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1. Introduction. The theory of systems of algebraic differential equations

developed by Ritt and his school [3] and now known under the name of

Differential Algebra ignores the values taken by a function at any particular

point. It follows that the solution of initial value problems has no place in

it. In the present paper we lay the foundations of a theory in which Ritt's

general ideas are supplemented so as to take into account initial conditions.

Our starting point is a differential ring the values of whose elements "at a

given point" are represented by a homomorphic mapping into an ordinary

ring. On this basis we develop theories of ideals and of polynomial ideals and

of the corresponding varieties. In particular we obtain a consistency condi-

tion for a system of algebraic differential equations with given initial values.

The author is indebted to S. Halfin for some helpful comments.

2. Localized differential rings. A localized differential field is a system

2 = (£, £o, 77) where £ is a differential field, £0 is an ordinary field, and 77 is a

homomorphism into £o defined on a subring £ of £ which is closed with re-

spect to differentiation, such that 1££ and 77(1) = F. (It should cause no

confusion if we use the symbol 1 to denote unity in both £ and 2*V The con-

dition 27(1) = 1 is added so as to ensure that the homomorphism is not trivial.)

We shall say that 2 is regular if it satisfies the condition

2.1. If for any aQR, H(aM)=0, « = 0, 1, 2, • • • then a = 0, where

aM = Dna is the «th derivative of a, as usual.

We define a localized differential ring (l.d.r.) as a system fi=(£, £0, 77),

where £ is a differential ring and an integral domain (i.e. with unity), £0 is

an ordinary integral domain and 77 is a homomorphic mapping of the whole

of £ into £o such that 27(1) = 1. If fi satisfies 2.1 then it is said to be regular.

If £ and £o are the fields of quotients of £ and £0, then 2 = (£, £0, 77) is a

localized differential field, where 27 is defined on £ as in fi. Conversely, if

for a given localized differential field 2 = (£, £0, 77) we take fi=(£, £0, 27)

where £ is the subring of £ on which 27 is defined, then fi is an l.d.r.

Let fi(£, £o, 27) be an l.d.r. such that £0 is of characteristic 0. It follows

that £ also is of characteristic 0 (otherwise we should have, for some p>0,

0 = 27(0) =77(1+ • • • +I) = p27(l)=p in £0, contrary to assumption). From

fi we derive a regular l.d.r. as follows. Let 7 be the set of aQR such that
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T7(d(n))=0 for » = 0, 1, 2, • • • . Then 7 is an ideal in £. 7 is proper (i.e.

Jt¿R) since 1 is not contained in 7. Moreover, J is prime. For suppose

aER — J, bER — J- Then there exist non-negative integers p, v such that

77(d<">) = 0 for n<p, H(a^)^0, H(b^) = 0 for «<í<, H(b^)^0. Consider

now T7((do)("+')). By Leibnitz' formula, which is valid in Differential algebra,

77((d6) <"+">)

= 77(d<"+'>6 +-1- Cß+,,y d<">Z><"> +-h d¿><*+">)

= 77(d<"+'>)77(¿.) + ■ • • + C„+,,, H(a^)H(b^) + ■ ■ ■ + H(a)H(b^+>>)

= C„+,,, H(a^)H(b^) * 0,

since £o is of characteristic 0. Hence abER — J, J is prime. Finally, 7 is a

differential ideal, d£7 entails d'£7.

We now define the regular l.d.r. Q,*(Rt, £*, 77*) as follows. £* = £//,

R* = £o, while 77*(d*), where a*££* so that d* is a residue class with respect

to J, is defined as 77(d) where a is an arbitrary element of d*. It is not difficult

to verify that this definition of 77* is unique and that it yields a homomor-

phism from the ring £* into £j such that ß* is regular.

Now let ß be a regular l.d.r. such that £o (and hence £) is of characteristic

0. Let 2 = (£, £o, 77) where £ is the field of quotients of £, £o is the field of

quotients of £o and 77 is defined on £ as in fí. Then we are going to extend

the definition of 77 to a ring RiQF, £i2£, such that £i is a valuation ring

i.e., such that for any a, ¿>££i, a^O, o^O, either ab-1 or ba~l is contained

in £i.

Consider the set of all formal power series

oo

(2.2) 2~1 °ntn,       k any integer,
n=k

with coefficients in £0. Defining addition and multiplication in the obvious

way, we obtain a field which will be denoted by £*. We turn £* into a differ-

ential field by defining

(OO \ 00 OO

Z c„/n) = E ncntn~l =   £  (» + l)c„+i/\

To every element d££ we adjoin an element cr(o) of £* by defining

"    1
<r(a) = Z — T7(a(n))/n.

n=0   »!

Then a(a+b) =<r(a)+a(b) and a(ab)=a(a)a(b) the latter again by Leibnitz

formula since
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-H((ab)™) = ¿ —i—■£(<*<»-*>)-J-77(M*>).
«! *_o (n — k)\ kl

Thus, ff is a homomorphism, and since Ö is regular it is even an isomorphism.

The ring of images of £ by cr will be denoted by £, and is isomorphic to £.

Moreover, the isomorphism is differential, <r(a')=Dff(a) since

ff(a') = ¿ — H((a')M)t» = ¿ — 77(a<B+1>)/»
n-0   «! n-0   »!

while

Da(a) = ¿ — H(a^)tn~1 = ¿ — H(a<»+»)t'>.
n=0   «! n-0   «!

Let £* be the ring of integral power series in £*, £*3£„. Then £* is a

valuation ring. We define a homomorphism on £* into £o by 77*(^n-o cntn)

= c0. Let £, be the field of quotients of £, so that F, is isomorphic to £ by

the extension of a. Then £i„ = R*C\F, is a valuation ring and 2, = (£„, £0, 77*)

is a localized differential field if we restrict 77* to £i„. Finally, if we define

77i on £i = cr_1£i„ in £ by 27i(a) =H*(a(a)) then we obtain the required ex-

tension of 77. Thus, 2i = (£, £0, 77i) is a localized differential field such that

77i is defined on a valuation ring RiQF and is an extension of 27.

Let T be the valuation group determined by £i in £. Since £ is isomorphic

to £, by an isomorphism which maps £i on £i, we may regard Y also as the

valuation group determined by the ring of integral power series, £i„, in its

field of quotients F„. But this valuation is given by

(2.3) v(Y,CnA  =  k, Ck9*0,

and so Y is simply (isomorphic to) the additive group of integers. As far as

the elements of £ are concerned we may define this valuation also directly

by v(a) = fe where k is the smallest integer such that Hic^O^O.

3. 5-perfect ideals. Let £ be a differential ring with unit element, and let

5 be a multiplicative subset of £ which does not include 0. A nonempty sub-

set 7 of £ will be said to be an S-perfect ideal if it satisfies the following condi-

tions.

3.1. 7 is a radical differential (i.e., perfect) ideal.

3.2. If a, bQR, aQS, abQJ then bQJ.
The intersection of a nonempty set of 5-perfect ideals is 5-perfect. The

union of a monotonie set of 5-perfect ideals is 5-perfect.

Given any set KQR, we shall denote by K112 the set of all aQR such that

anQK for some «^1. Then KQK112. In particular, if K is an ideal then

K112 is the radical of K. We shall denote by Ks the set of all bQR for which
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there exists an d£S such that df>££. In particular, if K is an ideal then £s

is an ideal which includes £ and which is called the S-component of £

(compare [2, p. 17]). In that case also Kss = Ks-

We shall denote the (ordinary) ideal generated by a set KQR by (£) as

usual, while [£], {£}, {k}s shall denote the differential ideal, the perfect

ideal and the S-perfect ideal generated by K, respectively, the latter being

the intersection of all S-perfect ideals which include K.

If 7 is a differential ideal in £, so is Js- For suppose ö£7s so that abEJ

lor some d£S. Then (ab)' = ab' +a'bEJ, and hence ab'= (ab)'—a'bEJs-

Hence b'EJss = Js, as required. If 7 is a radical ideal, so is Js. Indeed,

suppose that bnEJs for some 6££ then dô"£7 for some aES. Hence

dnon = (do)"£7, abEJ, o£7s, as required. This justifies the notation {£}s.

For any ideal JQR,

(3.3) (7s)1'2 = (7"2)s.

Indeed, the elements a which belong to the set on the left hand side of

this equation are characterized by the fact that for some positive integer »

and for some cES, ca"EJ- On the other hand a belongs to the right hand side

if for some dES, and for some positive integer m, da£71/2, dmamEJ- S is

multiplicative and so the two conditions are equivalent.

It is known that if £ includes the rational numbers (a "Ritt algebra,"

[l, p. 12]) and 7 is a differential ideal then 71/2 also is a differential ideal.

Let K be any subset of £. We define a sequence of ideals.

£o = (£),       £i = [£o],       £2 = (£i)1/2,       £3 = (K2)s,

£3,4-1 =   [£3,], £3.7+2 =  (£3</+l>)1/2> £3,+ 3 =   (K3]+2)s, j =  1, 2,   •  •  • .

Then it is clear that £„Ç {K}s for all », and some reflection shows that

U„£B= {£}s- More particularly, if £ is a Ritt algebra then £2 and £3,

like £1, are differential ideals and £3, like £2 is a radical ideal. Hence, in

that case, £3 is S-perfect and K3 = Kt= ■ ■ ■ ={k}s, {k}s = ([£]1/2)s.

Thus, by (3.3) {K}8 = ([K]sy12.

3.4. Theorem. Let K, L be subsets of R. Then

{k}s{l}sQ{KL}s.

Proof. Construct the sequence £0, £1, £2, • • • as above, and construct

a similar sequence Lo, £1, £2, • • ■  for L, Then

{K}s= U£„,       {L}8= U£„,
« n

and so it is sufficient to prove

(3.5) £n£n Q {KL}s, » = 0, 1, 2, ■ • • .

