â=A®£ is a

maximal order over £ (see Proposition 2.5 of [2]). By Proposition 7.3, it

follows that Â is separable over £. But Â/mÂ=A/mA, so that A/mA is

separable over £/m and hence, by Theorem 4.7, A is separable over £. Thus

the algebra class of 2 is in (B(£), and therefore ker((B(£) —> <S>(K))

Cker((B(£)—>(&(Ê)). This establishes the equality of the two kernels, and

completes the proof of the proposition.

The following result, which is stated without proof, is classical in the

theory of algebras. See Theorem 8 of Chapter 5 of [7] and Theorem 2.5 of [l ].

Theorem 8.3. Let R be a complete discrete rank one valuation ring whose

residue class field £/m 75 perfect, and let 2 be a central simple algebra over the

quotient field K of R. Then 2 has a splitting field L of finite degree over K, such

that the integral closure S of R in Lis separable over R. The ring S is necessarily

again a discrete rank one valuation ring.

Using the above theorem, we have the following result.

Proposition 8.4. Let R be a discrete rank one valuation ring such that

k = R/m is perfect, and let Abe a maximal order in a central simple algebra over

K. If 9Î 75 the radical of A, then A is separable over R if, and only if, £/m is

the center of A/31.

Proof. If A is separable over £, then 9Î = mA and we know in this case

that £/m is the center of A/mA. Assume now that £/m is the center of

A/31. If £ is the completion of £, then Â/mÂ=A/mA so that A is separable

over £ if, and only if, A is separable over R. Furthermore the radical 91 of Â

is equal to 31 ®£, so that A/?í=A/51í. Thus we may assume that £ itself is

complete.

Set 2 = K ®A and let £ be a splitting field of 2 of the type described in

the previous theorem, i.e., the integral closure S of £ in £ is separable over £.

Then mS is the maximal ideal of S and S/mS is a separable field extension

of £/m.
Now A/VI is central simple over £/m, so that S/mS®tA/9i is again a

simple algebra. Denote by 3DÎ the kernel of the mapping S®kA—*S/mS®A/'<fl,

so that aft is a maximal two-sided ideal in S®ÄA. Since S/mS®kA/SH

= S®rA/'$1, we have the exact sequence:

0 ->S ®r 9Î ->S ®Ä A ->S ®r A/9Î -> 0

and therefore 9)c = S®a9iî. But S®Ä9<i is contained in the radical of S®A,(8)

while 3)7, being a maximal two-sided ideal, contains the radical of S®A. It

(*) This assertion follows easily from the observation that if A is a subring of S2 such that

Q is a finitely generated left A-module, then the extension to ÍÍ of the radical of A is contained

in the radical of Í2.
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follows therefore that 9)î is equal to the radical of 5®A and hence that the

radical of S®A is a maximal two-sided ideal.

Applying Theorem 2.3 of [2], we have the following situation: since A is

a maximal order, it is hereditary, and since S is separable over £, it follows

from Theorem 1.8 that the algebra S®rA is still hereditary. Since the radical

of 5®A is a maximal two-sided ideal, a second application of Theorem 2.3 of

[2] enables us to conclude that 5®A is a maximal order over 5 in 7®x2.

But £ is a splitting field of 2. Therefore, every maximal order in 7®2 is

separable over S. (See Theorem 4.3 of [2].) Thus knowing that S®A is

separable over 5 and 5 is separable over £, we find that A is separable over

£. This completes the proof of the proposition.

Corollary 8.5. If Ris a discrete rank one valuation ring such that £/m is

algebraically closed, then (B(£)—KB(£) is an epimorphism, hence an isomor-

phism.

Proof. Let 2 be a central simple algebra over K and A a maximal order

in 2. If 91 is the radical of A, then A/9Í is a simple algebra so that the center

of A/9Î is a field extension of finite degree over £/m. Because £/m is alge-

braically closed, it follows that the center of A/9Î is £/m and therefore, by

the above proposition, it follows that A is separable over £. Thus we have

G5(£)—>(B(£) is an epimorphism. Since we know already that the map is a

monomorphism, we conclude that (£(£)—>(B(£) is an isomorphism.

Remark. If in addition to the hypotheses in the corollary we also assume

that £ is complete, then it follows from Corollary 6.2 that (B(£) = (l). But

if £ is not complete, it may well happen that (B(£) 9i(1). For example, let k

be the field of real numbers, K = k(x) and £ the valuation ring defined by

x2+l. Then the residue class field of £ is the field of complex numbers, while

<$>(R)9*(1) since (l)9*®(k)Q(S,(k[x])Q<5i(R).
We bring this section to an end with a description of some new algebra

invariants of a discrete rank one valuation ring which may merit further

study. In [2] it was proved (Theorem 2.3) that every maximal order over £

in a central simple algebra is hereditary. An example was provided to show

that the converse is not true.

For £ a discrete rank one valuation ring, denote by 3C'(£) the set of all

hereditary orders over £, and by 3H'(£)C3C'(£) the maximal orders. In

exactly the same way as for separable algebras, one can define an equivalence

relation in 3C'(£) as follows: if A, A'63C'(£), then A~A' if there exist finitely

generated free £-modules, £ and £', such that A®HomÄ(£, £)^A'

®«Homs(£', £'). That this is in fact an equivalence relation is immediate.

We denote by 3C(£) the set of equivalence classes of 3C'(£), and by 3TC(£) the

subset of 3C(£) of those classes which contain elements of 3Tl'(£). It will turn

out as a result of the proposition to be proved in a moment, that each

equivalence class in 3TC(£) consists exclusively of maximal orders.
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Proposition 8.6. Let Abe a central separable R-algebra and Y an order over

R in a central simple algebra. Then A®Y is hereditary if, and only if, Y is

hereditary. A®Y is maximal if, and only if, Y is maximal.

