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1. Introduction. After A. Lindebaum and A. Tarski [4], for each power

m (cf. definition of power later in this section) let 77(m) be the continuum

hypothesis statement that there is no power n such that m<n<2m. Linden-

baum and Tarski stated without proof that if T7(m), 77(2m), and 77(22m), then

22m is the power of a well-ordered set; they stated also without proof that if

77(m2) and 77(2m2), then 2mi is the power of a well-ordered set. W. Sierpiñski

[5] proved that if 77(m), 77(2m), and 77(22,n), then m is the power of a well-

ordered set, and E. Specker [6] sharpened both results of Lindenbaum and

Tarski by proving that if 77(m) and 77(2'"), then 2m is the power of a well-

ordered set.

This paper has arisen from attempts to sharpen Specker's result, which is

sharpened in 7.1 and 7.2 (first cf. the definition of T7(m; a) in §7 prior to 7.1).

The writer's efforts along these lines led to developments in the theory of

numerations (defined in the first paragraph of §2) of independent interest,

and most of this paper is concerned with these developments.

The content of this paper may be developed in an axiomatic set theory of

the von Neumann-Bernays-Gödel kind (cf., e.g., [l]) modified as follows to

allow (but not to imply the existence of) elements which are not sets. Each

object is either an element or a class. A set is any element which is a class. An

atom is an element which is not a class. The usual axioms may be modified

in the obvious way to accommodate atoms. We shall assume all the usual

axioms so modified except the restrictive axiom and the axiom of choice

(cf. §7).
We indicate briefly our use of some terminology and notation. Elements

x, y determine the ordered pair [x, y] = { {x}, {x, y} }. If a and (B are classes,

ftXCB= { [x, y]\xE&, y£®}. Relations and functions are classes of ordered

pairs satisfying (in the case of functions) the usual conditions. If (R is a rela-

tion, dom((R) and im(öt) are respectively the domain and the image of 31

defined in the usual way, and (R_1 is the inverse (or converse) of (R. A function

from ft to (or into) (B has domain a and image £03; a function onto (B has

image (B. If <f> and p are functions, \p o <¡> = {[x, y]|y=^(z) and z=<p(x) for

some z}. If </>, p, £ are functions, £ o^ o<f> = (£ o^) o<j> = % o (ip o<b). Each

ordinal number will consist of all its predecessors, and a cardinal number is
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any ordinal number not equi-potent with any of its members. The first

ordinal number is 0, the void set; cü = K0 is the first infinite ordinal number. A

power is a maximal class of mutually equi-potent sets. If X is a set, \X\ is

the power of X and is the unique power m for which X£m. If Ct and (B are

classes, then (P(Ct) is the class of all subsets of Ct, and Ct\® is the relative

complement of © in Ct. The binary connectives <, <, etc. will be applied

to ordinal numbers and to powers in the usual way. After Tarski [4], \X\

â*| F| will mean that there is a function from Y onto X; if \X\ ^*| Y\,

then 2|X| ^2|r|. Other terminology and notations will be introduced as they

arise or will not be introduced at all if the reader may safely rely on conven-

tion and context.

Many proofs and definitions in this paper are by transfinite induction. In

such a proof (or definition) the induction step usually will be carried through

without being explicitly announced (the induction will be announced), and

the induction hypothesis, the statement of which in each case will be obvious,

will be referred to and used without being formally introduced. In some cases

we shall define for each ordinal number p a function fa" whose domain is not

a set (but a class). In such a case the functions fa", if defined by induction,

must be defined in pieces which are sets, the pieces to be assembled later into

the function fa. The ultimate reason for this is the fact that a class which is

not a set is not a member of a class; thus a sequence (existing in the theory

as a function) of classes which are not sets is out of the question. For an

example, cf. the definition of the functions A" in §3.

2. The functions W. After Bernays [l, IV, pp. 140-141] we define a

numeration to be any one-one function whose domain is an ordinal number.

Throughout the rest of this paper, *U will be the class of all elements, 6 will

be the class of all ordinal numbers, 91 will be the class of all numerations, and

11* = 0l\9l. For each /£3l, { [f(a), f(ß) ] | a <ßQdom(f)} is a reflexive well-

ordering of im(/).

For each set X we define W(X) for each ordinal number p by transfinite

induction as follows (2.1-2.4).

2.1. -W«(X)=X.
2.2. V?1(X)=V?(X)= {/£9l|im(/)£X}. It is easy to show that *W (X) isa

set (cf. 6.12).
2.3. •Wt+1(X) = Vf(yf(X)). [This holds for p = 0 by 2.1 and 2.2.]
2.4. If p is a limit ordinal,

-W(X) = U V9*(X).

2.5. Remark. For each set X and all ordinal numbers p and v,

■W'CW(X)) £ W+'i-X"),

and, if v is finite or p = 0 or p is a limit ordinal, then

•W'CWÍX)) = ^'^'(X).



1960]       SOME DEVELOPMENTS IN THE THEORY OF NUMERATIONS        525

For each ordinal p, W= { [X, V?»(X)}\ A"£(P(1l)} is a function with

domain ö^ll). The lemma below follows by transfinite induction.

2.6. Lemma. 7/^£Z£(P(1l), then ,W(;4)£cW(A')/or each ordinal num-

ber p.

2.7. Corollary. 7/Z£(P(1I),

•W(X) =     U    *W"(4)

as(P(X)

for each ordinal number p.

For each class a, we may define

wia) =    U   v?"(A).
¿6(p(a)

If a is a set, V?"(CL) is the same as before by 2.7. It should be noted that we

are not extending the domain of the function W (domOW") = (P(1t)), but we

are enlarging the scope of usage of the symbol " IF"" to express a certain predi-

cate (u<ñ = 'W(Q,),' expresses a relationship among 03, p, a). Observe that if

a£(B, then ,W(a)£cW((B) for each ordinal number p.

2.8. Lemma. Suppose Ar£(P(ll*), F£(P(lt*), p and v are ordinal numbers,

and /£tW"(A')ntW'(F). Then for each ordinal number X, fE"W\X) if and

only iffEW\Y) and also if and only iffEV?*(Xr\Y).

Proof. We proceed by induction on min(p, v)=pí~\v. We may suppose

/£WX(X) for all \<p and/£Wx(F) for all XO. Then neither p nor v is a

limit ordinal (cf. 2.4). We may also suppose p^v (i.e., pEv).

Suppose first that p = 0. Then/£Ar£ll* by 2.1, and v has no predecessor

(for/£9l; cf. 2.2 and 2.3). Hence v = 0, and/£ F. Moreover, fE"W\X) if
and only if X = 0 or X is a limit ordinal, and similar statements hold for

F and XC\ Y replacing X.

Suppose next that p = l. Then im(/)£X=tW°(X) by 2.2 and 2.1, and

eitheri' = 0orim(/)£,W,'-1(F)by2.3and 2.2. Since l=p^v,im(f)E'W'-1(Y).

The preceding paragraph with / replaced by a member of im(/) shows that

i/ —1 = 0, i.e., v = l. Then im(/)£F, and im(/)£AT\F. Moreover,/£WX(Z)

if and only if X = 1 or X is a limit ordinal or both X is not a limit ordinal and

X —1 is a limit ordinal or both X>0 and dom(/) = 0; similar statements hold

for F and Xí~\ Y replacing X.
Suppose m>L Then im(/)£,W-1(-X')nw-1(F) by 2.3 and 2.2. By the

induction hypothesis, for each aEdom(f) and each ordinal number X, f(a)

£'Wx(Ar) if and only if /(a)£'Wx(F) and also if and only if/(a)£-Wx(X/°iF).

From this it follows easily (by transfinite induction) that for each ordinal

number X, / £ 'Wx(Ar) if and only if / £ WX(F) and also if and only if

/£Wx(XnF).
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The induction on min(p, ¡>) is complete. Q.e.d.

2.9. Corollary. Suppose Ct£tU.* and 63£CU*. Then for each ordinal num-

ber p, w*(an«) = W"(et)Ci'W'i((B).

The following lemma may be proved by induction.

2.10. Lemma. Suppose X is a set and p. a limit ordinal number. Then for

each element f, fQV?"(X) if and only if fQV?*(X) for some nonlimit ordinal

\<p.

3. The functions A". For each set X we define the function Ax with do-

main ^"(X) and image QV?(X) for each ordinal p by transfinite induction

as follows (3.1-3.6).

3.1. A£(x)={[0, *]} (i.e., dom(Ai(x))={0}=l and A°x(x)(0)=x) for

eachxQX=V?°(X).

3.2. Alx(f) =f for each fQW(X).
3.3. Suppose p>l is not a limit ordinal. Suppose fQ"W(X). Define the

relation S/QX XX as follows. For all x, yQX, let xS/y if and only if there are g, h

Qim(f) such thatf~'(g) is the smallest a£dom(/) for which xQim(Ax~1(f(a))),

such that f~l(h) is the smallest ctQdom(f) for which yQim(Ax~1(f(a))), such

that f-1(g) úf~l(h), and such that

(&\g))~\x) g (AÏl(ù)~l<y)

if g = h.   There is a unique function  Ax(f)QVf(X)   such  that   im(Ax(f))

= dom(5/) and such that a^ßQdom(Ax(f)) implies

[Ax(f)("),Ax(f)(ß)]QSf.

[Observefrom 3.1 and 3.2 that if "p>ln is replaced by "p = 1," the procedure in

3.3 gives the same Ax(f) defined in 3.2.]

3.4. If pis a limit ordinal andfQ'W(X), then, where a is the first \<pfor

whichfQV?*(X) (cf. 2A),Ax(f)=Aax(f).