Now KLQ{KL}s and so KoLo = (K)(L)Q{KL}s. For given j 2; 0, suppose
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that (3.5) has been established for n = 3j. Then we wish to show that

£3j+i7äj+i = [£n][£„] ÇZ {KL)s.

Now the elements of [£n], [£n] are of the form

(3.6) k = qik/1  + • ■ ■ + q.k."

and

(3.7) l=riï/l)+...+rtlï\

respectively, where qit r¿££, k^QKn, Z^m)£7„. But the products kmlp

all belong to {KL\s by the assumption of our induction. It follows [l, p. 11 ]

that the same applies to all products km$p, and hence to all products kl as

given by (3.6), (3.7).

Suppose next that (3.5) has been established for » = 3j'-f-l. Then we have

to show that

K3 j+2 L3 j+2 = (KnYt2(Ln)w Ç {KL)S.

Now, given elements k, I, of (K„)112, (£„)1/2, respectively, we know that for

some positive integers p, <r, k"QKn, l"QLn(kl)''+'QK„L„Q{KL} s. Hence

klQ {KL} s, as required.

Suppose finally that (3.5) has been established for « = 3/4-2. Then we

have to show that

£3<y+i)£3(/+n = (K„)s(Ln)s Ç {KL\s.

Now given elements k, I of (Kn)s(Ln)s respectively, there exist a, bQS such

that akQKn, blQLn. Hence abklQKnLnQ {KL)s, klQ{KL}s. This com-
pletes the proof of (3.4).

3.8. Theorem. 7e/ T be a multiplicative set in R and let J be an S-perfect

ideal which excludes T, i.e. such that 7C\£=0. Then there exists an S-perfect

ideal J* which contains J and which is maximal with respect to the exclusion

ofT.

Proof. By Zorn's lemma.

If a, b, c, ■ ■ ■ are elements of £, we denote by (a, b, c, • • • ) the set of

these elements while the ideal generated by the set will be denoted by

(a, b, c, ■ ■ ■).

3.9. Theorem. £e/ T be a multiplicative system in R and let J be an 5-

perfect ideal which is maximal with respect to the exclusion of T. Then J is prime.

Proof. Suppose that the assumptions of the theorem are satisfied but that

7 is not prime. Then for some a, bQR, abQJ, bQJ, bQJ. It follows that

there exist elements h, t2QT such that hQ{(J, a))s, hQ{(J, b)}s, where

(7, a) = J\J(a), (J, b) = JV{b). Hence, by (3.4),
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htiE{(J, a)}s{(J, b)}s C {(7, (*>•</, b)}s

Ç {72U(d)-7U7-(J)U(di)}sÇ {7}s = 7.

But ktiET and so we have obtained a contradiction.

An S-perfect ideal is called reducible if there exist S-perfect ideals Jn¿J,

72 5^7 such that J=JiC\Ji. J is called irreducible if it is not reducible.

3.10. Theorem. An S-perfect ideal is irreducible if and only if it is prime.

Proof. Suppose that 7 is reducible, 7=7iC\72, Jit^J, 725¿7. Choose

d£7i —7, ¿>£72 —7. Then d&£7in72 = 7, and so 7 is not prime. Conversely,

suppose that 7 is* not prime, abEJ but d£7, 6£7. Put 7i= } (7, a)}s,

Ji= {(J, b)}s. Then 7iH72=?7. On the other hand, if e£7iC\72, then c£7i,
c£72 and so, by (3.4)

e2£ {(7, d)}s{(7, b)}s ç {(7, (*)•</, b)}s QJ.

But 7 is a radical ideal and so c£7, and Jif\Ji = J. This proves (3.10).

3.11. Theorem. Every S-perfect ideal JQR is the intersection of S-perfect

prime ideals.

Proof. The theorem is trivial for J = R. Suppose then that 7^£ and let

d££ —7. Then we have to show that there exists an S-perfect prime ideal

7*37 such that d£7*. Let £= {a, a2, a*, • • • ). Then £ is a multiplicative

set such that £C\7 = 0 (since 7 is a radical ideal). Hence, by (3.8), there exists

an S-perfect ideal 7* which includes 7 and which is maximal with respect

to the exclusion of T. 7* is prime, by (3.9). This proves (3.11).

Given an S-perfect ideal JQR, we call the S-perfect prime ideal 7'

minimal over J ii J' ¡37 and if for any S-perfect prime ideal J" such that

7'27"27, we have 7'= 7".

3.12. Theorem. Given the S-perfect ideals J, J*, such that 7* is prime and

includes J, there exists an S-perfect prime ideal J' which is minimal over J and

is included in J*.

Proof. The intersection of a monotonie set of S-perfect prime ideals is an

S-perfect prime ideal. The theorem now follows from Zorn's lemma applied

as a minimum principle to the S-perfect prime ideals which include 7 and

are included in J*.

3.13. Theorem. Every S-perfect ideal JQR is the intersection of S-perfect

prime ideals which are minimal over J.

Proof. Let d££ —7. By (3.11) there exists an S-perfect prime ideal 7*

which includes 7 and excludes a. By (3.12) therefore there exists an S-

perfect prime ideal J' which is minimal over 7 and which is included in 7*

and, hence, excludes a. (3.13) now follows immediately.
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3.14. Theorem. Suppose that R satisfies the finite ascending chain condition

for S-perfect ideals. Then every S-perfect ideal in R can be represented as the

intersection of a finite number of irreducible (i.e. prime—see (3.10)) S-perfect

ideals.

Proof. As in standard ideal theory, the representation of an ideal 7 as an

intersection, 7=7iC\ • • • C\7» is irredundant if the omission of any 7< on

the right hand side leads to a result different from 7. One proves by standard

methods:

3.15. Theorem. Suppose that R satisfies the finite ascending chain condition

for S-perfect ideals. Then every S-perfect ideal J is the irredundant intersection

of a finite number of S-perfect prime ideals, J = JiC\ ■ • ■ C\7„. This intersection

is unique except for order.

The Ji are called the prime components oí J.

3.16. Theorem. Suppose that R satisfies the finite ascending chain condition

for S-perfect ideals. Then the set of prime components of an ideal J is identical

with the set of S-perfect prime ideals of R which are minimal over J.

Proof. Let 7=7if\ • • • C\7„ be the representation of 7 by prime com-

ponents. Then 7,-, t=l, •••,«, is minimal over 7. For suppose 7.0707

where Ji9iJ', and 7' is 5-perfect and prime. Then

/ - Ji c\ • • • r\ Ji r\ • • • r\ jn - Ji r\ • • • n 7,_i r\ j' r\ ■ ■ • n /„,

contrary to the uniqueness of the representation. Again, if 7' is prime and

minimal over 7 then J'~DJ~DJir\ • • • f~\J„ and so 7'37¿ for at least one 7<.

But 7,27, and 7' is minimal over 7. Hence, 7'= 7.

4. Theory of ideals in localized differential rings. We consider an l.d.r.

fi=(£, £o, 77) together with a multiplicative subset 5 of £, OQS. For any

KÇZR we denote by H(K) the set of images of K in £0.

A bi-ideal is an ordered pair (7, 7o) of subsets of £ and £o respectively

such that 7 is an 5-perfect ideal in £ and 7o is a radical ideal in £o such that

27(7) Ç70. Bi-ideals will be denoted by small Greek letters, and the set of all

bi-ideals (for given fi and 5) will be denoted by B. B is not enpty since it

contains the bi-ideal e=(£, £0). Since £ and £0 are integral domains (by

definition-—see §2 above), the ordered pairw = ((0), (0)) also is a bi-ideal. The

bi-ideal a=(J, 70) is said to be proper if Jo9iRo-

We introduce a partial ordering in B by defining that a<ß(aß includes a")

for bi-ideals a and ß, a= (7, 70), j8 = (K, Ko) if 7ÇZX and JoQKo. e and co are

upper and lower bounds respectively for the whole of B.

Let A Ç£, A 9^0, A = ((7„ Jo/)), then there exists a greatest lower bound

(g.l.b.) for A in B, A = (H, 7», fl, 70,). If A = (a, ß) then we write g.l.b. A
= af\ß. Similarly, we write aSJß for the lowest upper bound of (a, ß), which

is the greatest lower bound of all bi-ideals which include both a and ß. With
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these definitions, B becomes a lattice. If A = (7», 7o,.)) is a linearly ordered

subset of B whose elements are proper bi-ideals then A possesses an l.u.b.

which is a proper bi-ideal. This is the bi-ideal a= (U„ J„ UF J0,). a is proper

since II, Jov does not include l££o.

Let £Ç£, £oÇI£0. Then the intersection, a, of all bi-ideals (7, 7o) such

that 72£, 7o~~2£o will be said to be generated by (£, £o). It will be seen

that «=({£}*, ((H({K}s)KJKo)y2).

4.1. Theorem. Every proper bi-ideal a is included in a maximal proper bi-

ideal a*, (a* is maximal with respect to the property of being a proper bi-ideal).

Proof by Zorn's lemma.

A bi-ideal (7, 70) will be said to be prime if both J and 70 are prime.

4.2. Theorem. £e/ a* = (J, Jo) be a maximal proper bi-ideal. Then a* is

prime.

(4.2) follows immediately from the more general

4.3. Theorem. £e/ £0 be a nonempty multiplicative set in £0 and let the

bi-ideal a*=(J, J0) be maximal with respect to the exclusion of To from Jo.

(That is to say, J0r\To = 0, and if for some bi-ideal a' = (J', J¿), 70'n£o = 0

also, and a*<a! then a* = a'.) Then a* is prime.

Indeed, (4.2) follows from (4.3) for £„ = (1).
Proof of (4.3). Suppose first that 7 is not prime. Then for some di, a2££,

did2£7, but di£7, o2£7. It follows that if ai = (7i, 70i) is the bi-ideal gener-

ated by ((7, di), 70) then 70iC\£07i0 and so /i£70i for some Zi££0. But

7oi= ((77({<7,di)}s)U7o))1'2,

and so, for some positive integer p,

/,£(£({ (7, d,)}s)U7o).