Proof. We shall only prove the second statement, the first being a conse-

quence of Theorem 1.8. In view of Theorem 2.3 of [2], the second statement

is equivalent to the following: the radical 31 of Y is a maximal two-sided ideal

if, and only if, the radical 371 of A®T is a maximal two-sided ideal. From the

exact sequence 0—»3Î—*T—>r/3c—*0 we deduce the exact sequence 0—»A®ä37

—»A®/er—>A®«r/3í—»0. Now, r/3t is a semi-simple algebra over £/m, and

A®/er/3t=A/mA®B/mr/3i. Since A/mA is a central simple algebra over

£/m, it follows that A/mA®/e/mr/3l is still semi-simple so that we have

A®303Ji. However, it is clear that A®3ÎC3Jc (see footnote 8), whence

3JÎ=A®A3Î. Thus we have A®r/3Jc=A/mA®/e/mr/3i. Because A/mA is a

central simple algebra over £/m it is clear that A®r/3JÎ is a simple algebra

if, and only if, T/3Î is a simple algebra. This proves the assertion.

Corollary 8.7. If the hereditary order Y is equivalent to a maximal order

Y', then Y is also maximal.

Proof. We have finitely generated free £-modules £ and £' such that

r®HomÄ(£, £)=r'®HomÄ(£', £'). Using the above proposition we may

conclude that r'®Hom(£', £') is a maximal order and therefore, using the

proposition again, it follows that Y is maximal.

Since any two maximal orders in the same simple algebra are isomorphic

(Proposition 3.5 of [2]), it is clear that 3TC(£) is in a natural one-to-one cor-

respondence with (B(£). Using Proposition 8.6, the pairing A, I1—>A®T with

A separable and F£3C'(£), induces a representation of (B(£) by permutations

of 3C(£). In this representation, the operation of (B(£) on 3TC(£) is the one

arising from the fact that (B(£) is a subgroup of (B(£). By Proposition 8.6, an

orbit under (B(£) of 3C(£) meets 9TC(£) only if that orbit is entirely contained

in 3K(£).

Proposition 8.8. The operation of (B(£) on 3C(£) is without fixed points.

Proof. Suppose that A is a separable order, Y a hereditary order such that

A®r~r. By tensoring with K, we find (A®£)®(r®£)~T®£ so that

A®£~£. But the map G3(£)—KB(£) is a monomorphism. It follows there-

fore that the algebra class of A in (B(£) is the identity element.

Appendix. Galois theory. Let S be a commutative ring and G a finite

group. Given a representation of G by ring automorphisms of S, there is

associated a "twisted" group ring or a trivial crossed-product A(S; G) defined

as follows: A(S; G) is a free (left) S-module with free generators {ua} indexed

by G and with multiplication defined by (au9)(bu,) = ap(b)u„„. The ring A has

Mi for its identity element and the map x-^xui imbeds S as a subring of A.
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S has a natural structure as a left A-module by means of the operation

(au,)x = aa(x). In this, the operation of S as a subring of A, on 5 as a A-

module coincides with the multiplication in S. Because of this fact, it is simple

to verify that HomA(S, S) may be identified with the subring of S consisting

of the elements left fixed by G. If £ is any subring of 5 consisting of elements

left fixed by G, then £CHomA(5, S) so that the structure of 5 as a A-module

defines a homomorphism 5: A—>Homß(5, S). Explicitly, we have b(au/)(x)

= oaj(x).

If £ is a subring of the commutative ring S, and G is a finite group repre-

sented by automorphisms of S leaving £ elementwise fixed, then we shall say

that 5 is a Galois extension of R relative to G if 5 is a finitely generated projec-

tive £-module and 5 is an isomorphism of A(S; G) with HomB(S, S).

It is a consequence of the Galois theory of fields that the present definition

agrees with the usual one in the case of fields(9). It should also be remarked

that when S is a Galois extension of £ relative to G, then the representation

of G by automorphisms of 5 is certainly faithful.

Proposition A.l. S is a Galois extension of R relative to G if, and only if,

2^(5) =A and R is the fixed subring of S under G.

Proof. Assume first that 5 is a Galois extension of £ relative to G. Since

S is a finitely generated projective and faithful £-module, it follows from

Proposition 5.1 that the center of HomÄ(5, S) is £ itself. Because 5 is an

isomorphism, it follows that the center of A (S; G) is £. On the other hand,

it is clear that the center of A(S; G) is the fixed subring of S under G. Also,

the fact that 5 is a finitely generated projective £-module implies that the

trace ideal of 5 in Homfi(5, S) is HomÄ(5, S) itself (Proposition A.3 of [2]),

so that Xfi.(S)=A.

Assuming that £ is the fixed ring under G and that %a(S) =A, it follows

from Theorem A.2 of [2] that S is a finitely generated projective £-module,

and that A = Homfi(S, S). Thus, 5 is a Galois extension of £ relative to G.

Set s= 2M»£A(i>; G). It is clear that w„s = s, for every cr£G, so that s

maps 5 into the fixed ring of G.

Proposition A.2. 7ei £ = HomA(S, S), and suppose that 5:A(S; G)

—>Homfi(S, S) is an isomorphism. Then, S^Hom^S, £) =sS.

Proof. If aQS, then for xQS we have ô(sa)(x)= ^2<r(ax)QR, so that

b(sa)QHomR(S, £). Suppose/= 5(y)EHomÄ(S, £). If y= 2~la«u«, then for

every xQS, we have 2^a,a(x)QR, so that p(2^aca(x))=2~2a„<r(x). This

shows that /,Tp(g0-'r)r(x) = 2Jtcitt(x). But ô is an isomorphism; therefore

p(ap-iT)=aT, or a(r = cr(ai). Thus, y= ^o-(ai)M, = 5ai.

(») In case R is a field, our definition of Galois extension is equivalent to that of Normal-

ringe studied by Teichmüller in [8].
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Suppose that S is a finitely generated projective £-module with £ a

subring of S. Then, by Proposition A.l of [2], p: S ®«Homj,(5, £)

—»Hom/í(S, S) defined by p(a®f)(x)=f(x)a is an isomorphism. At the same

time, we also have the map r: S®ßHomie(S, £)—>£defined by r(a®f) =f(a).