3.5. Theorem. Suppose X is a set and p>0 is an ordinal number. Then

im(Ax) = V?(X).

Proof. We proceed by induction. For p = 1, apply 3.2.

Consider p>l not a limit ordinal. Consider fQV?(X). By the induction

hypothesis there is g£W-'(X) such that A£-1(g) =/• Then { [0, g]} Q-W(X),

and, by 3.3, A&{ [0, g]}) =AX~'(g) =/. Thus im(A£) =<W(X).
The induction step for p a limit ordinal is trivial (cf. 3.4). Q.e.d.

3.6. Lemma. Suppose X and Y are sets, p is an ordinal number, and

fQ-W'WrWJ^Y). If p is finite or XKJ F£tlt*. then Ax(fj =AY(f).

Proof. We proceed by induction on p. For p =0, apply 3.1. For p= 1, apply

3.2.
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Consider p> 1 not a limit ordinal. It suffices to show that Sj in 3.3 is inde-

pendent of X£ll* for which/£W(X); this follows easily from the induction

hypothesis (with/ replaced by/(a) for each a£dom(/)).

Consider p a limit ordinal. In this case A£(/) = Ay(/) follows from 2.8, 3.4,

and the induction hypothesis.

The induction is complete. Q.e.d.

Suppose p is an ordinal number. Let Hi = 11 if p is finite, and let Hi = 11*

if p is infinite. Then for each set X£lli,

Ax= U/,Ax(/)]|/£W(X)}

is a function, and, by 3.6,

A" =       U      Ax
xe(P(H,)

is a function with domain Willi). For each set XC1L\ and each /£WpQ,

A"(/)=AZ(/).
The following lemma is easily proved from 3.1-3.3. The details will be

omitted.

3.7. Lemma. Suppose X is a set, p is an ordinal number, a»d/£W+1(X).

Then

MA'+K/)) =       U     im(A"(/(a))).
o6dom(/)

7« particular, if p = 1,

im(A2(/)) =     U     im(/(«)).
a€dom(/)

3.8. Theorem. Suppose p is an ordinal number a»ci/£W(ll*). Then for

each set X£ll*, (i), (ii), and (iii) below are mutually equivalent.

(i) /£W(X).
(ii) A*(/)£W(X).
(iii) im(A«(/))£A.

Thus im(A"(/)) 7s the smallest set X£1l* such that /£W(Ar). [if p is finite,

11* may be replaced consistently by 11. ]

Proof. Trivially, (i) implies (ii). By 2.2, (ii) is equivalent to (iii). It re-

mains to prove that (ii) or (iii) implies (i).

We proceed by induction on p. For ju = 0 apply 2.1 and 3.1. For p = 1 apply

2.2 and 3.2.
Consider p>A not a limit ordinal. Consider Ar£ö>(ll*) such that

im(A"(/))£X. Then im(A"-1(/(«)))£A and /(a)£'W'-1(A) for each

a£dom(f) by 3.6 and the induction hypothesis. Hence /£"W(W*-1(-X'))

= W(A) by 2.2 and 2.3. Thus (iii) implies (i).
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Consider p a limit ordinal. Consider XQS>(%*) such that im(A"(f))CX.

By 2.4 there is a first ordinal X<p such that/£*Wx(«ll*), say X = a. Then (cf.

2.8 and 3.4) A"(f)=Aa(f), and \m(A"(f)) QX. By the induction hypothesis,

fQ-W°(X). By 2A,fQV?»(X). Thus (iii) implies (i).
The induction is complete. Q.e.d.

3.9. Theorem. Suppose p andv are ordinal numbers, and suppose /£W(1l*)

nwtni*). ThenA"(f)=A'(f).

Proof. We proceed by induction on max(p, v)=pVJv. We may suppose

p<v. Then v>0. If v = l, then p = 0, and /£ 1l*C\9l = 0, a contradiction.

Hence we may suppose v > 1. By 3.4 we may suppose neither p nor v is a limit

ordinal. If p^l, then by 3.3 and the induction hypothesis it is easily seen

that A"(/)=A'(/). If p = 0, it is easily seen that v must be a limit ordinal

contrary to supposition. Q.e.d.

3.10. Lemma. Suppose X is a set, p is an ordinal number, a«d/£W+2(/).

Then

A"+2(/) = A*«(A»(/)).

Proof. By 3.2 and 3.3,

(a) {/(a)(X)|a£dom(/)andX£dom(/(a))} = {As(/)(7)|7£dom(A2(/))}.

By 3.7 and (a),

(b) im(A»+2(/)) =       U      im(A"+-(/(a)))
a€dom(/)

=      U U      im(A"(/(a)(X)))
aedomf/)   Xedom(/(a))

U        im(A"(A'(/)(7)))
7€dom(A C/))

= im(A-+1(Ai(/))).

Let

A = im(A*+'(/)) = im(A"+'(A'(/))),

£i = { [A"+2(/)(«), A"+2(/)(d)] | a < /3 £ dom(A^(/))},

£2 = {[A"+i(A'(/))(a), A"+«(A2(/))(d)] | a < ß Q dom(A"+I(A*(/)))}.

Then £iU£2£^4 X^4, and each of £i and £2 reflexively well-orders A.

To prove A"+2(/) =A"+1(A2(/)) it will suffice to prove £i = £2. Using

(b) we make definitions (c) and (d) below.

(c) For each x £ A, let ctx be the first a Q dom(/) such that

x£im(A"+H/(a))).

(d) For each xQA, let yx he the first Y£dom (A2(f)) such that

xQim(A*(A*(f)(y))).
Using (c) and (d) we make definitions (e) and (f) below.
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(e) For each xEA, let ßx be the first ßEdom(A»+1(f(ax))) such that

x=A»+i(f(<xx))(ß).
(f) For each xEA, let hx be the first oEdom(A»(A2(f)(yx))) such that

x=A^(f)(yx))(b).
Using (c) and 3.7 we make definition (g) below.

(g) For each x £ A, let X* be the first X £ dom(f(ax)) such that

x£im(A"(/(ax)(X))).

By (c), (g), and 3.7,

(h) for each xEA, f(ax)(\x)Eim(f(a)) for each a<ax, and f(ax)(\x)

9áf(ax) (X) for each X <Xi.

By 3.2, 3.3, (h), (c), (g), and (d) (cf. also (a)),

(i) /(a*)(X)=A2(/)(7*) for each xEA,

(j) for all x, yEA, 7x<7v if and only if either ax<av or both ax=ay and

r\x<r\y, and 7x = 7v if and only if both ax = av and XX = XV.

By (f) and (i),
(k) for each xEA, 8* is the first «5£dom(A"(/(aI)(XI))) such that

x=A-(f(ax)(\x))(8x).

By 3.3, (e), (g), and (k),

(1)  A>+i(f(ax)(ßx))=A>(f(ax)(\x))(8x) for each xEA,

(m) for all x, yEA with ax=ay, ßx<ßy if and only if either Xx<X„ or both

X»=Xy and hx<by, and ßx = ßy if and only if both \x=\ and Sx = Sy.

By (c), (e), and 3.2,

(n) for all x, yEA, xRiy if and only if either ax<ay or both ax=ay and

ßXußy.
By (d), (f), and 3.2,
(o) for all x, yEA, xR2y ii and only if either 7x<7» or both 7* = 7«, and

Sx£ôy.

It is easily shown from (j), (m), (n), and (o) that £i = £2. Q.e.d.

3.11. Theorem. Suppose X is a set, p is an ordinal number, v is a finite

ordinal number, a»¿/£W+,,(/). Then

A*+>(f) = A"+>(A'(/)).

Proof. For v = 0, apply 3.1 and 3.4 if p>0, and apply 3.1 and 3.2 if p. = 0
(or cf. the comment after the proof of 3.7). For v=l apply 3.2. For v = 2,

apply 3.10. We now proceed by induction (using 3.10), the induction step

being

A"+-+i(/) = A"+'(A2(/)) = A"+1(A'(A2(/))) = A"+l(k'+l(f)).

4. Maps W(X)—>W( F) induced by maps X—» F. Suppose <p is a function

with dom(<íj) a set. We define <f>, a function with domain W(dom(«£)), for

each ordinal number p by transfinite induction as follows (4.1-4.4).

4.1. </>°=c/>.
4.2. Suppose /£W(dom(c/>)). Let A = {ßEdom(f)\<p(f(ß))^<p(f(a)) for
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each a<ß}. There is a unique strictly increasing function £ with dom(£) an

ordinal number and im(£) =A. Let fa(f) =<p of o £. £Ae« dom(fa(f)) = dom(£).

Thus we obtain a function fa with domain Widom^)).

4.3. fa+1 = (fa)\ [This holds for p = 0 by 4.1 and 4.2.]
4.4. Suppose p is a limiting ordinal. If fQV?"(dom(<p)), then, where a is

the first ordinal\<p such that fQV?x (dorn (fa)) (cf. 2.4), let fa(f) =fa(f).
The following theorem may be proved by a straightforward induction,

the details of which will be omitted.

4.5. Theorem. Suppose X and Y are sets, suppose <j> is a function from X

to Y, and suppose p is an ordinal number. Then fa is a function from W(X)

to W(F).

The proof of the following lemma is straightforward (cf. 4.2) and will be

omitted.

4.6. Lemma. Suppose X is a set and <j> a function with domain X. Then

im(fa(f)) = im(<t>of) for each fQWl(X). If <p is one-one, then fa(f)=<pof
for each fQV?l(X).