By a similar argument, there exist an element Z2££o and a positive integer

cr such that

/2£(77({(7, d2)}s)U7„).

Hence, for /o = /î/2"££o,

to E (H({ (J, ai)}s) U70) •(£({(/, a2)}s) U 7„)

ç (77({(7, di)}s).T7({(7, a2)}s) U7,).

But, by (3.4)

77({<7, di)}s)-77({(7, a2)}s) = H(\(J, ai)}s{(J, d2)}s)

Ç 7J({(7, d,)-(7, d2)}s) C 77({(7, did2)}s) = 77(7).

Hence
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Zo £ (77(7) W 7o) - 7o,

and this is contrary to the assumption that 7o and £o are disjoint. We con-

clude that J is prime.

Suppose next that 7o is not prime, did2£70, di£70, d2£70. Consider the

bi-ideals «i = (7, ((70, di))1/2), a2=(7i, ((70, d2))1/2). Since a*<ai, a*^«!,

a*<ct2, olt^cli, there exist elements h and /2 in £0 such that Zi£((7o, di))1/2,

/2£((7o, d2))1/2, and hence, for certain positive integers p and cr, /î£((70, di)),

4E((Jo, ai)),

t'A E ((Jo, ai»((7o, a,)) Q ((Jo, di)-(70, a,)) £ ((70, am,)) = 70

although /î/2££o. It follows that 70, and hence a*, is prime.

Combining (4.1) and (4.2) we obtain

4.4. Theorem. Every proper bi-ideal a is included in a prime proper bi-

ideal a*.

Now let a be a proper bi-ideal, ot= (J, Jo). Then, the g.l.b. of the (non-

empty) set of prime proper bi-ideals which include a will be called the closure

of a and will be denoted by a. If a, ß are proper and a<ß then ä<ß. If

a = a then we say that a is closed. In particular, a is closed for any proper a,

since (a)~ = â. A prime proper bi-ideal is closed.

4.5. Theorem. £e/ ct=(J, J0) be a proper bi-ideal, and let a = (7, 70) be

the closure of a. Then 70 = 70.

Proof. Let a ER —Jo- In order to prove (4.5) it is sufficient to show that

there exists a prime proper bi-ideal a* = (J*, 7*) such that a<a* and a £7J¡\

Let ToQRo be the multiplicative set (a, a2, a3, ■ • ■ ). Consider the set A of

all bi-ideals (necessarily proper), a' = (J', Jó ) such that a < a' and T0r\Jó = 0.

A is not empty since it includes a. The l.u.b. of any linearly ordered subset of

A belongs to A. Hence, by Zorn's Lemma, A includes a maximal element, a*,

a* is prime, by (4.3).

For the remainder of this section, we shall suppose that £ satisfies the

finite ascending chain condition for S-perfect ideals. Given a proper bi-ideal

a=(J, Jo) and an S-perfect ideal £ in £ such that £37, we shall say that

£ is an admissible divisor of 7 if the bi-ideal generated by (£, 70) is proper,

i.e. if (H(K)\JJ0)^Ro.

Now let a = (J, 70) be any proper bi-ideal and let ä= (7, 70) be its closure.

4.6. Theorem. £Ae prime components of J consist of the admissible prime

components of J (i.e. the prime components of J which are admissible divisors

d/7).

Proof. Let 7= Jif\ • • • H7„ be the representation of 7 as an irredundant

intersection of S-perfect prime ideals. Now suppose that (a/) = A is the set of
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proper prime bi-ideals which include a, av=(J„ Jo,), so that 5= (fi, J„ 0, Jo,).

For each a„

(H(J,) \J Jo) Ç (22(7.) \J Jo,) = Jo, * £oi,

so that 7, is an admissible divisor of 7. By (3.12), J, includes an 5-perfect

prime ideal 7* which is minimal over 7. By (3.16), 7* coincides with a prime

component of 7, and since a* — (J*, Jo,) is a proper bi-ideal which includes a,

a* also belongs to A. Then 7ÇH, 7* and on the other hand J = C\, J,^.C\, 7*

and so 7= fi, 7* and ä = C\, a* where the right hand side denotes the g.l.b. of

the set (a*). But 7 = f\, J* is a representation of 7 as intersection of 5-perfect

prime ideals, and since these ideals are minimal over 7 they are certainly

minimal over 727. Thus, only a finite number of the J,*, are different, and

they all occur among the prime components of 7. Disregarding the repetition

of equal components (as is actually implicit in the notation) we conclude that

7 = fïr 7* is the representation of 7 as irredundant intersection of prime com-

ponents.

Conversely, if the 5-perfect prime ideal 7< is an admissible divisor of 7,

then we have to show that 7¿ occurs among the prime components of 7. Let

J = J,C\ • • • C\Jk, k^n, where we assume a suitable numbering of the prime

components of 7. Let 7, be a prime component of 7 which is an admissible

prime divisor, and suppose k<i^n. Then (7,-, (27(7<)U7o)1/2) is a proper bi-

ideal, and so (27(7,)W7o)1/!! can be extended to a proper radical ideal 7o»

which is maximal in £o. Then ß = (7„ 7o<) is a proper prime bi-ideal which

includes a and so ä<ß. Hence 7,Q7iC\ • • • i\Jk, and so 7iC\ • • • r\JkC\Ji

= 7iC\ • • • (~\Jk, which is impossible since in that case 7,- would be redundant

in the representation of J. This completes the proof of (4.6).

4.7. Theorem. Let 7i, • • • , Jkbe the admissible prime components of J in

the proper bi-ideal a=(J, Jo). Then

Jo = ((77(7i) W 7o) r\ ■ ■ ■ n (27(7*) W 7o))1'2.

Proof. Let a =(7, 70), then 7 = JiC\ • • • C\Jk, by (4.5) and 70 = 70, by
(4.6). Clearly

(4.8) 7o Ç (77(7.) U 70), i = 1, ■ ■ ■ , k.

Now 5 = (C\, J„ PI, 70>.) where (a,)=((J„ J0,)) is the set of prime proper

bi-ideals which include a. As explained previously, every J, includes at least

one of the Jit i=l, • • • , k. For this 7¿,

H(Ji) Q 27(7,) Ç 7ov,

and so

Hence

(77(7.) W J0) Q /,
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(4.9) 7o = 7o = O 7o. 2 H (H(Ji) W 70).
r i

But 7o is a radical ideal and so (4.9) implies

7o 2 ( H (T7(7.) W 7o)

Combining this relation with (4.8), we obtain the conclusion of (4.7).

5. Extension and polynomial adjunction. Let fi = (£, £0, 77) and

fi' = (£', £o', T£) be two l.d.r. We say that Ö' is an extension oí fi if £ÇZ£',

RoQRo' and 77'(a) = 77(d) for all d££.

Given an l.d.r. fl = (£, £0, 77) and a positive integer », we define the l.d.r.

fi{y, z] which is obtained by the adjunction of » indeterminates to ß in the

following way. Let R{y} be the differential ring obtained by the adjunction

of the » differential indeterminates yi, • • ■ , y„ to £. Let £<>[z] be the ring

which is obtained by adjoining to £o the infinite number of indeterminates

zu,, i = 1, ■ ■ • , », k = 0, 1, 2, • • • . Let 77* be the (unique) continuation on the

whole of £ {y} oí the definitions

77*ro) = 77(d), for a £ R,
(5.1) <*)

77*(:y.  ) = «*» for 7 = 1, • • • n, k = 0, 1, 2, • • •,

so that 77* is a homomorphism into £o[z]. Then fi{y, z] = (£{y|, £o[z], T7*).

In order to avoid unnecessary complications we shall suppose from now

on that £o is a field. Accordingly, we shall refer to fi as an l.d.r. (field) or l.d.f.

Let fi' = (J¡?', £o , 77') be any l.d.f. which is an extension of fi, and let

V = (vu • • • . t/n) be an array of » elements of £'. v may be regarded as a point

in »-dimensional cartesian space over £', S'n, say. Let p{y} and q(z) be

arbitrary elements of £{y} and £o[z] respectively. Substituting n, for y¿ in

p{y}, i=l, ■ • ■ , n, we obtain an expression p[n} ER'. U p{rj} =0 then we

say that 77 satisfies, or is a zero of, p {y}, or that p {y} vanishes for v. Similarly,

substituting 77'(r//*') for zik in q(z) we obtain an expression in £0' which we

denote by q(H(r/)). If q(H(r/)) =0 then we say that n satisfies, or is a zero of,

q(z), or that q(z) vanishes for r¡.

Let A be a subset of S'n. Then the set 7 of polynomials of R\y} which are

satisfied by all points of A is a radical differential (i.e. perfect) ideal. Also the

polynomials of R\y} which reduce to elements of £, other than 0, are clearly

not satisfied by the points of A. It follows that if a^n} =0 for a 9*0 in £,

then p[n} =0 and so 7 is S-perfect for S = R — (0), or for S = any other

multiplicative subset of £ — (0).

Again, the set 70 of £o[z] which are satisfied by all points of A is a radical

ideal. Also, if ^{y}£7, p{v} =0, then i¡ satisfies also the polynomial q(z)

= 77*(^{y}) which is obtained from p\y} by replacing the coefficients by

their homomorphic images in £0, and by substituting zik for y¿k), everywhere.

Hence, 77'(7)Ç7o.

)
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We conclude that (7, 7o) is a bi-ideal in fi {y, z] if we choose for 5 any

multiplicative subset of £— (0). Now the set of bi-ideals in fi{y, z] is the same

for all 5 which include the non-units of £ (i.e. the aQR, a^O, such that

a~lQR) for if at» belongs to an ideal for a unit a, then b = a~l(ab) belongs to

that ideal anyhow. Accordingly we shall from now on take 5 to be the set

£-(0).
The above conclusion still holds if instead of considering a subset of 5'"

for given fi' we consider sets of points tj over different l.d.f. which are exten-

sions of fi. We may then regard r¡ as the composite array (fi'; rji, ■ • ■ , r¡n).

