SOME DEVELOPMENTS IN THE THEORY OF
NUMERATIONS(})

BY
A. H. KRUSE

1. Introduction. After A. Lindebaum and A. Tarski [4], for each power
m (cf. definition of power later in this section) let H(m) be the continuum
hypothesis statement that there is no power n such that m <n<2"™. Linden-
baum and Tarski stated without proof that if H(m), H(2™), and H(22™), then
22" is the power of a well-ordered set; they stated also without proof that if
H(m?) and H(2™), then 2™ is the power of a well-ordered set. W. Sierpifiski
[5] proved that if H(m), H(2™), and H(2?™), then m is the power of a well-
ordered set, and E. Specker [6] sharpened both results of Lindenbaum and
Tarski by proving that if H(m) and H(2™), then 2™ is the power of a well-
ordered set.

This paper has arisen from attempts to sharpen Specker’s result, which is
sharpened in 7.1 and 7.2 (first cf. the definition of H(m; «) in §7 prior to 7.1).
The writer’s efforts along these lines led to developments in the theory of
numerations (defined in the first paragraph of §2) of independent interest,
and most of this paper is concerned with these developments.

The content of this paper may be developed in an axiomatic set theory of
the von Neumann-Bernays-Gédel kind (cf., e.g., [1]) modified as follows to
allow (but not to imply the existence of) elements which are not sets. Each
object is either an element or a class. A set is any element which is a class. An
atom is an element which is not a class. The usual axioms may be modified
in the obvious way to accommodate atoms. We shall assume all the usual
axioms so modified except the restrictive axiom and the axiom of choice
(cf. §7).

We indicate briefly our use of some terminology and notation. Elements
x, y determine the ordered pair [x, y]={{x}, {x, y}}. If @ and ® are classes,
ax®={[x, y]|x€a, yE(B} . Relations and functions are classes of ordered
pairs satisfying (in the case of functions) the usual conditions. If ® is a rela-
tion, dom(®) and im(®) are respectively the domain and the image of ®
defined in the usual way, and ®!is the inverse (or converse) of ®. A function
from @ to (or into) ® has domain @ and image C®; a function onto ® has
image ®. If ¢ and Y are functions, Yy o ¢ = { [x, y]|y=¢(z) and z=¢(x) for
some z}. If ¢, ¢, £ are functions, foyogp=(foy)op=£0 (Y 0¢). Each

ordinal number will consist of all its predecessors, and a cardinal number is
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any ordinal number not equi-potent with any of its members. The first
ordinal number is 0, the void set; w =N is the first infinite ordinal number. A
power is a maximal class of mutually equi-potent sets. If X is a set, | X | is
the power of X and is the unique power m for which X&m. If @ and ® are
classes, then ®(@) is the class of all subsets of @, and @\® is the relative
complement of ® in @. The binary connectives <, <, etc. will be applied
to ordinal numbers and to powers in the usual way. After Tarski [4], | X|
§*| Y| will mean that there is a function from Y onto X; if IXI §*| Y| ,
then 2!X1 2171, Other terminology and notations will be introduced as they
arise or will not be introduced at all if the reader may safely rely on conven-
tion and context.

Many proofs and definitions in this paper are by transfinite induction. In
such a proof (or definition) the induction step usually will be carried through
without being explicitly announced (the induction will be announced), and
the induction hypothesis, the statement of which in each case will be obvious,
will be referred to and used without being formally introduced. In some cases
we shall define for each ordinal number u a function ¢* whose domain is not
a set (but a class). In such a case the functions ¢*, if defined by induction,
must be defined in pieces which are sets, the pieces to be assembled later into
the function ¢*. The ultimate reason for this is the fact that a class which is
not a set is not a member of a class; thus a sequence (existing in the theory
as a function) of classes which are not sets is out of the question. For an
example, cf. the definition of the functions A* in §3.

2. The functions W=. After Bernays [1, IV, pp. 140-141] we define a
numeration to be any one-one function whose domain is an ordinal number.
Throughout the rest of this paper, U will be the class of all elements, @ will
be the class of all ordinal numbers, 9 will be the class of all numerations, and
a*=u\J. For each fEN, {[f(@), fB)]|a<BEdom(f)} is a reflexive well-
ordering of im({).