4.7. Theorem. Suppose X£ 11* and Y are sets, and suppose <p is a function

from X to Y. Suppose p and v are ordinal numbers, and suppose fQ"W(X)

nv?"(X). Thenfa(f)=fa(f).

Proof. We proceed by induction on max(p, v)=p\Jv. We may suppose

p<v.

Suppose v is not a limit ordinal. There is a smallest ordinal X ̂ p such that

/£WX(X) and fa(f)=fa(f). By 4.4, X is not a limit ordinal. Since V?°(X)
= X£11* and  V?'(X) =W(V?'~1(X))Qîil,  tW°(X)ntW'(X)  is void.  Hence

\9*0.  Now f(a)Q'W^-1(X)r\V?'-'i(X)  and fa-1(f(a))=fa~l(f(a))  for each
o£dom(/) by the induction hypothesis. It is seen from this and 4.2 that

fa(f) = *x(/) = (^-W) = (fa-^Kf) = *'(/)•

Suppose v is a limit ordinal. By 4.4, fa(f) =fa(f) where ß is the first ordinal

\<v for which fQV?\X). Then

fa(f) = *x(/) = fa(f)

by the induction hypothesis.

The induction is complete. Q.e.d.

4.8. Theorem. Suppose XQ%* and F£CU* are sets and c/> a function from

X to Y. Suppose p is an ordinal number andfQW(X). Then for each ordinal

number X, fQV?x(X) if and only if fa(f) £IWX( Y).

Proof. We proceed by induction on p. By 4.7 we may suppose fQVfx(X)

for each ordinal X<p. Then, by 2.4, p is not a limit ordinal.
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Consider first the case in which p = 0. It is easily seen from /£3l that

/£W(A) if and only if X = 0 or X is a limit ordinal and then also, since

<P°(f) =<t>(f) £91, if and only if <¿>0(/)£W(F).
Now consider the case in which p>0. Then /(a)£W_1(A") for each

a£dom(/). Suppose first that X>0 is a nonlimit ordinal number. Then

(a)-(f) below are mutually equivalent. [To prove (a) equivalent to (b) and

(e) equivalent to (/), use 2.1-2.4, especially 2.3. To prove (b) equivalent to

(c), use the induction hypothesis. To prove (c) equivalent to (d), use 4.3.

To prove (d) equivalent to (e), use 4.6.]

(a) /£W(A").
(b) /(a)£cWx_1W for each cx£dom(/).

(c) </>-'(/(«))£W-!(F) for each a£dom(/).

(d) (WVme^-KY) for each ö£dom((«iy-i)i(/)).
(e) cfy(/)03)£W-'(F) for each ß£dom(c/>(/)).

(0  ^(/)£W(F).
Moreover,/£W(A); since </>(/) £'W(W-,(^))C TV, </>*(/)£ F=W(F).

Thus (a) is equivalent to (f) for each nonlimit ordinal number X. Then also,

by 2.10, (a) is equivalent to (f) for each ordinal number X.

The induction is complete. Q.e.d.

4.9. Lemma. Suppose X and Y are sets, suppose <b is a function from X to

Y, and suppose p is a function with domain Y. Then (p o <p)1 = p1 o <pl.

Proof. Consider/£W(A). Let A and £ be as in 4.2. Then <pl(f) =<b of o £.

Let

B = {ß E dom(*l(/)) | P(<t>l(f)(ß)) * K<t>l(f)(<*)) for each a < ß}.

There is a unique strictly increasing function r with dom(r) an ordinal num-

ber and im(r) =£. By 4.2, ^'(«/»'(Z)) -* o (0'(/)) o t =\fs o <¡> of o £ o r. More-

over,

B = {ß E dorn«) I P(P(M(ß)))) * *(*(/(!(«)))) for each a < ß} ,

and hence (cf. the definitions of A and £)

im(£ | 73) = {y £ dom(/) | (p o p)(f(y)) * (P o p)(f(5)) for each 5 < 7}.

Also, Cot is a strictly increasing function with dom(£ o t) =dom(r) and

im(£ o t) =im(£|£). Hence, by 4.2,

(Po<t>)\f) = (pop) of o (¡¡or) = PKPKf)) = Or-'oc&W)-

Thus (p o (¡>y =iA1 o <p\ Q.e.d.

4.10. Theorem. Suppose X, Y, and Z are sets, <p is a function from X to

Y, and p is a function from Y to Z. Suppose also that p is an ordinal number,

and suppose that either p is finite or X\J FWZ£1I*. Then 4.10.1-4.10.5 below

hold.
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4.10.1. (pofa)"=\l/"ofa.
4.10.2. If fax) =xfor each xQX, then fa(f) =/for eachfQVP"(X).
4.10.3. If <t> maps X one-one and onto Y and \p is inverse to fa then fa maps

W(X) one-one and onto W(F) and ^" is inverse to fa.

4.10.4. If <p is one-one, then fa is one-one, fa+l(f) = fa of for each

fQ'W+1(X),anddom(fa(f))=dom(f)foreachfQ'W>(X)\ctí.*ifp>0.
4.10.5. For each fQ-W»+1(X), im(fa+1(f)) = im(fa of).
4.10.6. For eachfQV?"(X), A"(fa(f)) =fa(A"(f)).

Proof of 4.10.1. We proceed by induction on p. For p = 0, apply 4.1. For

p= 1, apply 4.9.
Consider the case in which p>l is not a limit ordinal. By the induction

hypothesis, 4.3, and 4.9,

(p o <f>y = ((p o fa"'1)1 = (fa"1 o fa-1)1 = (fa'1)1 o (fa'1)1 = tp" o fa.

Consider the case in which p is a limit ordinal. Consider fQV?>'(X). There

is a first ordinal X<p for which fQV?x(X), say X = a. By 4.4, the induction

hypothesis, and 4.8 or 4.7,

(p o *)*(/) = (p o fa*(f) = r(r(f)) = r(fa(f)) = fa(fa(f)).

Thus (\po<py=}pi'ofa'.
The induction is complete. Q.e.d.

The proof of 4.10.2 is a straightforward induction using 4.1-4.4. We omit

the details.
By standard arguments, 4.10.3 follows from 4.10.1 and 4.10.2.

Proof of 4.10.4. Suppose <p is one-one. We may suppose Y=im(<p). Then

fa is one-one by 4.10.3. By 4.3 and 4.6, fal+1(f) = (fa)1(f)=fa of for each
fQ*W+1(X), and hence dom(fa+1(f))=dom(f) for each fQW+^X). It is
then seen from 2.4 and 4.4 that dorn (fa(/)) = dorn (/) for each/£tW"(X)\cU*

if p>0. Q.e.d.
Proof of 4.10.5. By 4.3 and 4.6,

imiy+K/)) = im((fay(f)) = im(^o/)

for eachfQ-W"+1(X). Q.e.d.
Proof of 4.10.6. We proceed by induction on p.

Consider jti-=0. For each jc£cW°(X) =X,

A"(fa(x)) = {[0, fax)]} = <p o {[0, x]} = c6 o (A»(*)) = ^(A0^))

by 4.1, 3.1, and 4.6.
Consider p = 1. For each /£W1(X),

^(fatj)) = *l(f) = ^(A'i/))

by 3.2.
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Consider p>l not a limit ordinal. Consider /£W(X). We have the fol-

lowing string of equations. [Equations (1) and (6) follow from 3.7;"(2) follows

from 4.10.5; (3) follows from the induction hypothesis; (4) and (8) follow

from 4.6; (5) and (7) are immediate.]

imO(*>(/)))

(1) = U im(A<-i(ç6*(/)(«)))

(2) =        U     imiAM-^-W))))
#€dom (/)

(3) = U     imOKA'-H/GS))))
0edom(/)

(4) = U     im(*o(A<-i(/08))))
ßedomif)

(5) =    im («I     U      im(A>-*(f(ß))))

(6) = im(*|hm>(/)))

(7) = im(>o<A*(/)))

(8) = im(^(A"(/)))-

Let

A = im(H4»(f))) = im(y(A*(/))),

£i = {[A"(<6*(/))(«), AM(«^(/))03)] | a = ß £ dom(AM(<6*(/)))},

£2 = j foKA'tOX«), «'(A"(/))08)] \a = ßE dom(^(A*(/)))j.

Then £AJ£2£.4X.4, and each of £1 and £2 reflexively well-orders A. To

prove A»(<¡>»(f)) =<p1(A"(f)) it suffices to prove £i££2. Considering the right-

hand members of (1) and (2), we may make definitions (a) and (b) below.

(a) For each xEA   let ax be the smallest a£dom(</>"(/))  for which

x£im(A*-'(c/y(/)(a))).

(b) For each  x £ A   let ßx he  the  smallest ß £ dom(/)   for  which

x£im(A"-1(<^-1(/(/3))))-

Considering (a), we may make definition (c) below.

(c) For each xEA let 7x be the smallest 7£dom(A"_1((i>''(/)(ax))) for

which x=A»-1(<t>"(f)(ax))(y).

One may prove (d) and (e) below from (a), (b), 4.2, and 4.3.

(d) For each xEA, <p>(f)(ax) =</>*-l(/(&))-

(e) For all x, yEA, ax<ay ii and only if ßx<ßy, and ax=ay if and only if

ßx = ßy.