The absence of a clear delimitation for 5n, the totality of these points (com-

pare [3, p. 21 ] for the corresponding problem in standard Differential Alge-

bra) can be overcome without difficulty by supposing that the individual

elements which occur in the fi' under consideration belong to a predetermined

but sufficiently large pool (see [4, pp. 146-153] for a general setting for this

argument). For the theory which follows the pool is sufficiently large if it is

of infinite cardinal number exceeding the cardinal numbers of both £ and £o.

Accepting this, we may talk of the set of "all points" « which satisfy a given

bi-ideal a=(J, Jo) in fi{y, z], i.e. such that p{rj} =0 for all p{y}£7 and

q(H(n)) =0 for all q(z)QJo- This set of points will be called the variety of a,

V, and we write a—>V. A variety is by definition the variety of some bi-ideal

in fl{y, z]. Conversely, given a set of points A (in particular, a variety) we

define the bi-ideal a = (7, 70) of A, A —»a, by taking 7 as the set of polynomials

in £ {y} which are satisfied by all points of A, and 70 as the set of polynomials

in £o[z] which are satisfied by the same points.

Let a =(7, 70) be a bi-ideal in fi{y, z]. A point r? will be said tobe a generic

point of the bi-ideal if p{n) =0 for all pQJ, p{v} ¿¿0 for all pQR{y] -J,

g(77(77)) =0 for all qQJo, and q(H(v)) 9±0 for all qQR0[z] -70. It will be seen
that if a possesses a generic point then a is prime. Conversely, we are going

to prove-—

5.2. Theorem. 7e/ a = (J, J0) be a prime proper bi-ideal in fi{y, 0]. Then

a possesses a generic point n.

Proof. In order to construct «, we consider the l.d.f. fi' = (£', £0', 27')

which is obtained as follows. £' is the differential quotient ring £ {y} /J. £' is

an integral domain which is an extension of £, since 7 does not contain any

elements of £ except 0. (If there existed an aQRi\J, a^O, then aQS, and

so 1£7. Hence 27(1) = 1£70, 70 = £o, contrary to the assumption that a is

proper.) Next, define £1 as the quotient ring £0/70. Then £1 is an extension

of £0, since £0 is a field and 70 is a proper ideal in £0 [z]. Let £0' be the field of

quotients of £1 so that £0' also is an extension of £0.

Finally, the homomorphic mapping, 77', of £' into £0' is defined in the

following way. Let aQR' so that a is a residue class in R{y] with respect

to 7. Let pQa, then we define 27'(a) as the residue class of £0 with respect
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to 7o which contains the element H*(p) = q. Thus, 77'(a) is an element of £i

and hence of £0' 2£i-

In order to see that this definition is unique, let.Pi = p2 mod 7 in £{y}.

Then we have to show that H*(p/)=H*(p2) mod J0 in £o[z]. But the as-

sumption is that pi — p2EJ, and the required conclusion that H*(p/)—H*(p2)

= H*(pi — pi)EJo, and this follows immediately from the definition of a bi-

ideal. Moreover, 77' coincides with 77 on £ since for d££, H'(a)=H*(a)

= H(a) by the definition of T7* in fi{y, z]. (Strictly speaking, T7' is not de-

fined for a but for the residue class which contains a.) We call fi' the quotient

l.d.f.il{y,z}/a.
Now let tji, • • • , n„, be the elements of £ which are the residue classes with

respect to 7 of yi, • • -, y„ respectively. Then n = (fi'; tji, ■ • -, nn) is a generic

point of a.

It is indeed clear that £{77} =0 for p{y} ££{y} if and only if p[y} EJ.

Now let q(z)ER[z]. Then q(H'(n)) contains the polynomial q(z) and so

q(H'(n)) =0 if and only if q(z)EJo- This completes the proof of (5.2).

5.3. Theorem. The intersection of a set of varieties is a variety.

Proof. Let ( FM) be a set of varieties where for each p, F„ is the variety of

a bi-ideal a„. Let a be the l.u.b. of («„) i.e. the g.l.b. of all bi-ideals ß and that

aß < ß for all a„. The set of such ß is not empty since it includes

e = (£{y},£0[z]). Let

a,, = (7„,70(,),       a = (7,7o),        F = 0 F,,.

Then 7MÇ7, Jo^QJo and so every point which belongs to the variety of a

satisfies the polynomial of all 7M, 7o„ and hence belongs to V. In order to estab-

lish that V is the variety of a, we therefore have to show only that every point

of F satisfies the polynomials of 7 and 70. Now

7 = j U 7, js,        7o = (h*(J) UU7,

Hence, putting UM7M = £, (£)=£„, [£<,]= £1, (£i)1/2 = £2, (K2)S = K3,

[£3] = £4, etc., as in §3, we have 7 = U„ £„. Let r/£F, then 77 satisfies the

polynomials of £ since tj£ FM for all p. By examining the passage from £ to

£0, from £0 to £1, etc., we see in turn that 77 satisfies the polynomials of

£0, £1, • • ■ , and finally, of 7. It follows that 77 satisfies also the polynomials

q(z) of 77*(7). Since 77 satisfies the elements of all Jo?, we may therefore con-

clude that it satisfies the elements of the ideal (77*(7)UU„ Joß) and, hence,

of its radical, which is 70. This completes the proof of (5.3).

A suitable example shows that the union of two varieties is not necessarily

a variety.

5.4. Theorem. 7eZ a be a proper bi-ideal in fi{y, z], let a = (7, 7o) be the

closure of a, and let p{y} ££{y}. 7« order that p[y} be satisfied by all points



440 ABRAHAM ROBINSON [December

77 which belong to the variety of á, it is necessary and sufficient that p{y\ QJ.

Proof. If p{y\ QJ then, by the definition of a, there exists a proper and

prime bi-ideal a* = (J*, J*) which includes a, such that p{y] QJ*. Now by

(5.2), a* possesses a generic point tj, and this point satisfies all polynomials

of 7ÇZ7* while at the same time p{n) 9*0. This shows that the condition of

the theorem is necessary.

Conversely, suppose that p[«} 9*0 for some r\ which belongs to the a,

variety of a. Let a,= (7„ 7o„) be the bi-ideal of (77). Thus, 7, consists of all

elements of £ {y} which are satisfied by 77 and 70, consists of all elements of

£0[z] which are satisfied by that point. It follows that a, is proper and prime

and a<an. But p{y} does not belong to 7„ and so it cannot belong to 7

(which is the intersection of a set including 7,). This completes the proof

of (5.4).

5.5. Theorem. Given a, a as in (5.4), let q(z)QRo[z]. In order that q(z)

be satisfied by all points which belong to the variety of a, it is necessary and suffi-

cient that q(z)QJo-

Proof similar to that of (5.4), taking into account that Jo — Jo-

We may sum up (5.4) and (5.5) by the relation

(5.6) a->F->a

which holds for all proper bi-ideals a. Moreover, if for any improper bi-ideal

a we define a = e = (£, £0) then (5.6) still holds with F the empty variety.

With this definition e is closed and (a)~ = a for all bi-ideals a.

Moreover, a<ß now entails a<ß for all a, ß. On the other hand, if a is

proper, then V is not empty and a also is proper (by (4.4)).

(5.6) shows that if a is closed then it is the bi-ideal of its own variety and

this is the case in particular if a is prime. Conversely, if a is the bi-ideal of

its own variety, i.e. if a—»F—»cr, then by (5.6), a = â, a is closed. Thus, the

relation a-*V—>a establishes a one-one correspondence between the set of

all varieties, and the set of closed bi-ideals. Also, if «i—>Fi—>ai, a2—*V2—*a2

and ai<a2 then VtÇ. Fi.

Let K and £0 be sets of polynomials in R{y} and £[z] respectively. What

is the condition that the given differential equations (i.e. the elements of £)

possess a solution with the given "initial conditions" (i.e. the elements of £0)

in some l.d.f. which is an extension of fi? If such a solution exists then we say

that the system (K, Ko) is consistent.

A well-known metamathematical argument (compare [4]) permits us to

read off the result that if (£', K¿) is consistent for all finite subsets K', K0'

of K and £0 respectively, then (K, K0) also is consistent. However, this can

be deduced without difficulty also from the mathematics of the present paper.

The system (£, £0) is consistent if and only if the variety of the bi-ideal

a generated by (K, K0), a = (J, Jo) say, is not empty, and this is the case
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precisely when a is proper, 7o^£o. But 70 = (27*({£}s)W£0)1/2 and this

is different from £0 precisely when (27*({£}S)U£0) is different from £0, i.e.

precisely when the latter ideal does not contain 1. Hence

5.7. Theorem. 7« order that the system (K, K0) be consistent, KQR{y},

KoQRo[z], it is necessary and sufficient that

lQ(H*({K}s)VKo).

If £ is a Ritt algebra, then by a remark in §3, {£}s = ([£]s)1/2. Also, for

any set 7££{y}, we have quite generally, 27*(£1/2)Ç(77*(£))1/S. Hence, in

the present case,

7o = (H*([K]S) KJKoY'2 £ ((H*([K]s)y'2U Ko)"2 = (H*([K]S) U£0)1/2Ç7»

or

(5.8) Jo = (H*([K]s)KJKo)1'2.

Accordingly we may replace (5.7) by

5.9. Theorem. £e/ R be a Ritt algebra (i.e., R includes the field of rational

numbers). Then in order that the system (K, K0) be consistent, KQR{y},

K0QRo[z], it is necessary and sufficient that

(5.10) lQ(H*([K]s)VKo).

We shall now apply this test to the standard initial value problem of the

theory of systems of differential equations'.