If xES, we define the trace of * to be rp~l(x) and denote it by t(x). As defined,

t is an element of Hom^S, £). The fact that S is a finitely generated projec-

tive £-module implies the existence of elements xx, • • • ,xnES and/i, • • •,/»

£Homs(S, £) such that 2~lf<(x)x* = x f°r au * m «5. Then, it is readily veri-

fied that t(x) = ]£/,(**<).

Proposition A.3. If Sis a Galois extension of R relative to G, then t=b(s).

Furthermore, t maps S onto R and therefore R is a direct summand of S as an

R-module.

Proof. As above, we have elements XiES and/,£HomB(S, £) such that

x = 2^J<(X)X< ior xES. By Proposition A.2, there are elements yiES such that

fi=b(syi). Therefore, x= 2~Li à(syi)(x)Xi= ^Z«-,,cr(y,)x,cr(x). Because ô is an

isomorphism, it follows that 2¿,aO-(y,)x,M, = l. In particular, we have

2~li x&i"*!- But t(x) = 2~lfi(xxi)> so that t(x) = £,,,<r(io:,y,) = £<*■(*)• Thus,
t=8(s).

Because S is a finitely generated projective faithful £-module, we have

£ä(S) =£ (Proposition A.3 of [2]). Therefore there are elements ZiES and

g,£HomB(S, R) with £g,-(ai) = l. If gi=S(sWi), we have 1= £,,, <r(w,z,) or

t(2~li v>iZi) = 1. Thus t maps S onto £.
Assuming once more that £ is a subring of S and that S is a finitely gener-

ated £-module, we have HomB(S, £)CHomÄ(S, S) with HomB(S, £) a right

S-submodule of HomR(S, S). Since /£HomÄ(S, £), we have /SCHomB(S, £).

Proposition A.4. £ef £ be a subring of S and suppose that S is a finitely

generated projective R-module. Then, S is separable over R if, and only if,

Hom«(S, £) 75 a free right S-module having t as free generator.

Proof. Because S is a finitely generated projective £-module, there are

elements Xi, ■ ■ • , xnES and /i, • • • , /n£Homß(S, £) such that 2~Lfi(x)x*

= x, for all xES. In terms of these elements, we have t(x) = 2~lf>(xx<)-

Consider the following diagram:

ß
S ®RS-► Homfi(Homs(S, £), S)

#\       /a

S

where, as usual, <p(x®y)=xy and ß(x®y)(f)=f(y)x and a(h)= 2~lih(fî)xi-

Furthermore, the fact that S is a finitely generated projective £-module

implies that ß is an isomorphism. In addition, Hom/e(Hom/e(S, £), S) is an

S"-module through the operations: (x®y)h(f)=xh(fo y). In this structure,
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ß is an Se-map. Therefore the image of A under ß coincides with the anni-

hilator of J in Homi}(HomÄ(5, £), 5), while the annihilator of / is just

Homs(Homie(5, £), S). It is to be noted that in the latter expression we are

considering Hom^S, £) as a right 5-module. Thus 5 is separable over £ if,

and only if, the image of Homs(Hom«(5, £), S) under a is 5 itself. Also,

when S is separable, the restriction of <p to A is an isomorphism. Thus if a0

is the restriction of a to Homs(HomÄ(5, £), S), then 5 is separable over £ if,

and only if, a0: Horns (Horn« (S, £), S)—>S is an isomorphism. Taking into

account the fact that t(x) = 2/<(xx,), we have a<>(h) =h(t).

Define q: S—»Homfi(S, £) by c7(x) =/ o x. Clearly g is a right 5-map, and

its dual

q': Homs(Hom«(5, R),S)^ Homs(S, S) = S

is given by q'(h)=h(q(l))=h(t). Thus, q'=ao. Therefore if q is an isomor-

phism, then a0 = q' is also an isomorphism and 5 is separable over £.

Now suppose that S is separable over £ so that q' — ao is an isomorphism.

Because «o is an isomorphism, its dual

ao' : Homs(5, S) -> Homs(Homs(Homs(5, R), S), S)

is also an isomorphism. The following diagram is commutative:

ao'
S = Homs(.S, S) -> Homs(Homs(HomÄ(5, £), S), S)

1«      /y
Homß(S, R)

where y is the natural imbedding of a module into its second dual. Now,

HomB(5, £) is £-projective because 5 is £-projective. It follows from Theo-

rem 1.8 that Hom^S, £) ic 5-projective. Therefore y is an isomorphism,

and since a0' is an isomorphism, it follows that q is an isomorphism. This

completes the proof of the proposition.

Corollary A.5. If S is a Galois extension of R relative to a group G, then

S is separable over R.

Proof. Combining Propositions A.2 and A.3 shows that the map x—H o x

is an isomorphism of S on Hom«(5, £). Therefore it follows from Proposition

A.4 that 5 is separable over £.

Proposition A.6. Let S be a commutative ring and G a finite group repre-

sented by automorphisms of S. Let R be a subring of S whose elements are left

fixed by the elements of G, and such that S is a finitely generated projective R-

module as well as a separable algebra over R. If t=S(s), then b:A(S; G)

—>Homfi(5, S) is an epimorphism. If in addition ô is a monomorphism, then

S is a Galois extension of R relative to G.
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Proof. The fact that 5 is a finitely generated projective £-module implies

that the map p: S®RrlomR(S, £)—>HomB(S, S) given by p(x®f)(y) =f(y)x

is an isomorphism (Proposition A.l of [2]). Now if/£HomÄ(S, R), it follows

from Proposition A.4 that f = t o y, for some yQS. In view of the fact that

t=S(s), we have/=5(5y), and therefore that p(x®f) = b(2^,xa(y)ur). Thus,

5 is an epimorphism. If ô is also a monomorphism, then it follows from the

definition that 5 is a Galois extension of £.

Theorem A.7. 7ef S be a commutative ring, R a subring of S such that S is

separable over R and such that S is a free R-module of finite rank n. Then, S

can be imbedded in a Galois extension of R relative to a group which is isomorphic

to the symmetric group of degree n.