By (c) and (d),

(f) For each xEA, 7x is the smallest 7£dom(A*-1(<f»''-1(/(p\e)))) for which

x=A"-^-V(ßx)))(y)-
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By the induction hypothesis,

(g) For each ßQdom(f), A^Kfa-^ftß))) =fa(A^(f(ß))).
By (g) and (f),
(h) For each xQA, yx is the smallest 7£dom(</>1(A"-1(/(|3*)))) for which

x = fa(A'-1(f(ßx)))(y).
By (g), (b), and 4.6,
(i) For each x Q A, ßx is the smallest ß Q dom(/) for which

*£im(^(A*-i(/(d)))) =im(c6 o (A-* (/(d)))).
Considering (h) and 4.6, we may make definition (j) below.

(j) For each xQA let 5^ be the smallest ö£dom(A"~1(/(d*))) for which

x=faA^(fm)(h)).
By (h), (j), and 4.2,
(k) For each *£.<4, 7*^7» if and only if bx^bv.

By (i) and (j),

(1)   For each xQA, A"-1(/(/3I))(ôI) £ im (A"-1 (/(d))) for each ß<ßx.

By (j),
(m) For each xQA, A>i-1(f(ßx))(S) 9*A"-1(f(ßx))(6x) for each 5 <«,.

Let 5/ be given as in 3.3. Then, by 3.3, (1) and (m),

(n) For all xQA and d£dom(/) and 5 £ dorn (A""1 (f(ß))),

A"-1(/(«)(5)5/A"-1(/(Öx))(5I)

if and only if either ß<ßx or both ß=ßx and b^8x.

By (i), (j), (n), and 4.3,

(o) For all xQA and <£dom(S/) such that

tSA^(f(ßm))(sm),

fat) 9* *(A»-i(/GS,))(3,)).

Now consider z, wQA such that zRiW. By (a), (c), and 3.3, either a* <aw or

both a2 = aw and 7,^7«,. Hence, by (e) and (k), either ßz^ßw or both ßz = ßw

and Ô,^8W. Hence, by (»),

A'-W,)) (5i)S,\*-l(f(ß»))(S») ■

Hence, by (o), 4.3, and 4.2,

¿(Ax-K/OS,)) (S.))R*KAri(f(ßJ) (Sw)).

Hence, by (j), zR2w. Thus £i££2, and A»(fa(f))=fa(A>(f)).
Consider the case in which p is a limit ordinal. Consider /£W(X). By

2.4 there is a first ordinal X<p for which/£WX(X), say X = a. By 4.8, a is

the first ordinal X<p for which t/>"(/)£'Wx(F). By 4.7, fa(f)=<pa(f). By 3.6
and the induction hypothesis,

A"(fa(f)) = A"(fa(f)) = A»(fa(f))

= fa(A-(f)) = fa(A"(f)).
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The induction is complete. Q.e.d.

The following theorem may be proved by induction. The details will be

omitted.

4.11. Theorem. Suppose p is a function whose domain is a set, suppose

<t>E^h, and suppose p is an ordinal number. Suppose either p is finite or dom^)

£11*. Then <p"Q7>.

Now suppose p is a function (whose domain is not necessarily a set), sup-

pose p is an ordinal number, and suppose dom(x/')£1l* if p is infinite. If p

is not a set (i.e., if dom^) is not a set), we define

p" =     U    4>";
*e(P(*)

this equation holds by 4.11 if yp is a set. Then p" is a function, for, by 4.11,

if cf»i, <t>iE(P(P), then <bi]U<piE(<pAJfaY is a function. It may be proved from

4.5 that p" is a function from W(dom(i//)) to W(im(i/0). Obvious generaliza-

tions of 4.5-4.11 may be proved in a routine fashion, and 4.1-4.4 may be re-

phrased and generalized to theorems.

Suppose p is an ordinal number. Let 1li= 11 if p is finite, and let 1li= 11*

if p is infinite. For brevity we will operate in the meta-theory in the remainder

of this paragraph. There is a correspondence which assigns W(A") to each set

X£lli, and there is a correspondence which assigns the map </>": W(X)

-*W(F) to each map <f>: X-^Y with A\7F£(P(lli). In the parlance of

categories and functors [2], by 4.10.1-4.10.3 these two correspondences con-

stitute a covariant functor from the category of subsets of Hi and their maps to

the category of sets and their maps. This functor conforms with A" in a nice

way (cf. 4.10.6). If Hi is replaced by 11*, by 3.9 and 4.7 the superscripts on

"A"" and "<£"" could be dropped for ordinary purposes.

5. Free elements. We define p-free element for each ordinal number p by

transfinite induction as follows (5.1-5.4).

5.1. .4» element x is 0-free if and only if x£ll*.

5.2. j4« element f is 1-free if and only 7//£cW(1l*).

5.3. An element f is (p + \)-free if and only i//£W+1(ll*), f(a) is p-free

for each a£dom(/), and

[im(A"(/(«)))] H [im(A"(/(0)))] = 0

for all a, ßEdom(f) with a^ß. [This holds for p = 0 by 5.1 and 5.2.]
5.4. Suppose p is a limit ordinal number. An element f is p-free if and only

7//£W(1l*) and, where y is the first \<p for waîca/£W(1I*) (cf. 2A),fis

y-free.

5.5. Theorem. Suppose p and v are ordinal numbers, and suppose

/£W(H*)nw(1l*). Then f is p-free if and only iff is v-free.
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Proof. We proceed by induction on max (p., v). We may suppose p<v.

Then v>0. If v — \, then p = 0, and/£ 11*091 = 0, a contradiction. Hence we

may suppose v>l. By 5.4 we may suppose neither p nor v is a limit ordinal.

If p =0, it is easily seen that v must be a limit ordinal contrary to supposition.

Hence p>0. By 5.3, 3.8, and the induction hypothesis,/ if p-free if and only

if/ is »'-free. Q.e.d.
For each element x, x will be said to be free if and only if x is p-free for

some ordinal number p. Then, by 5.5, for each ordinal number v and each

/£cW(1l*), / is free if and only if / is »»-free.

The following theorem may be proved by induction using 5.1-5.4, 4.1,

4.4, 4.10.4, and 4.10.5. The details will be omitted.

5.6. Theorem. Suppose X£ll* and F£ll* are sets and <p a one-one func-

tion with domain X and image Y. Then for each ordinal number p and each

fQ"W(X), f is free if and only if fa(f) is free.

One of the main goals of the rest of this section is to prove 5.21. By 5.20,

5.21 holds "uniformly." The procedure will be somewhat lengthy, but rather

straightforward.

The next lemma and its corollary are purely technical.

5.7. Lemma. Suppose x, y£11. Then [x, y]£9l if and only if x = y = l.

Moreover, [l, l]={[0, 0]}.

Proof. Suppose

{{*}. {*.y)\ = [*.y] S 31.

There are u, t>£ll and ordinal numbers a and ß such that

{x\ = [«,«]= {{a},{a,u}},        {x,y} = [ß,v]= {{ß},{ß,v}\.

It follows that * = {a} = {a, u} and a = u. Moreover, \a\ =x= {ß} or

{a} =¡c= {ß, v}. Hence ct = ß. Since dom([#, y]) = {a, ß} = {a} is an ordinal

number with cardinal 1, we have ¡c= {a} =1 = {o}, and /3=a = 0. Since

[x, y]= {[0, w], [0, v]} is a function, we have i> = w = a¡ = 0. Hence y= {ß}

= {o} =x = l or y= {ß, v} = {o} =x—l. Moreover, since

[z,z] = {{z},{z,z}} = {{z}}

for each s £11, we have

[Ml-HiH-ÍHoHI-ÍMH.
Q.e.d.

5.8. Corollary. For each function f and each »£11, [f, it]£lt*.

Proof. Since ordered pairs are nonvoid sets, 0 is not an ordered pair. Since

0£1, 1 is not a function. Now apply 5.7. Q.e.d.
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If X is a set, an X-tuple is any function with domain X. We now define

£„ = {x\x is a function such that dom(x) is a finite ordinal number and

im(:x;) £ p}

for each ordinal number p, and we define

3 =   U   £„.

Thus xE T„ ii and only if x is a X-tuple of ordinal numbers <p for some finite

ordinal X. For each ordinal number p, 0££„ since 0 is a 0-tuple.

Suppose A" is a set. We define <££(/) for each ordinal number p and each

/£ W(Z) by induction as follows (5.9-5.11) so that $>£(/) is a function with

image im(A"(/)) and with domain £3XA".

5.9. 7//£W(X)=X, let

4(f) ={[[0, /],/]}.
£fte»

dom(4>x(/)) = |y)C3XX,

im(*x(/)) = {/} = im(A0(/)).

5.10. Suppose p>0 is a nonlimit ordinal number. Consider /£W(Ar). Let

*£(/) = U[^{[dom(Z),a]},a;],<i.71(/(a))([z,^])]|

a £ dom(/); [z, *] £ dom(4>x_1(/(«))), •

By the induction hypothesis and 3.7, $x(f) ¿s a function with image

U     im^rVi«))) =      U     imíA""1 (/(«))) = im(A"(/))
aSdom(/) a6dom(/)

awd wZA domain £3XA".

5.11. Suppose p is a limit ordinal number. Then let &x(f) =$x(f) where y

is the first \<p such that /£W(X) (cf. 2.4). Then $x(/) 7s a function with

image im(Ay(f)) =im(A"(f)) and domain £3XA' by the induction hypothesis

and 3.9.
The following theorem may be proved by induction. The details will be

omitted.

5.12. Theorem. Suppose p is an ordinal number and X and Y are sets.

Suppose either p is finite or A\_7F£1l*. Suppose /£W(X)nw(F). Then

Vk(f)=Vy(f).