5.11. Theorem. Given an l.d.f. fl = (£, £0, 27) such that Ris a Ritt algebra,

let

(5.12) yl = PÁyi, ■ ■ ■, yn), ¿ = i, •••,»,

be a set of differential equations with the "initial conditions"

(5.13) z,o = a,, i = 1, ■ ■ ■ , »,

where £<(yi, • • • , yn)££[yi, • • • , yn], OiQRo. Then (5.12), (5.13) possesses

a solution in an l.d.f. which is an extension of fi.

Notice that zi0 = 27*(y,); also, that since £ is a Ritt algebra £0 is a field

of characteristic 0.

Proof of (5.11). We apply (5.8) for K = (y/ - £,•>, £0 = (z<o - a/),

i = l, ■ ■ ■ , n. Since any particular element of (27*([£]s)U£0) must be ob-

tainable from K, Ko by the application of a finite number of operations, it

follows that if (5.12), (5.13) is not consistent then there exist positive integers

ki, • ■ • , kn such that

(5.14) 1 G (77(7s) U (zio - au- • • ,z„o- an))

where



442 ABRAHAM ROBINSON [December

7 = (yi - £1, • • • , yi    - £1     , • • •, y»- P», • ■ •, y.    - P„      ).

That is to say, there exist polynomials Zi, • • • , tkEH(J's), qi, ■ • • , qk,

ri, • ■ • , 7'„££o[z] such that

(5.15) 1 = giZi + • • ■ + qktk + ri(zw - a/) + • • ■ + rn(zno - an).

Also, for i=l, ■ ■ ■ , k, ti = H(T/) where for certain SiES,

(5.16) stT4 = E Pi^yT - £J'_1)),     Pm £ £{y},      1 á ¿ á », 1 á / á fc.
i.I

Now replace every yf by z>¡ in (5.16), including the pm. This does not

affect the 5< since 5j£SÇ£. (S is the set of nonunits in £). We star the result-

ing polynomials, so

(5.17) SiT* = £ pli(zn - PÎ™).

Thus, ti is obtained from £;* by replacing the coefficients by the correspond-

ing elements of £o. Let p(z) be an ordinary polynomial of the z,* with coeffi-

cients in R. Then if we substitute p(z) for a particular Zji on the right hand

side of (5.17) the result will still be divisible by 5,-, and so we may still define

£** as the polynomial which is obtained from T* by the substitution in ques-

tion. If then we make the corresponding substitution in (5.15), i.e., if we

replace z¡ in (5.15) by q(z) which is obtained from p(z) by passing to the

homomorphic images of the coefficients then we still obtain an identity. In

particular, the polynomials Z< are turned into polynomials Z** which are

obtained from T** by replacing the coefficients as in p(z).

We now carry out the following substitutions. First we set all z,¡ for l>k¡

equal to zero, if any such Zy¡ occur in c/i, rit pm. Next we select a greatest

kj (for 7=1, say) and we replace Zi,*, by p*(è_1) in (5.17), making the cor-

responding substitution in (5.15). This eliminates the terms involving

Zi,kl—P*(*1_1) in (5.17). Continuing in this way, we dispose of the remaining

Zji-Pj9'"3 in (5.17), (èl) and hence of the U in (5.15).
Accordingly, we are left with an identity

1 = r?(zio — ai) + ■ ■ ■ + r„*(zn0 — an),

and such an identity is impossible as we see by substituting Oi, • • • , o» for

zio, • • • , Zno respectively. This completes the proof of (5.11).

5.18. Theorem. If Ris a Ritt algebra, then R\y} satisfies the finite ascend-

ing chain condition for S-perfect ideals.

Proof. Let £ be the field of quotients of £. Let 7 be an S-perfect ideal

in £{y} and let 7* be the set of elements of £{y) which are of the form

a~lp{y\, p{y} EJ, d££, i.e. aES since S = £—(0). We maintain that 7* is

a perfect ideal in £{y}.
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It is in fact not difficult to see that 7* is an ideal in £{y}. Now if a_1p£7*,

aQS,pQJ, then p'a—a'p Q J since 7 is a differential ideal, and so a~2 (p'a—a'p)

= (a~lp)'QJ*, J* also is a differential ideal. Again, suppose q"QJ*, where

q = a~1p, aQS, pQR{y\. Then pn = anqnQJ* and so p» = b~lr with bQS,

rQJ. Hence bnpnQJ, bpQJ since 7 is a radical ideal, and so p£7 and

q = a~1pQJ*. This shows that 7* is a perfect ideal. Clearly, 7* is the perfect

ideal generated by 7 in £{y}.

Now suppose that there exists a strictly ascending infinite chain of ideals

in£{y},

7i C 72 ç 73 ç • • • ,        Ji jí 7<+i, i = 1, 2, • • • .

Let 7* be the perfect ideal generated by 7, in £{y}, as above. We are going

to show that (7*) also constitutes a strictly ascending chain.

Since JiQJi+i, clearly 7*Ç7*+1. Now suppose that for some positive

integer i, 7¡* = 7?+1. Let p{y\ QJi+i — Ji then pQJ*+i and so, by assumption,

pQJ?. Hence p = a_1g where g £7,, a £5. But p£7,+iÇ:£{y} and g = ap£7,.

Since Ji is 5-perfect it follows that p£7,-, and this is contrary to the choice

of p. We conclude that (7¿*) constitutes a strictly increasing chain. But this

is impossible since by Ritt's basis theorem, the perfect ideals of F{y\ satisfy

the finite ascending chain condition. This proves (5.18).

It follows that if fi= (£, £0, 77) is an l.d.f. such that £ is a Ritt algebra

then Theorem 4.6 applies to fi{y, z]. We make use of this fact in order to

derive some further information concerning the following problem.

Let £C£{y}, £0Ç£0[z] be sets of polynomials in £{y} and £o[z]

respectively, £ a Ritt algebra, and let pjyj be an additional polynomial in

R{y\. Under what conditions is it true that p{y} vanishes for all joint zeros

of K and £0?

Let a = (7, 70) be the bi-ideal generated by (K, Ko), J = {K} s = ( [K)s) '/2,

7o=(27*(7)W£0)1/2, and let a=(7, 7o) be the closure of a. p{y\ is satisfied

by all joint zeros of (K, Ko) if and only if p£7 (Theorem 5.4 for a proper

bi-ideal a, trivial for improper a). Suppose that we have determined the prime

components 7, of 7, *= 1, • • • , k, 7=7iC\ • • • (~\Jk. Then p£7 if and only

if pQJi for all admissible prime components of 7i i.e., if for all i= 1, • • ■ , k

either p Q Ji or (27*(7<) U 70) = £0[z] (or both). Now (77*(7<) W Jo)
= (27*(7,)VJ(77*(7)W£o))1/2 = £o[z] only if there exists an identity

(5.19) 1 = ra + 2>«*<

where r, rj££0[z], c£27*(7,) and a?Q(H*(J)VJK0) for certain positive

integers p<. By raising (5.19) to a sufficiently high power, we then find

1 £ (27*(7,-) U (77*(7) W £0)) = (27*(7.) U £0).

Conversely if this relation is satisfied then (77(7,)W70)=£o[z]. We have

proved, for the case that £ is a Ritt algebra
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5.20. Theorem. Let {£}s.= ([£]s)1/2 = 7in • • • C\Jk be the representa-

tion of {K} s as intersection of its prime components 7¿. 7» order that the poly-

nomial p{y}ER{y} vanish for all joint zeros of the sets £C£{y| awd

£i^£o[z] it is necessary and sufficient that, for i= 1, • • • , k, either pEJi or

lE(H*(Ji)\JKo).

The corresponding problem for a polynomial o(z)££o[z] (and for given

K, Ko) has been settled already by Theorem 5.5. If in particular £is a Ritt

algebra, then we may make use of (5.8) to obtain the following Nullstellensatz.

5.21. Theorem. Given sets of polynomials KQR{y}, £oÇ£o[z], and a

polynomial g(z)££[z]. 7» order that q(z) vanish for all joint zeros of K and

Ko it is necessary and sufficient that there exist a positive integer p such that

q"E(H*([K]s)\JKo).

(5.21) is a generalization of (5.9).

To conclude this section we give an example which shows that we may

indeed have a^ct, or, which is the same, that the prime components of 7 are

not always admissible.

Let £ and £o be given by the field of all algebraic numbers, the differentia-

tion in £ being defined by d' = 0 throughout, and the homomorphism 77 by

the identity, 77(d) =a. Then fi= (£, £0, 77) is an l.d.f. (with £ a Ritt algebra).

Consider fi{y, z} for « = 1, yi = y, zik = zk. Consider the bi-ideal a = (J, J0)

generated by K = {y(y — 1), y', y", • • • ), £o=(zo, zi, z2, • • • ). Since £ is a

field, we have {£}s= {£}. We maintain that J=JiC\J2 where

7i = (y, y', y", ■ ■■),

72 = (y - 1, y', y", ■■■),

is the representation of 7 as intersection of its prime components. It is in

fact not difficult to see that both 7i and 72 are differential ideals and, at the

same time, prime, and hence, perfect. Clearly 7i27, 7227, and so 7iP\7227.

On the other hand suppose that pEJi(^J2, P = p{y} =P(y, y', y", • • • ).

Then

(5.22) p = 2Z ny™ = ¿Z i.y(i> + s(y - 1)
i=0 i-l

where r¿, sit s are elements of £ {y}, regarded as ordinary polynomials of the

variables y, y', y", • • • . By (5.22)

r0y = s(y — 1) mod 73

where J3 = (y', y", • • • ). It follows that 5 = s0y mod 73 for some 50££[y] and

so p — Soy(y — l) mod 73, pEJ.

7i and 72 are both proper divisors of 7. Also, 7i is admissible since

7„=(T7*(7)U£o)1/2=(zo, zi, z2, • • • ), and so H(Ji)Q(H*(y), H*(y'), • • • )
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= (zo, Zi, • • • ) = 7o. On the other hand, 72 is not admissible since (H*(J2)\JJ0)

contains both z0 and 77*(y —l)=z0—1, and hence contains Zo—(zo —1) = 1.