Proof. Set r = 5®s • • • ®S (n factors) which we shall consider as an

£-algebra. Denote by G the symmetric group of degree «; G has a natural

representation by automorphisms of Y in which the elements of G permute

the factors. The required Galois extension of £ will be constructed as a factor

ring of T.

We temporarily suppress the multiplication in 5 and Y, considering them

only as £-modules. Let £ be the homogeneous component of degree « of the

exterior algebra of 5 over £. Since 5 is free of rank « over £, we have that

£ is a free £-module of rank one. Furthermore, there is a canonical ^epi-

morphism it: T—>£ with the property 7nr(£) =e(cr)7r(£) for i-QY and aQG. The

symbol e(o) is the signature of the permutation <r, having the value 1 for even

permutations and — 1 for odd ones.

Let 77 be the kernel of t. Then 77 is an £-submodule of T which is mapped

into itself by the elements of G. Denote by 3 the set of elements ¡-QY having

the property that ¿TC77. It is clear that 3 is an ideal in Y which is mapped

into itself by the elements of G. If Q = r/3, then G is represented by auto-

morphisms of ß. We shall prove that ß is the required Galois extension of £

relative to this particular representation of G by automorphisms of ß.

Since £ is a free £-module and E = Y/H, it follows that £C\3? = 0. Thus

the map T—»ß induces a monomorphism on £ which we consider an identifi-

cation so that £ is a subring of ß.

If «(EHom^S, S), we define an endomorphism w' of Y by:

w'(xi ® • • ■ ® x„) = co(xi) ® Xt ® • • • ® x„ + xi ® u(xi) ® • • •

® x„ + ■ ■ ■ + Xi ® Xi ® • • • ® ctf(x„).

Then it follows from the elementary properties of the exterior algebra that

ttw'(£) = 7-(co)7r(£), where t(co) is the trace of the endomorphism co. Therefore

we find that the endomorphism co' —t(o?) of Y maps Y into 27.

For i=l, 2, ■ ■ ■ , n define p,-: S-+Y by p,(x) = l® • • • ®x® • • • ®1

(the x occurring in the ith place). The map pi is an £-algebra monomorphism

of S into T. Furthermore, if tr£G, then crp¿ = p,(,).
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If ¡e£S let <o be the element of HomB(S, S) defined by multiplication by

x, so that T(u)=t(x). Defining co' as in the previous paragraph, it is clear

that we have w'(£)= 2~L< Pi(x)%, for ££r. Therefore multiplication by

2~LP<(x) —t(x) maps T into T7, or

(1) Z PÁx) - t(x) E 3-
i

As an immediate consequence of (1) we have that pi(S)C\^ = 0. Namely,

suppose that for some i and some xES we have pi(x)ES- Since 3 is an ideal

and pi is a ring homomorphism, we have pi(xy)E3 for all y ES. Furthermore,

for aEG we have api = p„a), while 3 is invariant under G. Therefore pj(xy) £3

for all yES and all j, whence by (1) it follows that t(xy)E$. Since ^i\R = 0,

we have t(xy) =0 for all yES. It now follows from Proposition A.4 that x = 0.

From the fact that pi(S)C\^ = 0 it follows that pi followed by the canon-

ical map yp: Y—»fi is a monomorphism from S into fi. In particular, ppi is an

imbedding of S as an £-algebra into fi.

We now give another description of 3. Let Xi, ■ ■ ■ , xn be a set of free

generators of S over £. By Proposition A.4 there are elements yi, ■ ■ • , yn

in S with t(xiy,) = ¿5,,-. Of course yi, ■ • • , yn also form a set of free generators

of S over £.

As ii, • • • , in range independently over (1, 2, • • • , »}, the elements

y.^y.2® • • • ®y,„ form a set of free generators of the £-module Y. If some

pair of the indices *i, • • • , in are equal, then yM® • • • ®y,-n is in 77. There-

fore if ££r, we may write £ = £' + 2~1* a(a)a(yi® • • • ®y„) with ¿'£77 and

d(<r)££. Set F=yi® • • • ®yn. Then cr(F)-e(cr) F£77, so that ¿ = £"

+ 2~Le(ff)a(<r)Y, with £"£77. We shall now find an explicit expression for

£e(<r)a(cr).

Denote by /' the trace in the £-algebra Y. Then it is clear that

¿'(zi® ■ • • ®zn) = Jlit(zi), and therefore that t'(r(Ç) =t'(Ç). From the fact

that t(Xiyj) = da, it follows that t'((xi® ■ ■ ■ ®x„)(yfl® • • • ®y,„))=0 if

some pair of the indices »i, • • • , in are equal. In addition, we have

t'((xi® ■ ■ ■ ®x„)cr(F))=0 if cr^l, and is equal to 1 if «7=1.

Set X = xi® ■ ■ ■ ®x„. If £ = £'+ X/K^VW' as above, then a(a)
= t'(fr(X)). Consequently we have for anv ¿£r that £- 22e(v)t'(fc(X)) Y

EH.
If ££T, we set «(£)= 2^t(<r)ff(0- With this notation we have, for ££T,

(2) t-t'(Za(X))YEH.

In particular, since F is part of a set of free generators of Y, we have:

(3) $ £ 77 <=> t'(ia(X)) = 0.

Because S is separable over £, it follows from Proposition 1.5 that F is

also separable over £. Applying Proposition A.4 to (3) above, we find :
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(4) fj Q 3 «* fr(X) = 0.

Before we can apply (4), we need further information about a. In par-

ticular, we note the following fact. If Zi, - - - , znQS, then a(zi® • • • ®zn) =

det(pi(zj)). This may be verified for example by expanding det(p<(z>)) as an

alternating sum of «! terms; these terms are precisely those in the sum

a(zi® • • • ®2„)= £e(tr)cr(zi® ■ • • ®zn).