For each set X we define W#(X) for each ordinal number u by transfinite
induction as follows (2.1-2.4).

2.1, WI(X)=X.

2.2, W(X)=w(X)= {fES)lI im(f) CX}. It is easy to show that W(X) is a
set (cf. 6.12).

2.3. WwHY(X) =W (WH(X)). [This holds for u=0 by 2.1 and 2.2.]

2.4. If u is a limit ordinal,

wH(X) = U wWNX).
A<

2.5. REMARK. For each set X and all ordinal numbers p and »,
Wr(WH(X)) C Wwe(X),
and, if v is finite or u=0 or p is a limit ordinal, then
W (Wh(X)) = Wit (X).
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For each ordinal u, W¢= { [x, W“(X)”XE(P(‘U,)} is a function with
domain ®(U). The lemma below follows by transfinite induction.

2.6. LEMMA. If ACX E®(W), then Wr(A) CWH(X) for each ordinal num-
ber p.

2.7. CorOLLARY. If XE®(U),

WH(X) = U we(4)
4e®Px)

for each ordinal number u.

For each class @, we may define

wr@) = U ws(4).
4e®@)

If @ is a set, W*(@) is the same as before by 2.7. It should be noted that we
are not extending the domain of the function W* (dom(W*) =®(U)), but we
are enlarging the scope of usage of the symbol “W*” to express a certain predi-
cate (“®=W+*(Q)” expresses a relationship among ®, u, @). Observe that if
AC®, then W+(@) CW+(®) for each ordinal number u.

2.8. LEMMA. Suppose X E@(U*), YE®(U¥), u and v are ordinal numbers,
and fFEWHX)YNW(Y). Then for each ordinal number N, fEWMNX) if and
only if fEWMNY) and also if and only if fEWNXNY).

Proof. We proceed by induction on min(y, ») =u/Ww. We may suppose
FEWNX) for all A\<p and fEW(Y) for all A <». Then neither u nor v is a
limit ordinal (cf. 2.4). We may also suppose p=v (i.e., uC»).

Suppose first that u=0. Then fEX CU* by 2.1, and » has no predecessor
(for f&9N; cf. 2.2 and 2.3). Hence »=0, and fE€Y. Moreover, fEWMX) if
and only if A=0 or Ais a limit ordinal, and similar statements hold for
Y and XNY replacing X.

Suppose next that p=1. Then im(f)CX=W°(X) by 2.2 and 2.1, and
eitherv=0orim(f) CW*~1(Y) by 2.3 and 2.2. Since 1 =p =, im(f) CW"!(Y).
The preceding paragraph with f replaced by a member of im(f) shows that
v—1=0, i.e., v=1. Then im(f) CY, and im(f) CXNY. Moreover, fEW*(X)
if and only if A\=1 or \ is a limit ordinal or both X is not a limit ordinal and
A—1 is a limit ordinal or both A>0 and dom(f) =0; similar statements hold
for ¥ and XNY replacing X.

Suppose p>1. Then im(f) CW+(X)N\W~1(Y) by 2.3 and 2.2. By the
induction hypothesis, for each aEdom(f) and each ordinal number A, f(a)
€WMX) if and only if f(a) EW*(Y) and also if and only if f(a) EWNXNY).
From this it follows easily (by transfinite induction) that for each ordinal
number \, f € WMX) if and only if f € WX(Y) and also if and only if
fEWMXNY).
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The induction on min(u, ») is complete. Q.e.d.

2.9. COROLLARY. Suppose QC U* and BC U*. Then for each ordinal num-
ber p, WH(AN®) =WH(QR)NWH(®).

The following lemma may be proved by induction.

2.10. LEMMA. Suppose X is a set and p a limit ordinal number. Then for
each element f, fEWH(X) if and only if fEWNX) for some nonlimit ordinal
A<u.