6. Regular localized differential rings. Let £ be a given domain (open

region) in the complex plane and let z0 be a point in D. Let £ be the ring of

functions which are analytic in D, £0 the field of complex numbers, and 27 the

homomorphism on £ into £o which is defined by

77(/(z)) = /(zo)

for all/(z)££. With these definitions, fi=(£, £0, 77) becomes an l.d.f. with

the additional property that 77(/(n)) = 0, « = 0, 1, 2, • • • implies/(z) =0 in £.

Thus, fi is regular according to the definition given in §2. The above example

shows that the case of a regular ring is of particular interest, although the

alternative possibility cannot be ruled out either. For example, let £ be the

ring of functions f(z) which are analytic in the finite complex plane except

possibly at the origin, and such that lim/(z) exists as z| 0 (zo tends to zero

along the positive real axis). Let £0 be the field of complex numbers and

define

H(f(z)) = lim/(z).
zj.0

Then fi= (£, £0, 27) is again an l.d.f. However, fi is not regular since £ in-

cludes the function

/(z) = exP(--J.

f(z) is different from 0 in £ although

27(/(">(z)) = lim/(z) =0        for n = 0, 1, 2, • • • .
f lo

However, if we start with a regular fi then it is natural to investigate

under what conditions there exists a zero in a regular extension of fi, for a

given system of equations and initial conditions in fi.

Consider then a regular l.d.r. fi= (£, £0> 77) together with a multiplicative

set 5Ç£—(0) as in §3, with the additional conditions

6.1. £ is a Ritt algebra.

6.2. For all aQS, either a' = 0 or a'£5, and if

do = 27(a) 9e 0    then   a0   Q Ro-

Since 77(1) = 1, 27(«) = n for all integers, and further 27(a) =a for all rational a.

Thus £o also contains the rational numbers.

Let 7o be a radical ideal in £0. By the expansion of 70 in £, £(7o)Ç£, we

mean the set of aQR such that H(aM)QJo for all «^0.

6.3. Theorem. E = E(Jo) is an S-perfect ideal in R.
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Proof. £ is not empty since 0££. If a, bEE, i.e., T7(d<»>), 77(o("')£70,

» = 0, 1,2, • • • , then 77((a+d)(n))=T7(dW)+77(6(B))£7o; if d££,r££, then

T7(M<">) = H(rM)H(a) + Cn.iH(r^-^)H(a') + ■ ■ ■ + T7(r)T7(d<">)

belongs to 70 for »^0, rd££. It follows that E is an ideal.

If d££ then o = a'££ since H(bM) =T7(d(B+1>)£70, »^0, so that £ is a

differential ideal. In order to establish that £ is its own radical it is sufficient

to show that d2££ entails d££. Now suppose that d2££, T7(d2)(n))£7o for

all », but d££. Iu that case, let m be the smallest integer such that T7(d(m))

£70. Consider

jF/((a2)(2m)) = H(a™)H(a)    +    (dm.i)H(a<2m-»)H(a') + • • •

+ C2m,m(H(a^))2 + ■ ■ ■ + 77(d)77(d<2m>).

This identity shows that

C2m,m(77(dC")))2 £ 7o

(since all the other terms occurring in the identity belong to 7o). Since £o

includes the rationals, and 70 is a radical ideal, by assumption, we conclude

that 77(d(m))£7o. This contradicts the definition of t» and proves that £ is a

radical ideal.

Finally we have to show that if d¿>££, aES then ¿>££. Now if aES, then

d^O and so, by the regularity of fi there exists a smallest integer 7» such that

H(a(m))w£0. Also, if ¿>££ there exists a smallest » such that H(bM) £70.

Consider

77((d&) <-+»>) = H(a^+»>)H(b) + ■ ■ ■ + iCm+n,n)H(a^)H(b^) + ■ ■ ■

+ H (a) 77(6 <«+»>)•

As before, this identity shows that

(Cm+„,„)TJ(a<™>)77(M»>) £ /,.

But Cm+„,„££o and (T7(d(m,))-1££o and so T7(6<n))£70, contrary to assump-

tion. This completes the proof of (6.3).

A bi-ideal a will be called regular if H(aM)EJo for all » entails a£7.

Given any radical ideal 70 in £0, (£(70), 70) is a regular bi-ideal, by (6.3),

and since H(E(Jo))QJo- Given any regular bi-ideal (7, 70), we must have

E(Jo)QJ, by definition. Conversely, if a£7, then d(n)£7 for all », hence

T7(dW)G7o, aEE(Jo). Hence

6.4. Theorem. A bi-ideal ato = (J, Jo) is regular if and only if 7 = £(/0).

Thus oto is determined entirely by J0, and we write a0 = p(7o).

6.5. Theorem. For any bi-ideal ct = (J, 70) we have
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a < p(Jo).

Proof. We have to show that 7Ç£(70) and this follows immediately from

the fact that a£7 entails aMQJ, 77(a<">)£70, n = 0, 1, 2, • • •

6.6. Theorem. If J0 is prime then p(Jo) also is prime.

Proof. We have to show that £ = £(7o) is prime. Suppose on the contrary

thatac>££, aQE, bQE. Then 77((aö)(n))£7o, for all «while for some smallest

integers k and I, H(a™) £70, 77(6(0) £70. Considering 77((a&) <*+"), we obtain

as before,

Ck+i.nH(a^)H(b^) Q Jo.

But 70 is prime and so one of the factors 27(a(*)), 77(¿>(i)) belongs to 70. This

contradicts the definition of k and / and proves (6.6).

6.7. Theorem. £e/ (J0,) be a set of radical ideals in £0 and let (£(70,)) be

the corresponding expansions in R. Then

fi £(7o,) = £(n7„,Y

Proof. If a££ belongs to the left hand side then aQE(J0,) for all v,

H(a(n))QJo, tor all « and v, hence 27(a(n))£n, 70„ a££(D, 70,). Conversely,

if a££(0, 7o,) H(aM)Q(\, J0,QJo, for all v, aQE(JQ,) for all v, hence

<x£n, £(7„,).

6.8. Theorem. The intersection (g.l.b.) of a set of regular bi-ideals is a

regular bi-ideal.

Proof. Let the set be (a,), a, = (E(Jü,), Jo,)- Then f\, a,= (D, E(J0,), C\, J0,)

= (E((],Jo,), r\,Jo,).
Let JoQRo be a radical ideal in £0. Then .7o can be represented by a

(finite or infinite) intersection of proper prime ideals, 70 = n,70,. It follows

that p(7o) is equal to fl,p(70,) = (fl, E(J0,), C\, Jo,)- Since all the p(Jo,) are

proper prime bi-ideals we conclude that p(7o) is closed. Hence

6.9. Theorem. A proper and regular bi-ideal is closed. It is the intersection

of a set of proper bi-ideals which are prime and regular.

The only regular bi-ideal which is not proper is e=(£, £o). If we adopt

the convention e = e (see the preceding section), then we may omit the word

"proper" in the formulation of (6.9).

Now let K, Ko be sets of elements of £, £o respectively, and let a be the

regular bi-ideal generated by (£, £o). Thus, a is the intersection of all regular

bi-ideals (£(7o,), 70,) such that KQE(Jo,), KoQJo,- Then it will be seen

without difficulty that

a = (£(7o), 7o)    where   7o = (H({k}s) W £0),/2.
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But £ is a Ritt algebra and so (compare (5.8) where this relation is formu-

lated for a special case), 7o= (T7([£]s)U£0)1/2. Hence

(6.10) a = (£((77([£]s) U £0)1/2),       (H([K]S) U £„)"2).

Thus, the regular bi-ideal generated by (£,£0) is proper if and only if the

bi-ideal generated by (£, £o) has the same property, i.e., if and only if

(H([K]s)UKo)*Ro.
Let 7 be an S-perfect ideal in £. It is not difficult to see that quite gen-

erally, 7Ç£((77(7))1/2). We say that 7 is d» expansion if there exists a

radical ideal JoQRo such that J is the expansion of Jo, J = E(J0). Ii so then

7 = £(7o) 2 £((77(7))1/2)    since    (H(J))1'2 Ç /,.

Hence J=E((H(J))112). But if this relation is satisfied then 7is the expansion

of the radical ideal (H(J))1'2. Hence

6.11. Theorem. .4» S-perfect ideal J in R is an expansion if and only if

j = E((H(j)y<2).

The intersection of a set of expansions in £ is an expansion by (6.8).

Let 7 be an expansion in £. We shall say that J is irreducible by expansions

if J = JiC\Ji, where 7i and 72 are expansions, entails 7i = 7 or 72 = 7.

6.12. Theorem. .4» expansion J is irreducible by expansions if and only

if it is prime.

Proof. Let 7=£(70) and suppose that 7 = 7ifV2 where Ji^J, JiF^J.

Then, for d£7i —7, 6£72—7 we have abEJi^Ji and so 7 cannot be prime.

Conversely, suppose that J is not prime abEJ, aEJ, bEJ for some a, ¿>££.

Then there exist smallest integers i, j, such that H(aii))9£Jo, H(bU)) >= 7'0.

Consider the following two radical ideals in £0,

7„, = (7„VJ (77(a), TJ(a'), 77(a"), • ■ • )Y'2,

Joi = (7oU (77(0), 77(0'), H(b"), ■ ■ ■ ))»'*.

Then 7oir>7o2 is a radical ideal in £0 and 7oiC\702270. On the other hand,

if c£7oi, c£7o2 then for certain positive integers p, a,

c> E (7o W (77(d), 77(d'), 77(d"), •••))= Joi,

c° E (Jo W (77(7>), 77(//), 77(ô"), ••■))= 702,

and so

C+° E Joi-Joi Q (70U (H(a)H(b), • • • , H(a^)H(b^), ■ ■ ■))

= (7oW<T7(d6), •••,77(d^0»)), •■•)).