Now, we have a(X) = det(pv(x,)) and a( Y) = det)pi(y,)), so that a(X)a( Y)

= det(rt3), where rij-=2~li'pk(x,)pk(yj). But r<j= £4 pk(Xiy,), so that ri}

— t(xiyj)Q3- Because /(x.-y,) = 5;,- we find

(5) a(X)a(Y)-lQ$.

In view of (4) which asserts that 3 is the annihilator of a(X), it follows

from (5) that a(X)a(Y) is idempotent. Furthermore, (4) and (5) also show

that 3 is generated by a(X)a(Y) — 1. The fact that 3 is generated by an

idempotent shows that ß is T-projective, hence in particular ß is £-projec-

tive.

Because Y is £-separable, it follows from Proposition 1.4 that ß is £-

separable. To conclude that ß is a Galois extension of £ we shall show that

Proposition A.6 is applicable. To do so we need some preliminary computa-

tions.

Let zi, ■ ■ ■ , zn be in 5. Then z¡= £* ajkXk with a¡kQR so that pi(zj)

= 2> ajkpi(xk) and therefore det(p,(zy)) =a det(pi(xk)), or a(zi® • • • ®z„)

= aa(X). Therefore for any %QY, we have a(l-)=aa(X), with aQR. Since

t'(a(X)Y) = l, we have a = t'(a(£)Y). However, it is clear that f(a(Ç)Y)

= t'(£a(Y)). Therefore we have:

(6) a© = t'(ta(Y))a(X)

for all ££r.
If we set % = r)a(X) in (6), then we find

(7) £ o-(V)a(X) = t'(Va(X)a(Y))a(X), q Q T.

Let t" be the trace in the £-algebra ß. Suppose that uQQ, and nQY such

that \¡/(r¡)=u. Then, \[/(r¡a(X)a(Y)) =u, while r}a(X)a(Y) annihilates 3f.

Therefore

t"(u) = t'(na(X)a(Y)),

or

t"(u)a(X)a(Y) = £ <r(v)a(X)a(Y) by (7).

But t(a(X)a(Y)) = 1, so that t"(u) = Jjr(u).

All that remains for the application of Proposition A.6 is the proof that

the map 5: A(ß; G)—»Hom^ß, ß) is a monomorphism. Before entering into
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the proof of that statement, we note that 2~l%iPi(x)E3 for all xES with

£,£r implies that £¿£3. For, we have det(pi(x,))=ct(X) which is a unit

mod 3.

To prove that ô:A(fi; G)—>HomR(ñ, fi) is a monomorphism, we must

show the following: if £(<r)£r and 2~l^(a)a(rl)&3 for all nEY, then all

£(°")£3- Assume that this is false, and suppose that the £'s have been chosen

to have the least number of them not in 3. Clearly the number of £'s not

in 3 must be at least two. (If £ct(t;)£3, we merely take 77 = 1 to conclude that

££3-) Suppose £(p)£3- Then, we have:

Z £(rV(W) G 3,

22 t(o-)o-(v)p(v') E 3, all v, r,' E r.

By subtracting, we remove the p-term. Because of the minimality property

of the £'s, it follows that £(o-)(cr(?7)-p(r/))£3, for all cr£C and all r¡EY.

Choose any cr^p; then there is an index 7£{l, 2, • • • , »} such that api

= pj, ppi = pk with j¿¿k. We have then £(ct)(t\(x) — £*(x))£3> for all xES.

By the observation in the preceding paragraph, it follows that £(ff)£3- Since

this is so for all ay^p, there is at most one £ not in 3, hence all £ are in 3-

This completes the proof of the theorem.

Remark. In applying Theorem A. 7 to fields, the Galois extension fi con-

structed as above will not be a field in general. However, the smallest Galois

extension containing the given separable extension will be a factor ring of fi.

It should also be remarked that the requirement that S be £-free is un-

doubtedly too strong; however, a proof under weaker hypotheses is not avail-

able at this time.

The next theorem has no natural counterpart in the Galois theory of

fields.

Theorem A.8. For 7=1, 2 let S¿ be a Galois extension of £, relative to G,.

Suppose that £1 and £2 dre R-algebras for some commutative ring R such that

Ri®rR2 is not 0. Represent GiXG2 by automorphisms of Si®rS2 by means

of: (<riXo-2)(xi®Xi)=o-i(xi)®o-i(xi). Then, Si®rS2 is a Galois extension of

Ri®rR2 relative to Gi XG2.

Proof. Since £, is a direct summand of S, it follows that £i®B£2 is a

subring of Si®BS2 so that, in particular, Si®rS25¿0. It is clear that Si®BS2

is a finitely generated projective £i®Ä£2-module. It is now only necessary

to observe that A(Si®S2; dXG2) is naturally isomorphic to A (Si; Gi)

®BA(S2; G2) and that

HomBl®«2(Si ® S2, Si ® S2) S HomBl(Si, Si) ®« HomBi(S2, S2).

There are several special cases of Theorem A.8 of sufficient importance

to be mentioned explicitly. We may take £i = £2 = £, so that the tensor prod-

uct of two Galois extensions of the same ring is again a Galois extension. Or,
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we may have £x = £ and St = Ri, that is, S®rR' is a Galois extension of £' if

5 is a Galois extension of £, with £' any £-algebra. As a special case, if a

is an ideal in £, then S/aS is a Galois extension of £/a, with the two exten-

sions having the same group.

The rest of the appendix consists of some results on Galois cohomology

of rings. The results obtained are of a tentative nature in that the hypotheses

imposed in a number of the theorems are stronger than needed; a final version

is yet to be found. Nevertheless, the results obtained are adequate for ap-

plication to the study of the Brauer group.

We shall denote by ¿7(5) the group of units of the commutative ring 5.

We remind the reader of some terminology already used in an earlier section:

a projective £-module £ is said to be of rank one if for every maximal ideal

m of £, the tensor product £m®«£ is a free £m-module of rank one.

Theorem A.9. Let S be a Galois extension of R relative to G. If every finitely

generated projective R-module of rank one is free (necessarily of rank one), then

LP(G, ¿7(5)) = (1).