Suppose p is an ordinal number. Let 1li= 11 if p is finite, and let 1li = 11*

if ju is infinite. For each set X£lli,

*x= U/,*x(/)]|/£W(X)}
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is a function with domain V?*(X). By 5.12,

*' =       U      44
XGfPfll,)

is a function with domain W(1li), and, for each set X Q  Hi and each

f€W(X), #>(/)-#*(/).

5.13. Theorem. Suppose p and v are ordinal numbers and /£'W(ll*)

nw(1l*). £Ae« $"(/)=$'(/).

Proof. We proceed by induction on max(p, v). We may suppose p<v.

Then v>0. If i» = l, then p = 0, and/£U*C\91 = 0, a contradiction. Hence we

may suppose v> 1. By 5.11 we may suppose neither p nor »< is a limit ordinal.

If p = 0, it is easily seen that v must be a limit ordinal contrary to supposition.

Hence p>0. Now, by 5.10 and the induction hypothesis, $"(/) =$'(/). Q.e.d.

5.14. Theorem. Suppose p is an ordinal number a«d/£tW(ll), and swp-

pose/£W(H*) i/> m infinite. Then dom($"(/))£3X1l£ll*.

Proof. Apply 5.8. Q.e.d.
Suppose X is a set. We define Tx(f) for each finite ordinal number p and

eachfQW(X), and also for each infinite ordinal numberpand eachfQV?"(X)

if XCH*, by induction as follows (5.15-5.17) so that (A), (B), and (C) below

hold.
(A) For eachfQ-W(X), ri(/)€W(dom(#*(/))).
(B) The function Tx= { [g, Tx(g)]\gQV?"(X)\ is one-one.

(C) 7/Z£lt*, then for each /£W(X) and each ordinal number X, Tx(f)

£'WX(11*) if and only iffQV?x(X).

5.15. IffQ*W°(X)=X, /eiH(/)=[0,/].
In 5.15, for each/£W°(X), r|(/) = [0, /]£dom(i-°(X)) by 5.9. Thus (A)

holds. Trivially, (B) holds. Suppose X£ll*. Then for each/£'W0(X),/£ll*

and [0, /]£ll* by 5.7. Hence (cf. 2.1-2.4) for each ordinal number X, /

£WX(X) if and only if X is a limit ordinal, and [0, /]£tWx(ll*) if and

only if X is a limit ordinal. Thus (C) holds.

5.16. Suppose p>0 is a nonlimit ordinal. Consider fQ'W(X). Consider

aQdom(f). By the induction hypothesis,

rx'(/(«)) G W-1(dom(^~1(f(a)))),

im(A""l(rrl(/(a)))) £ dom(*"_1(/(«))) £ 3 X X.

Let

f„ = {[[t,x], [/U {[dom(/),a]}>at]]| [/.x] £im(A""1(r71(/(a))))}.

Then £a is a one-one function such that (cf. 5.8)
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dom(£,) = im(A"~1(T7\f(a)))) £ dom^/i«))),

im(£a) £ dom(*"(/)).

£eZ

/. - C(Tx'\f(a))).

Then

/a£W-1(dom(^(/))).

Let

Tx(/) = {[ß,fB]\ßEdom(f)}.

In 5.16 we will use the induction hypothesis to show that (A) holds. For

each a£dom(/) observe from 5.16, 4.10.6, 4.6, and 5.16 respectively that

MA.'-'tävKcc)) = im(A'~1(irl(rx l(/X«)))))

= im(¿(A"-1(r71(/(a)))))

= im(fao(A""1(r71(/(«)))))

= im(ía).

Now consider ß<yEdom(f). If either £„ or £r is nonvoid, then, by 5.16,

im(A"_1(rx(/)(/3))) = im(&) * im(£T) = im(A"~\rx(f)(y))),

and Tx(f)(ß) r*Tx(f)(y). If & = £T = 0, then ^ = #_1is one-one by 4.10.4, and

(by 5.16 and the fact that Tfl(f(ß)) ^Tx~l(Jiy)) by the induction hypothesis

(cf. (B)))

r"x(f)(ß) = «TWC/O»))) H CV^/W)) = Tx(/)(7).
Thus rx(/) is one-one, and

Tx(f) £ WCW^'idom^'C/)))).

Thus (A) holds.

Next we will dse the induction hypothesis to show that (B) holds. Con-

sider/, g£W(X) such that f^g. We must show that Tx(f)^Tx(g). If
dorn (/) 7^ dorn (g), then

dom(Tx(f)) = dom(f) * dom(g) = dom(rx(g)),

and Tx(f)*Tx(g). Suppose dom(f) =dom(g). Then f(ß)^g(ß) for some

ßEdom(f). Consider such a ß. Let & be defined as in 5.16, and let £</ be

defined similarly with / replaced by g. If &?*&', then im^^im^') (cf.
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5.16), and (cf. the preceding paragraph)

im(A*~\Tßx(f)(ß))) = im(&) 9* im(60 = im(A"_1(ri(g)(/3))),

and hence Tx(f)(ß)9*Tx(g)(ß). If &=&', then, by 5.16, 4.10.4 (since & is
one-one), and the fact that Tx~l(f(ß)) 9*Tx~l(g(ß)) by the induction hypoth-

esis,

r*(/)(0) = C^Viß))) h ¿r^íjOs))) = rifex».

Thus Tx(f)(ß)9*Tx(g)(ß) ilf(ß)9*g(ß). Thus r^(/)^rj(g). Thus (B) holds.
Next we will use the induction hypothesis to show that (C) holds. Con-

sider X£11* and/£ W(-X"). For each a£dom(/) and each ordinal number X,

in 5.16,

dom(U W im({„) £ dom(4"'-1(/(a))) VJ dom(«^(/)) £ 11*

by 5.14, and hence, by 4.8 (cf. also 2.8),

Fx(/)(«) = C^rrfyi«))) £ W (11*)

if and only if Tx~1(f(a))QV?x(c\L*) and hence, by the induction hypothesis, if

and only if/(a)£-Wx(ll*). Also, for each ordinal number X, /£tWx+1(X) if

and only if f(a)QV?x(X) for each aQdom(f) (cf. 2.3), hence if and only if

IK/)(a)£Wx(ll*) for each <xQdom(f) =dom(Tx(f)), and hence if and only
if r^(/)£Wx+1(ll*) (cf. 2.3 and 2.8). Since/£W(X)£91 and Tx(f)Q%, we
havefQX = V?°(X) and Tx(f)Q%* = V?°(%*). Now by 2.4 (and 2.8) and
the preceding part of this paragraph, if X is a limit ordinal, fQV?x(X) if and

only if Tx(f)QV?x(%*). Thus (C) holds.
Thus 5.16 preserves the induction hypothesis.

5.17. Suppose p>0 is a limit ordinal number. Consider fQV?ll(X). Let y

be the first ordinal\<p such that /£WX(X) (cf. 2.4). £eí Tx(f) =Tx(f).

Then (A) holds by the induction hypothesis (which implies Tx(f)

QWi(dom($y(f))) in 5.17), 5.13, and 2.4. Also, (C) holds by the induction
hypothesis. To prove (B) consider/, g£W(X) with Tx(f)=Tx(g). Let y be

the first X<p for which fQV?x(X), and let 8 be the first X<p for which

gQV?x(X). Then, by (C), y is the first X<p for which r^(/)£IWx(ll0), and

5 is the first X<p for which Tx(f) = r£(g)£°Wx(H0). Hence 7 = 5. Then Tyx(f)

= Tx(f)=Tx(g)=Yx(g), and hence /=g by the induction hypothesis. Thus

(B) is established.

The definition via 5.15-5.17 of Tx(f) for all p, X, and/ as specified at the
outset is now justified.

The following theorem may be proved from 2.8 and 5.15-5.17 by induc-

tion. We omit the details.

5.18. Theorem. Suppose p is an ordinal number and X and Y are sets,
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and suppose /£W(X)nw(F). Suppose p is finite or A\7F£ll*.  £fte»

Vx(f)=T"r(f).

Suppose p is an ordinal number. Let Hi = 11 if p is finite, and let Hi = 11*

if p is infinite. By 5.18,

r"=    U    rx
xetfVlli)

is a function with domain W(lli), and for each set X£lli and each/£ W(Z),

r"(/)=ri(f).
To prove the following theorem proceed as in the proof of 5.13, but use

5.17 and 5.16 instead of 5.11 and 5.10. Use also 5.13. The details will be
omitted.

5.19. Theorem. Suppose p and v are ordinal numbers and /£W(ll*)

rvw'(n*). £Äe«r"(/)=r'(/).

5.20. Theorem. Suppose p is an ordinal number a«d/£W(ll), and sup-

pose /£W(1l*) if p is infinite. Then 5.20.1-5.20.4 below hold.
5.20.1. dom(r"(/))=dom(/)i/ii>0.
5.20.2. T"(f) is free.
5.20.3. &(/) is a function whose domain is im(A"(r"(/)))£ll* and whpse

image is im(A*(f)).

5.20.4. [*"(/) Hr>(/))=/.

Proof of 5.20.1. Apply 5.16 and 5.17. Q.e.d.
Proof of 5.20.2. We proceed by induction. For p = 0 apply 5.15, 5.7, and

5.1.
Consider ¿t>0 not a limit ordinal. Consider a£dom(/)=dom(r''(/)). In

5.16, dom(£a)Uim(£a)£1l* by 5.14, and £„ is one-one. Also, Y»-X(j(a)) is free

by the induction hypothesis. Hence (cf. 5.16)

r"(/)(«) = ^(T^ifia)))

is free by 5.6. Also, as in the proof of (A) for the p of 5.16,

im(A-i(r<-(/) (<*))) = imfo).