But abEE(Jo) and £(/<>) is a radical differential ideal. Hence  [l, p.ll]
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a< •>&<>> ££(70) for all i,j, H(aW>)€.J0. Hence c'+*£70, c£70, JoifMo2 = Jo

and so

7 = £(7o) = £(7„i H 702) = £(7oi) Ci E(J02).

Moreover, £(7oi)5^7 since aQE(Joi) but aQJ, and similarly £(7o2)^7.

Hence, 7 is reducible by expansions.

Combining (3.10) with (6.12) we obtain

6.13. Theorem. An expansion is reducible if and only if it is reducible by

expansions.

Now suppose that £ satisfies the finite ascending chain condition for

5-perfect ideals. This implies that £ satisfies the finite ascending chain con-

dition for expansions. It follows, in the usual way, that every expansion 7

in £ is the irredundant intersection of a set of irreducible expansions (ir-

reducible by expansions and hence, irreducible). These are prime, by (6.12),

and therefore coincide with the prime components of J. Hence

6.14. Theorem. Suppose that R satisfies the finite ascending chain condition

for S-perfect ideals. Then the prime components of an expansion J in R are

expansions.

6.15. Theorem. Let a=(£(7o), 7o) be a proper and regular bi-ideal in

fi=(£, £o, 77), where R satisfies the finite ascending chain condition for S-

perfect ideals. Then the prime components of £(7o) are admissible.

This follows directly from (6.9).

Now let fi=(£, £o, 27) be a regular l.d.r. Construct the l.d.r. fi{y, z]

= (R{y),Ro[z), 77*) as in §4.

6.16. Theorem. fi{y, z] is regular.

Proof. It is sufficient to prove (6.16) for « = 1, yi = y, Zu = z¿. Let p{y\

££{y}, P{y}^0 and let g*(z) =27*((p{y})<*>), jfe = 0, 1, 2, • • • . Then we

have to show that for some integer k, g*(z) t^O. Let (a,) he the set of coeffi-

cients of p{y}, a,QR, and let k be the smallest integer such that for some v,

H(a^))9£0. If we write Y, for the products of powers of y, y', y", ■ • • in

p{y}, such that H(a^)) 9*0, and Z, for the corresponding products of powers

of Zi, Z, = H*(Y), we then have

H*((p(y})<*>) = 77*(( Z a,Y,y)S) = £ E(aV)Z,

since the remaining terms involve factors H(af), l<k, which vanish by

assumption. Now the Z, are different for different v and since at least one

of these monomials appears with a coefficient different from zero, we have

H*((p{y\yk))9±0, as required.
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Now suppose that fi is a regular l.d.f. and £ is a Ritt algebra. Let S be

the set £—(0), then S satisfies (6.2) since £ is a differential ring and £o is a

field. It follows that the theory of expansions and regular bi-ideals developed

above is applicable. £ satisfies the finite ascending chain condition by (5.18).

As mentioned at the beginning of this section, we may, or may not wish

to restrict the zeros of a given set of differential equations with initial condi-

tions to extensions fi' = (£', £0', 77) which, like fi, are regular. In the latter

case, the theory of varieties given in §5 is applicable. We shall now consider

the corresponding theory for regular extensions fi'. Again, we introduce the

inessential restriction that £0' is a field.

Given a regular l.d.f. fi, we shall say that the point 77= (fi'; 771, • • -, 77«) is

regular if fi' is an extension of fi and a regular l.d.f. For given n— 1, the space

of all regular points 77 will be denoted by S*n, so that S*nC.Sn. (Compare the

beginning of §5 for a discussion of the legitimacy of these sets.)

Restricting the variety of a bi-ideal a in fi{y, z] to S*n we obtain what

will be called a regular variety F*. We say that F* is the regular variety of a,

a—>*F*. Given a subset A of S*n we have as before that the sets of poly-

nomials in R{y} and £o[z] which are satisfied by all points of A constitute

a bi-ideal a=(J, 70). Moreover, since A consists of regular points, we now

have that if 77*((p{77})<">) =0 for all tj£^, then p\n] =0 for all T7£,4. Thus,

a is regular, 7 = £(70).

If a = (7, 7o) is a proper bi-ideal which is prime and regular, then the

construction of (5.2) yields a regular point. Hence

6.17. Theorem. A regular proper bi-ideal is prime if and only if it possesses

a generic point which is regular.

6.18. Theorem. The intersection of a set of regular varieties is a regular

variety.

Proof. Let (F*) be a set of regular varieties. There exist bi-ideals aM and

varieties Vß such that orM—*FM and F^= Vßr\S*n. Then F=n„ F„ is a variety,

by (5.3), and

v* = v r\ s*" = n v, n s*» = n (v, n s*n) = n v*
H Ii (1

is a régulai variety.

6.19. Theorem. Every regular variety V* is the regular variety of a regular

bi-ideal a, a—** F*.

Proof. There exists a bi-ideal a = (7, 70) and a variety V and that a—* V,

V*=Vr\S*n. Let tjEV*, then v satisfies all polynomials of £(7o). For if

77*(7><n)(y)) = ç7„(z), « = 0, 1, 2, • • • , and 2„(77(t?)) =0, then p(n) = 0 (since

771, • • • , 77„ belong to a regular l.d.f.). It follows that F* is the regular variety

of the regular bi-ideal a* = (E(J0), Jo), which includes a.
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6.20. Theorem. The union of two regular varieties is a regular variety.

Proof. Let V* and V* be two regular varieties. By (6.19), there exist

regular bi-ideals ai = (£(70i), 70i) and a2=(£(702), Jot) such that ax—>*F*,

a2—**V*. We propose to show that V*VJV* is the regular variety of aiC\a2

= (E(Joi)r\E(j02), 70in7o2) = (£(7oifVo2), Joir\Jo2).

Clearly V*VJV* consist of regular points only and all these points are

satisfied by the polynomials of £{y} which belong to both £(70i) and E(J02)

and by the polynomials of R0[z] which belong to both 7oi and 702- Now let

77 = (fi' ; 7ji, ■ • • , 77„) be a regular point which belongs neither to F* nor to

V*. Since 77 does not belong to F* there either exists a polynomial pijy}

££(7oi) such that p{r¡} 9*0 or there exists a polynomial gi(z)£70i such that

qi(H(r¡))y±0. But in the former case, taking into account that fi' is regular,

we have for some integer « that gi„(27(77)) ?^0 where gi„(z) =27((p{y})(n)).

Thus, in any case there exists a polynomial gi(z)£7oi such that qi(H(rj)) 9*0

and, similarly, here exists a polynomial g2(z)£7o2 such that g2 (27 (77)) 5-^0. Now

consider the polynomial g(z) =gi(z)g2(z). Clearly q(z)£70iC\702. But q(H(r¡))

= qi(H(t]))qi(H(r¡))9*0 and so 77 does not belong to the regular variety of

cviC\a2. This proves that F*U F2* is indeed the regular variety of ai(~\a2, as

asserted.

6.21. Theorem. Let a = (J, 70) be a regular bi-ideal and let p{y} QR{y}

be a differential polynomial which is satisfied by all points that belong to the

regular variety of a. Then p{y) QJ.

Proof. If a is not proper then 7o = £o[z] and so 7=£(£0[z]) =£{y}.

Hence p{y\ £ 7. If a is proper then by (6.9), a = PI, a, where the a,

— (E(Jo,), Jo,) are regular bi-ideals which are proper and prime. It follows

that if p{y} does not belong to 7, then p{yj does not belong to E(J0,),

for some v. Now a, possesses a generic point 77 which is regular. 77 satisfies all

polynomials of Jo„ E(J0,) and hence of J, Jo- Thus 77 belongs to the regular

variety of a. But 77 does not satisfy p {y}, contrary to assumption. This proves

(6.21).

We prove by the same method

6.22. Theorem. £e¿ a=(J, 70) be a regular bi-ideal, and let q(z)QR0[z]

be satisfied by all points that belong to the regular variety of a. Then g(z)£70.

Combining (6.21) and (6.22) we obtain

6.23. Theorem. Let a=(J, J0) be a regular bi-ideal. Then

a A F* -► a.

The following theorem corresponds to, and is more definite than (5.9).

6.24. Theorem. 7m order that a system of differential equations and initial
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conditions, (K, Ko), possess a regular zero it is necessary and sufficient that

1 £(£*([£]) W£„).

Proof, p E [K]s implies ap £ [£] with a ^ 0 £ S. Then H*((ap)™)

= H(aM)H*(p)EH*([K]) where « is the smallest integer for which T7(d(*>)

^0. Hence H*(p)EH*([£]), and so

(6.25) T7*([£]s) = £*([£]).

Moreover, we are dealing with a Ritt algebra and so (6.24) is equivalent to

1£7„ where 70 = (T7*({£S})U£0)1/2.

Now the regular bi-ideal generated by (£, £0) is a=(E(J0), Jo) so that

condition (6.24) states that Jo, and hence a, is proper. If so, there exists a

maximal proper ideal Jó in £o[z], such that JoQJó■ Then Jó is prime, and

the same therefore applies to a'=p(Jó), by (6.6). By (6.17) there exists a

regular point 77 which satisfies all polynomials of a, and hence of £ and £0.

It follows that the condition of (6.24) is sufficient. Necessity follows from

(5.9).
Again, if a polynomial g(z)££0[z] is satisfied by all regular zeros of sets

£ and K0, and hence by all regular zeros of the bi-ideal (E(J0), Jo), where

7o is defined as above, then d(z)£70 by (6.22). Hence, taking into account

(5.8), (5.21), and (6.25), we have

6.26. Theorem. 7« order that g(z)££0[z] be satisfied by all regular zeros of

(£, £0) it is necessary and sufficient that there exist a positive integer p such that

«7/ £ (£*([£]) W £0).