Proof. Let/: G-^U(S) he a 1-cocycle so that f(pa) = p{f(a) }f(p). We shall
prove the existence of a unit yQ ¿7(5) such that f(p) = p(y)y~l.

We associate to/ the element ££HomÄ(5, 5) given by 2?= 5(£/(cr)w(r).

Explicitly, £(x) = £/(cr)cr(x), for xQS. The fact that/ is a cocycle translates

into the following property of £,

(1) P {£(*)} ,= F(x)/f(p).

Thus the required result will follow if we show that the image of £ meets

U(S).
Let wQS be such that t(w) = 1, and define G: S-*S by G(x) = £(wx). A

simple calculation shows that G2 = G. It follows that the image M of G is an

£-direct summand of 5, and therefore a finitely generated projective £-

module.

Suppose that yM = 0 for some yQS. Then yG(wx)=0 for all xQS, or

£y/(cr)<r(w)cr(x)=0. Since 5 is a Galois extension of £, it follows that

yf(o-)cr(w)=0 and therefore that y<r(w)=0, because f(o) Q ¿7(5). Summing

over <r, and making use of the fact that t(w) = l, it follows that y = 0. Thus

we may conclude that M is a faithful £-module, and in particular, that

M^O.

Let co£HomÄ(5, S) ; we examine coG. We have co= 5(2~La<,u,) with a„QS.

Now, coG(x) = ¿„ a,<j { F(wx)} = £„ (a,/f(a))F(wx), or coG(x) = ¿(co)G(x)

with k(oi) = £(a„//(<r))(E5. Since M is a direct summand of 5, every endo-

morphism of M as an £-module is induced by an endomorphism of 5. In

view of the calculation just performed and the fact that no nonzero element

of 5 annihilates M, we may conclude that

Homs(ü7, M) S {yQS\yM QM\.
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Now suppose that yES is such that yMEM. That is, if x£S, there is an

element zES such that yG(x) = G(z). If we compute G of both sides, and use

the fact that G2 = G, we find G(yG(x)) =yG(x). Using the definition of G, we

have immediately that G(yG(x))=t(wy)G(x). Thus (y — t(wy))G(x) = 0, so

that y — t(wy) annihilates M. Since t(wy)ER, we conclude that y must be in

£, and therefore that HomB(7l7, M)=R.

We may now apply the hypothesis. If m is any maximal ideal in £, we

know that £m®7l7 is a finitely generated free £m-module whose endomor-

phism ring is £m itself because of the fact that HomB(M, M) =£. It follows

from this that £m ® M is a free £m-module of rank one and therefore that M

is a free £-module of rank one: M=Rz. The proof will be complete when we

show that zEU(S).

Since M is a direct summand of S, the map M—*R defined by z—>1 is

induced by a map from S to £. Thus, there is an element vES such that

t(vz) = 1. That is, 1 =t(vz) = 5>(v)cr(z) = £(*(»)//(o-))z, with 2>(zi)//(cr)£S.

Thus z is a unit in S and the proof is complete.

We shall now consider some of the relations between H2(G, U(S)) and

(B(£). If S is a Galois extension of £ relative to G, and/ is a 2-cocycle of G in

T7(S), i.e.,fEZ2(G, U(S)), we can define a crossed-product algebra A(/; S; G)

as follows: A(/; S; G) is a free (left) S-module with free generators {u„}

indexed by the elements of G, with multiplication defined as follows: (au„) (bu„)

= ap(b)f(p, a)up,. Just as in the classical theory of crossed-products, the fact

that/is a cocycle is reflected in the associativity of multiplication in A(/; S; G).

It is clear that replacing/ by a cocycle cohomologous to/ defines an algebra

which is isomorphic to A(f; S;G). Every cohomology class is represented by a

"normalized" cocycle, one for which we have/(p, 1) =/(l, p) = 1. If/ is such

a normalized cocycle, then Ui is the unit element of A(/; S; G), and mapping

a£S on-dWi imbeds S in A(/; S; G). We shall identify S with its image under

this mapping. In every case we shall use normalized cocycles in constructing

crossed-products.

We remark that A(l; S; G) is the algebra A(S; G) already considered

above. Since S is a Galois extension of £, the algebra A(S; G) is isomorphic

to HomB(S, S) and is therefore a central separable algebra which is in the unit

class of (B(£). (S is a finitely generated projective £-module.)

If Si and S2 are Galois extensions of £ relative to groups Ci and G2, then

Si®S2 is a Galois extension of £ relative to d XG2. If fiEZ2(Gt, £/(S¿)), then

/i®/2 defines naturally an element of Z2(Gi XG2, U(Si®S2)), and it is obvious

from the definition that

A(/i ® f2; Si ® S2; Gi ® G2) Sä A(/i; Si; d) ® A(/2; S2; G2).

It is also clear that A(f~l; S; G)^A(f; S;G)°.

Before continuing, we need the following lemma.
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Lemma A. 10. Let S be a Galois extension of R relative to G. Then, there are

elements e,QS®RS, for aQG, with the following properties:

(a) e„e, = 0for p9á<r, e\ = e„ £„e„=l.

(b) (p(x)®l)ep = (l®x)ep, for xQS.

(c) (pXi)(e,)=v.-i.

Proof. We extend the ground ring from £ to 5 by considering 5®5 as an

extension of 5, having first identified 5 with 1®5C5®5. Then 5®5 is a

Galois extension of 5 relative to the group G XL Define /: 5®5—>5 by

/(x®y) = l®xy. Then/EHoms(5®5, 5), so that there is an element eQS®S

with/ = / o e. Explicitly, we have:

(1) E (<r X l)(e)(<r(x) ® y) = 1 ® xy.

Set e,= (crXl)(e). By replacing x by ax in (1), and using the linear inde-

pendence of the automorphisms, we get (<r(a)®l)e„= (l®a)e„. This is (b) of

the lemma. It follows, in particular, that ei£.4, where A is the annihilator of

the kernel 7 of </>: S®S—*S.