In 5.16, if a<ßEdom(f), then im(£a)nim(&) =0. Hence r*(/) is free by 5.3.
Consider/* a limit ordinal. Then r*(/) is free by 5.17, 5.4, and the induc-

tion hypothesis.

The induction is complete. Q.e.d.

Proof of 5.20.3. (First observe that dom(<Iw(/))£1l* by 5.14.) We proceed

by induction. For p = 0, 5.20.3 follows from 5.9, 5.15, and 3.1.

Consider p>0 not a limit ordinal. By 5.10, $&(/) is a function. We have

the following equations. [Equation (1) follows from 5.10 and the induction
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hypothesis; (2) and (5) follow from 5.16; (3) follows from 4.6; (4) follows
from 4.10.6; (6) follows from 3.7.]

dom($»(/))

(1) - {frU {[dom(Z), a]},x]\aE dom(f);

[t, x] £ dom(*-»(/(«))) = im(A"-'(r<->(/(a))))}

(2) =      U      im(fco(A*-i(r'-i(/(a)))))
a€dom(/)

(3) =      U      im(¿(\~\r~\f(a)))))
aGdomt/)

(4) =    U    MA^sTV^Í/to))))
a£dom(/)

(5) =     U     im(A-»(r-(/)(«)))
a€dom(/)

(6) = im(A"(j>(/))).

By 5.10, the induction hypothesis, and 3.7,

im(*"(/)) =      U     im(*-»(/(a)))
a6dom(/)

=      U      im(A«-i(/(a)))
a€dom(/)

= im(A*(f)).

Now consider p a limit ordinal. Then 5.20.3 follows from 5.11, the induc-

tion hypothesis, 5.17, and 3.9.

The induction is complete. Q.e.d.

Proof of 5.20.4. We proceed by induction. For p = 0 apply 5.15, 5.9, and

4.1.

Consider it>0 not a limit ordinal. Consider aEdom(Ti'(f))=dom(f). In

the notation of 5.16, by 5.10, 5.16, and 5.20.3,

^-»(/(«)) = *-(/) o e«.

Then, by 5.16, 4.10.1, and the induction hypothesis,

[*\f)rl(T\f)(a)) = [$"(/)]',"1(ír1(r''"i(/(«))))

= [^(/)ofa]"-1(r"-1(/(«)))

= [^-1(/W)]"-1(r"-1(/(a))) =/(<*)•

It now follows easily from 4.2 and 4.3 (since f(ß) 9íf(y) if ß<yEdom(f)) that

[<K/)Hr>(/)) =>(/)Ho[i*(/)] =/.
Consider p a limit ordinal. Then 5.20.4 follows from 5.17, 5.11, 4.7, and

the induction hypothesis.
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The induction is complete. Q.e.d.

In 5.20 take F=dom($"(/)), g = T"(ß, and </>=$*(/) to get the following

corollary.

5.21. Corollary. Suppose p is an ordinal number and /£W(1l), and

suppose /£W(ll*) if p is infinite. Then there are a set F£U*, a free element

gQV?»(Y), and a function <p from Y onto im(A"(/)) such thatf = fa(g).

As remarked earlier, 5.20 shows that 5.21 holds "uniformly."

Suppose X is a set. We define !>£(/) for each p£© and each fQV}»(X)

by induction as follows (5.22-5.24) so that $£(/) is a nonvoid subset of 3.

5.22. IffQV?°(X), letî>x(f)={0}.
5.23. Suppose p>0 is a nonlimit ordinal number. Consider fQ'W(X). If

f=0,let*x(f) = {0}.Iff9*0,kt

*x(f) ={tV{ [dom(0, a)} | a Q dom(f) ; l Q î>x~\f(a))}.

5.24. Suppose p>0 is a limit ordinal number. Consider fQV?"(X). Then

let !>£(/)= 4>/(/) where y is the first \<p such thatfQV?x(X) (cf. 2.4).

The discussion between 5.11 and 5.13 (including 5.12) could be repeated

with "$" replaced by "4". The result is a function for each p£0.

5.25. Theorem. Suppose p, vQe. Suppose /£'W(ll), and suppose

/£W(11*) if pis infinite. Suppose g£IW(ll), awd suppose g£ W"(ll*) if v is

infinite. Suppose

im(A"(V(.f))) = im(A'(r'(g))),       fr(f) = 4>'(g).
Thenf=g.

Proof. By 5.20.3 we are supposing

dom(4>*(/)) = dom(4>'(g)),        &(f) = <Ê"(g).

These equations will be easier to work with.

We proceed by induction on max(p, p). We may suppose p¿v.

Consider v = 0. Then also p = 0, and, by 5.9,

{[0,/]} = dom(4>o(/)) = dom(4>°(g)) = {[0,g]}.

Hence/=g.

Consider v>0 a nonlimit ordinal and p = 0. By 5.9,

{[0,/]} = dom($»(/)) = dom($'(g)).

By 5.10, for some <£3, xQX, and a£0,

[0,/] = [tU {[dom(/),«]},*],       0 = tKJ {[domW.o]} 9*0,

a contradiction. Thus p>0 if >»>0.

Consider v and p>0 nonlimit ordinals. By 5.23 (since &(h) £3 is nonvoid

for each X£© and each A£dom($x)),
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dom(/) = {a I t W {[dom(Z), a]} £ &(f) for some Z £ 3}

= {«| ZU {[dom(z),a]} £ &(g) forsomeZ £ 3} = dom(g).

For each a£dom(/), let

S(a,f) = {[t U {[dom(z), a]],x]\ [t, x] £ dom(*->(/(a)))},

and let S(a, g) be defined similarly. By 5.10,

U     S(a,f) = dom(*-(/)) = dom(^(f)) =      U     ¿(«.j).
a€dom(/) a€dom(j)

It follows easily that S(a, f) = S(a, g), and then also that

domi«**-1^))) = dom(*'~1(i:(«))),

for each a£dom(/) = dom(g). Moreover, for each a£dom(/),

fr-'i/X«)) = {Z £ 3 | Z U {[dom(z), a]} £ *"(/)}

= {Z£ 3 | ZU {[dom(z),a]} £ *'(f)} = %^l(g(a)).

Hence, by the induction hypothesis, f(a)=g(a) for each a£dom(/). Hence

/««■
Consider j> a nonlimit ordinal and /i a limit ordinal. Let 7 be the first

ordinal \<p for which /£W(ll*). Then (cf. 5.11 and 2.8) $"(g) =*"(/)

=$1,(/). By 5.24 and the previously mentioned analogue of 5.12, <$"(g) = !>"(/)

= ^7(/)- Moreover, by 2.4, 7 is not a limit ordinal. Hence/=g by the preced-

ing paragraph.

The induction step for v a nonlimit ordinal is complete. The induction

step for v a limit ordinal is similar to the argument in the preceding paragraph ;

the details will be omitted.

The induction is complete. Q.e.d.

Consider any set X. Let

W(A) = {/£ V?(X) I if dom(/) has a largest member, say ß, thenfiß) ^0|.

Define W(X) for pEO in the obvious way (cf. 2.1-2.5); W(Ar)£W(Ar) for

each pEO. Analogues of 2.5-2.7 with ""W" replaced by "*W" may be proved,

and *W(a) may be defined for each class a in the obvious way. In 5.25, if

'"W" is replaced throughout by "W," the hypothesis that l^(/) =4'(g) may

be dropped (examine the proof of 5.25).

One may effectively define by known methods (the details will be omitted ;

cf. [6]) a one-one function A from 3 onto G such that

im(A I 3ua) = co« (aEQ).

There is a one-one function A* from (P(3) onto (P(0) such that A*(.4)

= {A(Z)|/£i4 } for each .4£<P(3). Observe that

im(A* I <P(3U„)) = <P(«-) («£©).
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There is a one-one function A' from 3X11 onto 0X11 such that A'([f, u])

= [A(t), u] lor all i£3 and u£11. For each p£0 there is a function S*1 with

domain W(1li), Hi being 11 or 11* according as p is finite or infinite, such that

&(f) = [A*(ê"(/)), MA' o (A'(I>(/))))] (/ £ Hi).

The following theorem follows from 5.25; for more information cf. 6.11.

5.26. Theorem. For each ordinal number p, S" is a one-one function from

•W(lli) to (?(©) X(P(0X1Ii) where Hi is It or 11* according as p is finite or in-

finite.

5.27. We outline briefly other developments. One may define by induction

functions spf and a" from W^lt*) to Ö such that 5.27.1-5.27.4 below hold.

More precisely, first define sptfy and ax on V?"(X) for each set X£ll*, and let

spt  =       U       sptx,       <r   =       U       o-x.
Xe(P(1t*) xe(P(1l*)

5.27.1. For eachfQ 11* = V?°(%*), spt°(f) =a°(/) = l.
5.27.2. For eachfQ-W1^*), spt1(f)=<r1(f)=dom(f).
5.27.3. For each fQ-W>+1(%*),

spt"+1(f) = [dom(/)] U [     U     spt"(f(a))~\,

a>+1(f)=     Z    *"(/(«))•
a€dom(/)

5.27.4. If p is a limit ordinal number and/£W(H*), then, where y is the

first ordinal number X for which fQ^Cti.*), spt"(f)=spf(f) and <x"(f) =ay(f).
It is routine to prove 5.27.5-5.27.10 below.