Similarly, from (6.21)

6.27. Theorem. 7« order that p\y} ££{y} be satisfied by all regular zeros

of (£, £0) it is necessary and sufficient that there exist positive integers a(n),

» = 0, 1, 2, • • • , such that

(H*iip[y}y*>))>M E (£*([£]) W £0).

Since in a regular l.d.r. an element a of £ is determined completely by

the values of the images of aM in £0, w = 0, 1, 2, • • • it is in fact not surpris-

ing (and in keeping with the determination of a solution of a differential

equation by means of the values of the derivatives at a given point) that the

above condition is formulated entirely in terms of elements of £o[z], includ-

ing the 77*-images of the given elements of £{y) and of their derivatives.

(6.24) in conjunction with (5.9) shows that if the polynomials of sets

£, £0 possess a joint zero at all, then they possess a joint zero which is

regular. The same conclusion can be obtained more directly by means of the

construction by which we derived a regular fi* from a given fi in §2. Similarly,

from (5.21) and (6.26), if ç(z)££0[z] vanishes for all joint regular zeros of

£, £0, then q(z) vanishes for all joint zeros of £, £0.



1960] LOCAL DIFFERENTIAL ALGEBRA 453

We shall say that a system (K, Ko) possesses a unique (regular) solution,

if it possesses a joint (regular) zero, and if any (regular) l.d.f. which is an ex-

tension of fi does not contain more than one zero of (K, Ko).

6.28. Theorem. Given a regular l.d.f. fi, let

(6.29) y'i  = Pi(yi, • • • , y„),       zi0 = ai} i = 1, • • • , «,

be a set of differential equations with initial conditions, as in (5.11). £Ae« (6.29)

possesses a unique regular solution.

Proof. The existence of a solution follows from (6.24) in conjunction with

(5.11) (or the arguments used in the proof of (5.11)). To see that the solution

is unique, let fi' be a regular l.d.f. which is an extension of fi, fi' = (£', £0', 27').

Let y< = 77i££' and y, = í¿££', i=l, • ■ • , n, he two solutions of (6.29).

Then we have to show that 77, = ¿j,. Since fi' is regular, this will be proved if we

establish that

(6.30) H'(r,V) = B'G?) for k - 0, 1,2, • • • .

Now (6.30) holds for k = 0 since H'(n,) = H'(nt) = a{. Also, let

Qi(zoi, ■ ■ ■ , Zo„) = 77'(£,(yi, ■ • • , y„)), then, by (6.29),

H'(n'i) = H'(f,¡) = Qi(au ■ ■ ■ , an).

Next, we differentiate yi =P{ and obtain

dPi dPt
yi' = — yi + ••• + — y/, i = l, ■ ■ ■ ,n.

dyi dyn

Passing to the images in £0' we see that the right hand side is determined

uniquely and conclude that H'(r)í')=H'(rjí'). Continuing in this way, we

prove (6.30) and hence (6.28).

Next, we consider the case of a simple equation (of higher order) in one

variable. We write y for yi, Zj for zi,-. Let then

(6.31) p{y] m p(y, y', ■ ■ ■ , y<»>) = 0

be a differential polynomial equation with coefficients in £, and let

(6.32) Zi m H*(y«>) - a4,       at Q £0) * = 0, • • • , «,

be a set of initial conditions. Let 5 {y} = dP/dyM he the séparant of p {y} and

let g(z0, • • • , z„)=:g(z)=27*(p{y}) and *(*,, • • • , z„)=<(z) = 77*(s{y}).

6.33. Theorem. The differential equation (6.31) with initial conditions

(6.32) has a unique regular solution provided

(6.34) q(a0, ■ ■ • a„) = 0,       t(a0, ■ ■ • , an) 9* 0.

Proof. To prove existence, we make use of 6.24. If no solution exists then

for some non-negative integer k,
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1 £ (H(J¿) W (»o - do, • ■ • , z„ - an))

where 7' is the ideal

(P(y, y', • ■ •, yM)), (P(y, /,•••, yM)Y, • • •, (#(y, /, ■ • •, yM)Vk)).

Thus, there exist polynomials gi, • • ■ , gm, r0, • • • , rn££o[z], £.£7 such

that

(6.35) 1 = çi/i + • • • + qmtm + ro(zo - do) + • • • + rn(zn - a„)

where /< = T7*(£,) and

k

(6.36) £, = T,Pn(p{y}y,    Pa€R{y}, 7 = 1, •••,».
y-o

We set all y(!), Z>»+fe which occur in the pa (if any) equal to zero, as well

as the corresponding zi in the g,-, r¿. Thus we may suppose that the highest

derivative of y which appears in (6.36) is y<"+*>, which occurs in

(6.37) (p{y}yi) = s{y}y^+^ + Pj{y}, j = 1, 2, • • •

for j=k. £/{y} is a differential polynomial of order less then n+j.

We multiply (6.36) by a suitable power of s{y} so that we may write the

result as a polynomial of y, y', ■ • • , y<-n+k~v and s{y}y(n+k) = Y (in place of

y(n+i>) and we multiply (6.35) similarly by a power of t(z) =77*(5{y}) so that

we can replace t(z)zn+k everywhere by a variable Z. We then substitute

— Pk{y}   íor   Y everywhere  in  the  modified   (6.36),  and  we substitute

— H(pk\y}) for Z. This eliminates y<n+*> and zn+k. Repeating this process we

finally replace (6.35) by

(6.38) (t(z))" = qi*h* + ■ ■ ■ + qm*lm* + r„*(zo - do) + • • • + r*(zn - a»)

where q*, r,*££0[z], Zi = T7*(£,) and

(6.39) 2? - Pi{y}p{y] > i=l,---,m.

Hence

(6.40) (t(z)y = w(z)q(z) + r0*(zB - a0) + ■ ■ • + r*(zn - a»).

Substituting d0, • • • , a„ for z0, • • • , z» in (6.40), we obtain zero on the right

hand side, and so Z(d0, • • • , d„) = 0, contrary to (6.34). This proves the exist-

ence part of the theorem. Uniqueness follows from the fact that the images

of (6.37) determine zn+j uniquely in terms of d0, • • • , an, j= 1, 2, • • ■ .

Concluding this section we note a regular l.d.r. satisfies the condition:

(6.42) If a' = 0, 77(d) = 0   for   a £ £   then   a = 0.

Indeed, since a' = 0, 77(d(n)) = 0 for n = l, and this together with T7(d)=0

implies d = 0. On the other hand (compare the second example at the begin-
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ning of this section) (6.42) may well be satisfied in an l.d.f. which is not

regular. At the same time (6.42) does not necessarily hold in an arbitrary

l.d.f., as is shown by the following example.

Let £o be the field of rational functions of an indeterminate x with complex

coefficients and let £ be the ring of polynomials of two indeterminates x, y

with complex coefficients. For any/(x, y)££, we define differentiation by

partial differentiation with respect to x, f' = df/dx. On the other hand, we

define the homomorphism 27 from £ to £0 by 27(/(x, y)) =/(x, 0). Then the

polynomial/(x, y)=y satisfies the conditions y' = 0, 27(y) = 0, yet y9*0 in £.

Thus, (6.42) is an independent condition which is weaker than regularity.

It may well deserve separate attention.

7. Reflexive localized differential rings. So far we have assumed that the

homomorphism takes values in a ring, or field, which is not otherwise related

to the given differential ring. We shall say that fi= (£, £0, 27) is reflexive if

£o coincides with the ring of constants of £ and such that 77(a) = a for all

a££o, an assumption which is implicit in the classical theory of differential

equations.

Given a reflexive fi, we might now wish to develop a theory of reflexive

extensions, and a corresponding theory of ideals and varieties. However, for

regular fi at least, it seems to be more convenient to reduce the considera-

tion of reflexive extensions to the theory developed previously by means of

the following theorem.

7.1. Theorem. Let fi = (£, £o, 27) be a regular and reflexive l.d.f. and let

fi' = (£', £o', 77') be a regular l.d.f. which is an extension of fi. Then there exists

a regular and reflexive l.d.f., fi" = (£", £0", 77"), which is an extension of fi

such that R¿ =£o" and such that £' is (differentially) isomorphic to a subring

£r of R" under an isomorphism t satisfying the condition :

(7.2) If r(a) = b   and   H'(a) = a0,   then   27"(è) = a0.

Proof. Let £* be the differential ring of integral power series 52ñ°-o c»'n

with coefficients in £o' (compare §2) and define 77*(2<T-o °ntn) =c0. Then

fi* = (£*, £o', 27*) is an l.d.f. Moreover £0' coincides (by an obvious identifi-

cation) with the ring of constants of £* and every constant corresponds to it-

self under the homomorphism 27*. Thus, fi* is regular and reflexive. Also £*

includes a subring R, which is isomorphic to £'. £, is given by the set of

elements

^   1
(7.3) a(a) = £ — H'(a™)t» for a Q £'.

n-0   »!

Under cr, there correspond to the elements bQR^R' certain elements bQR,,,

ff(a) = b, which constitute a differential ring £x. We replace the elements of

Ri in £* by the corresponding elements of £ to obtain a ring £", and we
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modify 77* accordingly, yielding a homomorphism 77". Then fi"

= (£", £0", T7"), with £0" =£0' is an extension of fi'. Also, the constants of

£ correspond to themselves, by (7.3), (cr(d) = 77(a) =a) and so fi" is reflexive.

Finally, (7.3) shows that if we define r(a)=a for all d££, and T(a)=a(a)

for all a££' — £ then the images of r(a) in £" constitute a subring £T of £"

such that (7.2) is satisfied. This proves (7.1).

It follows that every system of polynomials and initial conditions with

coefficients in fi which has a zero in a regular extension fi' also has a zero in

a regular and reflexive extension fi". Similarly, the generic point 77 constructed

in connection with (5.2) and (6.17) may be supposed to belong to a regular

and reflexive extension of fi. Thus, the entire theory of regular varieties de-

veloped above still holds if we consider only points which belong to regular

and reflexive extensions of a given regular and reflexive fi.
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