Applying the map <p to both sides of (b) gives <p(e,)a(x) =<£(e„)x. Since 5

is a Galois extension of £, it follows that <t>(e„) = 0 if cr 9* 1 while <f>(ei) = 1. (This

incidentally gives another proof that 5 is separable over £, for ei£.4 and

<p(ei) = l.) By setting x = y = l in (1), we find £e„=l.

Because eiE.4 and <t>(ei) = 1, we have immediately that e2 = ei and there-

fore also that e^e, since e,= (crXl)(ei). Finally, e„QJ lia^l so that e„ei = 0,

and therefore epe„ = 0 if p^cr. This proves (a).

To complete the proof, we consider (pXp)(ei). From (b) we have

(p(x)®l)(pXl)(ei) = (l®x)(pXl)(ei), so that applying 1 Xp to both sides

gives (p(x)®l)(pXp)(ei) = (l®p(x))(pXp)(ei). This shows that (pXp)(ei)

QA. For any xQS®S, it is obvious that <p(pXp)(x)=p<p(x). Therefore,

c6(pXp)(ei) =pci>(ei) = 1, or (pXp)(ei) =ei. Statement (c) follows immediately.

Proposition A.ll. 7e/ S be a Galois extension of R relative to G and

fQZ2(G, U(S)). Then,f®lQZ2(GXl, U(S®S)), l®fQZ2(lXG, U(S®S))
andf®f~1QZ2(GXG, U(S®S)) are all coboundaries. If gQZ2(G, ¿7(5)), then
f®g is cohomologous to fg®l.

Proof. We make use of the elements e*QS®S described in Lemma A.10.

The fact that the e„ are orthogonal idempotents whose sum is 1 enables us to

express every xQS®S in the form £xe, and to observe that xE¿7(5®5)

if, and only if, each xe„£ ¿7(5®5)e,r. Now define:

(1) M<r)=Er(l®/(r-1,a))eT.

(2) h2(<x)=2Zr(f(r, o)-l®l)er.

(3) k=2Zrif(r, r-i)®l)er.
(4) 27(<ti X<r2) = hi(ai) (<n X1)(h2(a2))(oi Xa2) (k)(en X1)(k)~\

Then a direct computation shows that
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f® 1 = Shi      on    G ® 1,

1 ®/= bhï1    on    1 ® G,

f®f~1®SH      on   G X G.

Finally, we have (f®g)(fg®l)~l = g~1®g which is a coboundary, so that

f®g is cohomologous to/g®l.

Combining the discussion preceding Lemma A. 10 with Proposition A.ll,

we have:

Theorem A. 12. Let S be a Galois extension of R relative to G. If

fEZ2(G, U(S)), then A(f; S; G) is a central separable algebra over R which

contains S as a maximal commutative subring and is split by S. The map

/—>A(/, S; G) induces a homomorphism H2(G, U(S))—>(B(£).

Proof. We have A(/, S; G)®BS^A(/®1, S®S; GXl). Since/®1~1, it
follows that

A(/ ® 1, S ® S; G X 1) S A(l, S ® S; G X 1).

Because S is a Galois extension of £ relative to G, we know by Theorem A.8

that S®rS is a Galois extension of S relative to GXL Here we consider

S®S as an S-algebra by means of the imbedding x—>l®x. Thus we have

A(/, S; G)®BS^Homs(S®BS, S®RS).
It follows from this that A(/, S; G)®rS is a central separable algebra

over S. Since S is also separable over £, we conclude by Theorem 2.3 that

A(/, S; G)®rS is separable over £. Since £ is a direct summand of S it

follows from Proposition 1.7 that A(/, S; G) is separable over £. Finally, if

C is the center of A(/, S;G), then C®RS is the center S of A(/, S;G)®S, from

which it follows that C = R. Thus A(/, S; G) is a central separable algebra

over £, and is split by S.

Under the isomorphism A(/, S; G)®S^Homs(S®S, S®S) the subring

S of A(/, S; G) corresponds to the endomorphisms of S®S given by multipli-

cation by the elements x®l, xES. It follows from this that an element of

Homs(S®S, S®S) which commutes with the image of S under the isomor-

phism above lies in HomS(g)s(S®S, S®S) = S®S, and therefore that the

image of S generates in Homs(S®S, S®S) a maximal commutative subring.

Hence S is a maximal commutative subring of A(f, S; G).

líf,gEZ2(G, U(S)), then

A(f, S; G) ®r A(g, S; G) ̂  A(/ ® g, S ® S; G X G).

However, f®g~fg®l and therefore,

A(f, S; G) ® A(g, S; G)

^ A(fg ® 1, S ® S; G X G) S A(fg, S; G) ® A(l, S; G).
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Since A(l, 5; G)~l, we find

A(/, 5; G) ® A(g, 5; G) ~ A(/g, 5; G)

and the proof is complete.

The description of the kernel and image of the mapping H2(G, ¿7(5))

—*(B(£) cannot be given completely at this time; this question will be an-

swered under restrictive hypotheses. Suppose that a central separable algebra

A over £ is split by a Galois extension 5 of £. Then, by Theorem 5.7, there

is an algebra equivalent to A which contains 5 as a maximal commutative

subring. Therefore, in studying the subgroup of (B(£) of algebra classes which

are split by a given Galois extension 5 of £, we may restrict our attention to

algebras which contain 5 as a maximal commutative subring.

Proposition A. 13. 7ei S be a Galois extension of R relative to G and A a

central separable algebra over R containing S as a maximal commutative sub-

algebra. If each element of G can be extended to an inner automorphism of A,

then A is isomorphic to a crossed-product A(f; 5; G).