5.27.5. 7//£W^(1l*)nW"(ll*),/Ae« 5p^(/)=sp/'(/)á<r'(/)=cr'*(/).
5.27.6. If <t> is a function from X£lt* to F£1I*, then for each /£'W(X),

spt"(fa(f)) úspt"(f) and <r"(<t>(f)) è<r"(f).
5.27.7. ///GWCll*), then dom(A"(ß)ua"(f), and dom(A"(/)) = <r"(f) if

f is free.
5.27.8. IffQWCM*), then

dom(A"(P<(/))) = cr"(r"(/)) = o-»(f),

and

spt»(r»(f)) = spt"(f).

5.27.9. IffQW(X) wiiÄZ£H*,/Äe»r"(/)£'W(£,XX) where v = spt"(f).
5.27.10. IffQ'W(X) m'<Ä Z£ll*, tóe« E"(/)£(P(co")X(PKXX) «¿ere Ö

í5 ÍA« smallest ordinal number a for which spt"(f) ^u".

6. Powers and cardinals arising from W(Z). We define by induction a

function SF, whose domain is the class of all ordinal numbers, such that
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*G0 = {[X, *(X)] | X < p}

for each ordinal number p. In particular, ,ir(0) = 0. Then for each ordinal

number p, ^f(p) is a function with domain p. If X <p, then

dom^X)) = X 5* p = domOG*)),

and hence ^(XJ^^Ox). Thus ¥ is one-one, and, for each ordinal number p,

"^(p) =^1** is one-one. The following lemma may be proved by induction on

p. We omit the details.

6.1. Lemma. Suppose X is a set, and suppose p and v are ordinal numbers

withp<v. Then^(u)EV?'(X).

The following lemma follows from 4.5, 4.10.4, and 4.10.3.

6.2. Lemma. Suppose X and Y are sets with \ X\ g | Y\ (resp., \X\=\Y\).

Then for each ordinal number p, | W(X)| ^ | W(F)| (resp., |w(A")|
= |W(F)|).

The following lemma would remain valid if V?(X) were replaced by

{ F£A| there is a relation which well-orders F} ; this was proved by Tarski

[7, Theorem 10]. Moreover, this substitution for V?(X) would also be valid

in 6.4.

6.3. Lemma. For each set X, \X\ <\v?(X)\.

Proof. Use A°x (cf. 3.1) to see that | X\ g | W(X) \. Suppose \X\=\ V?(X) |.
Then there is a one-one function e/> from W(X) to X. Let G he the set of all

fEV?(X) such that for each a£dom(/), f(a) =<p(f\a). Let g = U/e0/. Then

gEG, and g is the maximum member of G. Moreover, <p(g) £im(g). Let

k = gV{[dom(g),<t>(g)]}.

Then A£G contrary to g being the maximum member of G. Hence \X\

*\V?(X)\. Q.e.d.
6.4. Remark. By combining the method of proof of 6.3 with a method of

Specker [6], much more than 6.3 could be proved; e.g., \ X\2 < | V?(X) \ if X is

infinite.

6.5. Theorem. For each set X and all ordinal numbers p and v, 6.5.1—

6.5.3 below hold.

6.5.1. If p<v, then |w(X)| <|w(X)|.
6.5.2. |W+'(X)| =|W(W(X))|.

6.5.3. |/i| g|w(Z)|.

One may prove 6.5.1 by induction on v using 2.1-2.4 and 6.2. The details

will be omitted.

Proof of 6.5.2. By 2.5,
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| •W'ÇW(X)) I   á  I ■W"+'(X) I,

equality holding if v is finite or p is 0 or p is a limit ordinal. Suppose v is

infinite. There are ordinal numbers X and 5 such that p=X+8, p is 0 or a

limit ordinal, and 8 is finite. Then h+v = v, and |*WX(;Q| ̂  |'WCX)| by

6.5.1. Hence, by the cases of equality already established and 6.2,

| V?"+'(X) |   =  | "Wx+8+'(X) I   =  I WX+'(X) I

= I *W'CWX(X)) I   ^ I ,W'(,W(X)) I.

Now 6.5.2 holds by the Schröder-Bernstein equivalence theorem. Q.e.d.

Proof of 6.5.3. By 6.1, <¡r(p)QVP"+1(X). Hence im(^(p))QV?"(X), and,
since^(p) =^|p is one-one, 6.5.3 holds. Q.e.d.

6.6. Remark. Owe can obviously strengthen 6.5.3 for nonlimit ordinals. In

the proof of 6.5.3, observe that

{[*(/z)] o/| / £ V?(p) is increasing} £ V?»+1(X)

and hence 21"'áW"+1CAT).

Consider any set X. After F. Hartogs [3] we define

K(X) = sup{ dom(/) | / £ W(X)} =      U     dom(/).
/e*W(X)

For the elementary properties of «CAT), cf. [3; 4]; we mention a few. «(X)

is a cardinal number. If X is not finite, «(X) is the smallest cardinal number

(and smallest ordinal number) not equi-potent with a subset of X. li X is

finite, |«(X)| = | J^T j. We have the inequalities (sharpened later in 6.13)

|«(X)|   g* 2i*i',        | «(X) |   g*22'XI

and hence

2IKUDI   ^ 2slX|,J        2|K(X" g 2î2'Xl.

For each ordinal number p, «(«,,) = «,,+1. Consider any set F in addition to

X. If X or Y is infinite, then

N(X X F) = «(XU F) = max(«(X), «(F)).

If |X|^|F| (resp., |AT|=|F|),then«(Z)á«(F) (resp., N(X) =K(F)).

6.7. Theorem. For each infinite set X, H(V?(X))èH(<?(X)).

Proof. Consider any infinite fQV?*(X). Let A=im(Ai(f)). Then AQX
is equi-potent with the ordinal number dom(A2(/)), and A is infinite since

/£W2(.d) is infinite. Hence | *W(^4) j = |ö>(.4)| by standard arguments, and,

since fQV?(W(A)),

dom(f) < NCWU)) = «((P(d)) g K((P(X)).
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Given any finite /£W(X), trivially, dom(/) <N((P(X)). It follows that

NCW(A)) =     U     dom(/) = «((P(A)).
/eW(x>

Q.e.d.
It is elementary that | H(X) | ¿ | X\ if X is an infinite set. The following

lemma is a routine consequence.

6.8. Lemma. Suppose X and Y are infinite sets with \X\ g | Y\. Then

«(X) =N(F) if and only if \*(X)\£\Y\.

For each set ^£11* and each ordinal number p>0 we let

mX) =       U       dom(/),
/eW(X)\X

and we let t<°(A') = L For each set X(£ll* and each ordinal number p, we

observe that {o} XX is equi-potent with X and is £11* by 5.7, and we let

K"(X)=K"({o} XI) [this equation holds also if A"£ll* by the next asser-

tion]. Observe from 4.10.4 that if X and F are equi-potent sets, then ^"(A")

=K"(F) for each ordinal number p. It is easy to prove that for each set X,

W(X) =H(X), and fci"(Ar) is a cardinal number for each ordinal number p.

6.9. Remark. Suppose X is a set. For each ordinal number p,

N*+1(X) = N(W(A0) = WÍWÍX)).

For each limit ordinal number p,

N*(A) = U NX(X) = sup NX(X).

Ifp<vE6, then «"(X) gN'(X).

6.10. Theorem. Suppose X and Y are sets such that &(X) gK(F) (resp.,

H(X)=H(Y)). Then for each ordinal number p, K*(X) gN"(F) (resp., H>(X)
= «"(10).

Proof. (The result for N (A) = N ( F) follows immediately from the result

for N(A")gN(F).) We may suppose A\JF£1I*. The case p = 0 is trivial.

Consider an ordinal number p>0. Consider /£W(X)\A". Then A"(/)

EV?(X). Since N(X)^N(F), dom(A"(/))=dom(g) for some gE^(Y). Let

<t> = io ((A"(f))~l). Then <f> is a one-one function with domain A =im(A"(f))

EX and image im(g)£F, and fEV?"(A) by 3.8. Then <£*(/)£W(F)\F (cf.
2.1 and 4.8), and dom(<p"(f))=dom(f) by 4.10.4. Hence

N"(A) =       U       dom(/)
/eW(X)Yr

£       U       dom(g) = N"(F).
eeWcrAr

Q.e.d.
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The following theorem follows from 5.26 and 5.27.10 (cf. also the last

part of 6.9).

6.11. Theorem. Suppose X£11* and pEG, and suppose X or p is infinite.

Then E" maps W(X) one-one into (P(N*(X)) X(P(N"(X)XX).

6.12. Corollary. Suppose 0^ X£(P(H*) and pEO, and suppose X or p

is infinite. Then

|w(X)|   =2^',        |w(X)|   = 2™,        ¡W(X)|   = 2ijrnw<x>i.

[The inequations for \ °W(X) \ hold for all sets X. ]

Proof. There are one-one functions <pi and fa from V?(X) into (P(XXX)

and <P((P(X)) respectively such that

Pi(f) = {\f(a),M] \a<ßE dom(f)} (f £ V?(X)),

<t>Áf) = {{/(«) \a<ß}\ß= dom(f)} (f E W(X)).

The inequations for | W(A)| are thus established. If X is infinite, fc^X) =^0-

If p is infinite, N"(X) ̂ ^«o by 6.1. Hence «"(X) £N„. By 6.11,

| W(X) | = 2|K"<X)I2|X||K"(X)I = 2<lxl+l1i>iW<x>i = 2|X||K"(X)I.

Q-e.d. N

For each pEO there is a function S," with domain 1li = dom(S'') such that

S'(/) = [A*(#"(/)), A* o (A>(T>(f)))] (f E Hi).

It is easy to prove analogues of 5.26 and 6.11 obtained by replacing "S"" by

"E"," "(P(eX1li)" by "W^OXIli)," and "(P(«"(X)XX)" by "W(N"(X)XX).B

6.13. Lemma. Suppose X is an infinite set. Then

| X|2| N(X) |   =* 2W\       2ixilih<x)i = 22'X|,)

2|X| ¡NÍA) I g* 22'X|, 22'XI|K(x)i = 22*'XI.

Proof. Let <pi and </>2 be the functions in the proof of 6.12. There is a func-

tion pi from (P(XXX) onto [XXX]x [N(X)\2] such that for all/£W(X)

with domain >1 and all x, y£X\im(/),

PÁ{[x, y]} V Pi(f)) = [[x, y], dom(/)].

(E.g., if 5 is the set of all subsets of XXX not of the form { [x, y]} U<pi(f)

with/, x, y as just specified, let ¡pi\ S be constant, the constant value of pi\ S

being any member of [XXX] X [N(X)\2].) Since |K(X)\2| = |«(X)|, the

first inequality is established. The second inequality is a consequence of the

first. There is a function \pt from <P((P(X)) onto (P(X)X [N(X)\2] such that

for all/£W(X) with domain >1 and all F£X,

U{{y} I y E Y} W (Pi(f)\{f(0)})) = [F, dom(/)].
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(Cf. the parenthetical remark made in connection with ^i.) Since |«(X)\2|

= |«(X)|, the third inequality is established. The fourth inequality follows

from the third. Q.e.d.
Suppose a and p are ordinal numbers. Then «„is p-accessible if and only if

«a  =   U  fa\)
X6/I

for some nondecreasing function <¡> from p into «„•

6.14. Theorem. Suppose X is an infinite set such that «2(X)=«'(X).

£ftew there is a first ordinal number p>2 for which «"(X)?í«1(X), say p = v.

Then v<«(X), v is not a limit ordinal, v — 1 is a limit ordinal, and «(X) is

(v — l)-accessible. Moreover, for each p<v,

|W(X)|   ^ 2'xHK<T>l Ú 22'X|,)

| V9"(X) |   g 22'

Proof. We may suppose X£lt*. The existence of v and v<«(X) follow

from 6.5.3. Moreover, «(X) =dom(g) for some g£'W'(X), say for g = go.

Suppose v is a limit ordinal. Then for some nonlimit ordinal p>0,

go£tW"(X), and

«(X) = «"(X) > dom(g„) = «(X),

a contradiction.

Thus v is not a limit ordinal.

If v — 1 is not a limit ordinal, then

«Cw-2(X)) = «'-»(X) = «(X),

and hence, by 6.10,

«'(X) = «(W-KX)) = «('W1('W'-2(X)))

= «2cw'-2(x)) = «2(x) = «(X),

a contradiction.

Thus v — 1 is a limit ordinal.

Since «(X)<«'(X) = «(W-1(X)), «(X)=dom(/) for some

fQ'W('W>-1(X))='w(   U   W(X)J.

Consider such an/. For each p <v — 1 there is a unique strictly increasing func-

tion £„ with domain an ordinal number 3,, and with

im(íM) = {X £ dom(/) | /(X) £ W(X);/(X) £ 'W(X) for each y < p}.

Then/o^£cW*'+1(X) for each p<v—l. There is a unique function g£'W'(X)

with domain
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M<»-1

such that for each p<v — 1 and each r\<bß,

f([l>*]+x) «/&&)).

Then im(g) =im(/), and hence | 8| = |«(X)|.

We shall prove that for each p<v — 1, eM<«(X) where e„ = 2T<„ 8Y. Sup-

pose not. Then the inequality fails for some smallest p<v— 1, say p = r. Ht

is a limit ordinal, then g| i,£'WT+1CX), and hence eT<«r+1(X) =«(X), a

contradiction. If t is not a limit ordinal, then eT_i<«(X) and 8r_i<«(X),

hence €r = €r_i-f-8r_i<«(X), a contradiction. The inequality €„<«(X) for all

p<v — 1 is now established.

Since |«(X)| =\b\ where 8 = U^<,_i€^ with e„<«(X) for each p<v — 1,

«(X) = 8. Hence also «(X) is (v — 1)-accessible.

By 6.12 and 6.13 and the fact that «(X) ^«0, for each p<v we have

| 'W(X) |   g 2l-srnt«(-r)l ̂ 22lx|!,

| *W"(X)|   g 2'X"I«(X)| ^ 22llXl.

Q.e.d.
7. On sufficient conditions for the axiom of choice. For each power

m and each ordinal number a let 27(m; a) be the statement that there is no

function <j> with domain a such that <p(p) is a set with m<|<6(p)| <2m for

each p <a and such that | fap) | < | fav) | for all v <ct and p <v. Loosely speak-

ing, 27(m; a) is the statement that there is no strictly increasing «-sequence of

powers strictly between m and 2m. In particular, 77(m; 1) is the statement

HmorH(m) of [4; 5; 6]. If a<ßQ0, then 77(m; a) implies 77(m; ß).

For each ordinal number a, we define acc(«a), the accessibility of «a, to

be the smallest ordinal number p such that «a is p-accessible. Then acc(«a)

is an infinite cardinal number.

The following theorem further refines Specker's sharpening [6] of the

Lindenbaum-Tarski-Sierpiñski theorem [4; 5].

7.1. Theorem. Suppose X is an infinite set such that 27(|X|) and

27(2i*i; acc(«(X))) hold. Then 2!x" = |«(X)|.

Proof. By a result of Specker [6], |X| 2=X by 77(|X| ). Hence |X|

<|'W(X)| g2i*i by 6.3 and 6.12. Hence |w(X)| =21*1 by77(|X|).
Suppose |«(X)|$2l*l. Then «2(X)=«(-W(X))=«((P(X)) =«'(X) by

6.9 and 6.8. Let v be given by 6.14. Then v — 1 ̂ acc(«(X)), and

21*1 = \v?(X)\   < |*WX(X)|   < |-W"(X)|   g2!lï|'=2!lX|

if KX<pgK-l by 6.14 and 6.5.1, contrary to 77(2'xi; acc(«(X))).
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Hence N(X)| =VXK Hence |N(X)| =2|X| by an argument used by

Specker [6]. Q.e.d.

7.2. Corollary. Suppose X is an infinite set such that 77(|X|) and

77(2ixi;u>) hold. Then 2lxi=N(X).

For each set X we define by induction (P"(X) for each ordinal number p so

that (P°(X)^X, <P'(X)=£(X), ó»+i(X) = <P((KX)), and

<P'(X) = U (P"(X)
«<»

if y is a limit ordinal. For each set X, {^"(X)} m6q and {W(X)} „eg are fam-

ilies of sets whose powers are strictly increasing. The axiom of choice implies

that | <P"(X)| = | W(X)[ for each pEO if X is infinite. The writer has been

unable to prove that this condition implies the axiom of choice. We present a

partial result (7.3 and 7.4) after stating two axioms.

Let 1lo be the class of all atoms. Axiom (*) below is a form of the restric-

tive axiom and restricts any set to be built ultimately from atoms. Axiom

(*) is equivalent to the usual statement of the restrictive axiom (if stated to

allow for atoms) : Each nonvoid class a has as a member either an atom or a

set disjoint with a.

Axiom (*). H = U[x^]e(p(iio)xe <J*(*)-
Axiom (**). For each set X£llo there is a function <f> with domain <?(X)\{0}

such that <p(Y)E Y for each nonvoid set Y EX.
Axiom (**) is equivalent to each set of atoms having a well-ordering. The

axiom of choice reads the same as the axiom just stated with "£llo" deleted.

Axiom (**) holds automatically if 1lo = 0, as is the case for the von Neumann-

Bernays-Gödel type of set theory.

7.3. Theorem. Suppose Axioms (*) and (**) hold, and suppose (1) and (2)

below hold.
(1) | W(X)| = | <P"(X)| for each set X£1I* and each pEO.

(2) For all sets X and Y and each /*£©, */ ^"(X)! <|(P"(F)|, then

\X\<\Y\.
Then the axiom of choice holds.

Proof. Consider X£(P(ll*). There are a set .4£llo and p£ö such that

XEG"(A), and \A\ á|NJ for some ordinal number a. It may be proved

by induction that |(r*Crl)| | Y\ g|(PxG4UF)| for each X£0 and each set

F£ll\i4. Hence, for each pEO,

|x||*W)|á | ö"M) 11 «"(X) |
= \<?>(A\Jfr(X))\ I* IXWI

with ß depending on p, and„ by 6.12,

I W(X) I   g 2IXHK"(X)I = | (P'+'^/i) | .
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[So far neither (1) nor (2) has been used.] Now let p = v+2 to get

| <F+l(X) |   < | (?"(X) |   =  | -W-(X) |   á | <P"+l(« ß) |

by (1) and then | X| á | «s| by (2). Since X£(P(1t*) was arbitrary, the axiom

of choice holds. Q.e.d.
7.4. Remark. The previous theorem remains valid if (1) and (2) together are

replaced by the single condition (3) below.

(3) For all sets X, F£1I* and each pQe, if |*W"CX)| <\<P»(Y)\, then

\X\<\Y\.
In fact, the previous theorem remains valid if (l) and (2) together are replaced

by the single condition (4) below.

(4) For each set X£1I* and each aQQ, there is pQQ such that for each set

Y with | W(X)| <\<P"(Y)\,itistruethat \X\ <| Y\.
Loosely speaking, (4) states that for each set X£ll* and each aQQ, we have

uniformly for | F|>|X| that eventually | W(X)| < | tf>a(F)| as p increases

through 0.
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