Proof. For each <rQG there is a unit t,QA such that <r(x) =t„xt~x, for

xQS. Therefore the inner automorphism defined by /(p, <j)=tpt,t~^ is the

identity in 5. Because 5 is a maximal commutative subalgebra of A, it follows

that /(p, cr)G¿7(5). It is clear from the form of f(p, a) that we have

fQZ2(G, U(S)). We form A(/; 5; G) and define h: A(f; 5; G)->A by h( jja.u.)
= 2~2a„t„. Then h is an algebra homomorphism so that the kernel of h has the

form oA(/; 5; G) with a an ideal of £. Since h is the identity map on £, it

follows that a = 0 and h is a monomorphism. We identify A(/; 5; G) with its

image under h and note that h is the identity map on 5. Then we have

A=A(f; 5; G)®r£1, with ß the commutant of A(/; 5; G) in A. In particular,

the elements of ß commute with those of 5, so that ßC5. It follows immedi-

ately that ß = £ and that A(/; 5; G) =A, completing the proof.

The following general lemma will be needed in the proof of Theorem A. 15.

Lemma A. 14. Let R be a local ring (not necessarily noetherian) and let S

be a separable R-algebra which is a free R-module of rank n. Let E be a finitely

generated projective faithful S-module whose rank over R is also n. Then E is a

free S-module of rank 1.

Proof. Let m be the maximal ideal of £, and let SDÎi, • • • , Wt be the

maximal ideals of 5, so that 9î = 9JîiC\ • • • C\Wt is the radical of 5. By

Proposition 2.2 of [l], the fact that 5 is separable over £ implies that

m5=9?.
We have 5/9t = 5/9Dîi+ • • • +5/9K, (direct sum) and therefore £/9c£

= E/WiE+ ■ ■ ■ +E/mtE (direct sum). Since £ is a faithful 5-module,

we have <SRiE9£E. Otherwise there would be an element aQTlt such that

(l+a)£ = 0. Thus, E/TliE is a nonzero vector space over the field S/Tl,
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so that £/3JÎ,£ contains an isomorphic copy of S/3JÎ,. Therefore, £/3î£

contains an isomorphic copy of S/3Î. Since S/31 is semi-simple, we have

£/3l£s;S/3c+I (direct sum), with 7 some S/3t-submodule of £/3i£.

Since 3ï = mS, the dimension of S/3Î over £/m equals the rank of S over

£, that is, ». Similarly, the dimension of £/3t£ over £/m is also ». Hence

7 = 0, or £/3i£=S/3l. Because £ is a finitely generated projective S-module,

it follows from the Remark at the end of §3 that £=S.

Theorem A. 15. Let S be a Galois extension of R relative to G, and suppose

that S has the property that every finitely generated projective S-module of rank

one is free. Then the sequence (1)—+H2(G, U(S))—>(B(£)—KB(S) 75 exact.

Proof. Suppose first that A is a central separable algebra over £ which is

split by S; we may assume that A contains S as a maximal commutative sub-

ring. Therefore by Proposition A. 13 we need to show that each element of G

as an automorphism of S can be extended to an inner automorphism of A.

Considering A as a left S-module, we have from Theorem 5.6 that A is

S-projective, that A is S®BA"-projective and that Homs(A, A)i=S®BA°. De-

note S®BA° by fi. If aEGt we consider the automorphism cr®l: fi—>fi. The

automorphism induces a new fi-module structure in fi under which a ®1 is

a module isomorphism, wljiich means that this new module is fi-free. The

changes of rings under a®\ gives a new fi-module structure X on A ((5®X)x

= (r(s)x\). Since A is fi-projective, it follows that X is again fi-projective.

Then, by the appendix of [2], there is a finitely generated projective S-

module TV such that X and N®sA are fi-isomorphic. It is clear that N has

rank one and therefore that 7V=S. We have therefore an fi-isomorphism

h: X—»A. Thus, h is a 1-1 map of A onto itself with the property h(a(s)x\)

= sh(x)\, for 5£S and x, \£A. By setting s = x=l, we find &(A)=»(1)X, so

that u = hil) is a unit in A. Finally, setting x = X=l, we find uais) =A(cr(5))

= 5&(1) =su and therefore a has an extension to an inner automorphism of A.

This shows that the kernel of the map (B(£)—>(B(S) is contained in the image

of T72(G, 77(S))-»(B(£). We know already that the image of T72(G, U(S))
->«(£) is contained in ker((B(£)-XB(S)) (Theorem A.12).

Now suppose/£Z2(G, U(S)) is such that A(/, S; G)~l. Then there exists

a finitely generated projective £-module £ whose endomorphism ring (over

£) is A(/, S; G). Then E is finitely generated and projective over A(/, S; G),

while A(f, S; G) is finitely generated and free over S. Hence £ is a finitely

generated projective S-module which we shall prove is of rank one.

Let 3JÎ be a maximal ideal in S and let p = 3J7C\£, so that p is a prime ideal

in £. We wish to show that £®sSsh is a free SsK-module of rank one. It will

be sufficient for this, to show that E®rR9 is a free S®£p-module of rank one.

Then, set £' = £„, S' = S®R9 and £' = £®£p. Now, £' is a local ring, S' is

semi-local and separable over £', while £' is a finitely generated projective

£'-module. Furthermore, S is a Galois extension of £, so that S' is also a
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Galois extension of £' relative to G. Therefore 5' is a free £'-module of rank

«, where, it is easy to verify, « is the order of G. Since A(/, 5; G)=HoniR(£, £),

we have £'®A(/, 5; G)^HomB«(£', £') and therefore £' is a free £'-module

of the same rank w. We may now apply Lemma A. 14 and conclude that £'

is a free 5'-module of rank one. We therefore conclude that £ has rank one

over 5, and hence by the hypothesis of the theorem that £ is a free 5-module

of rank one: £ = 5eo.

If aQG, define v„: E—>E by iv(ae0) =<r(a)eo, for aQS. It is clear that v,

commutes with £, so that v,QA(f, 5; G). Clearly, v„va = vpt. Let bQS and

x — aeoQE. Then, vvbv~1(x) =v<,b<T~1(a)e<¡ = o-(ba^1(a))ei¡ = o-(b)aeo = a(b)x, i.e.,

Vcbv'1 = a(b) for bQS. But this shows that the inner automorphism of

A(/, 5; G) defined by g(<r)=u,v~l induces the identity automorphism in 5,

so that g(a)QU(S). It is clear that /= bg. This completes the proof of the

theorem.
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