3. The functions A*. For each set X we define the function A% with do-
main ‘W#(X) and image CW(X) for each ordinal u by transfinite induction
as follows (3.1-3.6). _

3.1. A¥(x)={[0, ]} (i.e., dom(A%(x))={0} =1 and A%(x)(0)=x) for
each x€ X =wWX).

3.2. Ax(f) =f for each fE W (X).

3.3. Suppose u>1 is not a limit ordinal. Suppose fEW»(X). Define the
relation S;CX X X as follows. For all x, yE X, let xSyy if and only if thereare g, b
€im(f) such that f~(g) is the smallest a€dom(f) for which xEim(A% ' (f(@))),
such that f~'(h) is the smallest aEdom(f) for which yEim(A% '(f(a))), such
that f~1(g) <f~'(h), and such that

Ar'@) @ = (08 @) 6)

if g=h. There is a unique function Ax()EW(X) such that im(A%(f))
=dom(S;) and such that a BEdom(Ak(f)) implies

[Ax(N@, Ax(N®] € 5.
[Observe from 3.1 and 3.2 that if “u>1” is replaced by “u=1," the procedure in
3.3 gives the same A%(f) defined in 3.2.]
3.4. If uis a limit ordinal and fEW+(X), then, where o is the first N <u for
which fEWMNX) (cf. 2.4), A% (f) =A%().

3.5. THEOREM. Suppose X is a set and u>0 is an ordinal number. Then
im(A%) =W (X).

Proof. We proceed by induction. For p=1, apply 3.2.

Consider u>1 not a limit ordinal. Consider fEW(X). By the induction
hypothesis there is g&W+1(X) such that A% '(g) =f. Then { [0, g]} € W+(X),
and, by 3.3, A%({ [0, g]}) =A%'(¢) =f. Thus im(A%) = W(X).

The induction step for u a limit ordinal is trivial (cf. 3.4). Q.e.d.

3.6. LEMMA. Suppose X and Y are sets, u is an ordinal number, and
fEWHX)NWH(Y). If u is finite or X\J Y CU¥, then Ax(f) =A%(f).

Proof. We proceed by induction on u. For u =0, apply 3.1. For u=1, apply
3.2,
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Consider 4> 1 not a limit ordinal. It suffices to show that S; in 3.3 is inde-
pendent of X C U* for which f& W+(X); this follows easily from the induction
hypothesis (with f replaced by f(a) for each aEdom(f)).

Consider p a limit ordinal. In this case A%(f) =A%(f) follows from 2.8, 3.4,
and the induction hypothesis.

The induction is complete. Q.e.d.

Suppose u is an ordinal number. Let U; =AU if u is finite, and let U; =u*
if u is infinite. Then for each set X C,,

Ax = {[f, Ax(N]] 1 € wr(X)}

is a function, and, by 3.6,
A= U 1Ax
xe® Uy

is a function with domain W#(,). For each set X C U, and each fEW*(X),
A+(f) =A% (f).

The following lemma is easily proved from 3.1-3.3. The details will be
omitted.

3.7. LEMMA. Suppose X is a set, u is an ordinal number, and fE&WH+t1(X).
Then

im(A*+1(f)) = U im(An(f(a))).

a€dom (f)

In particular, if u=1,
im@A*(f) = U im(f(e)).

aEdom (f)

3.8. THEOREM. Suppose u is an ordinal number and fEWr(U*). Then for
each set XC u*, (i), (ii), and (iii) below are mutually equivalent.

(i) fewH(X).

(i) A*(f)ew(X).

(iii) im(A*(f))CX.
Thus im(A*(f)) is the smallest set X CU* such that fEW*(X). [If u is finite,
U* may be replaced consistently by .|

Proof. Trivially, (i) implies (ii). By 2.2, (ii) is equivalent to (iii). It re-
mains to prove that (ii) or (iii) implies (i).

We proceed by induction on u. For p=0 apply 2.1 and 3.1. For p=1 apply
2.2 and 3.2.

Consider u>A not a limit ordinal. Consider X&€®(Uu*) such that
im(A#(f))CX. Then im(A*'(f(a)))CX and fla)EW+(X) for each
aEdom(f) by 3.6 and the induction hypothesis. Hence f&W(wW+1(X))
=W+(X) by 2.2 and 2.3. Thus (iii) implies (i).
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Consider p a limit ordinal. Consider X € ®(4*) such that im(A*(f)) CX.
By 2.4 there is a first ordinal A <u such that f€ W*(U*), say A=a. Then (cf.
2.8 and 3.4) A*(f) =A*(f), and im(A=(f)) CX. By the induction hypothesis,
fEW=(X). By 2.4, few+(X). Thus (iii) implies (i).

The induction is complete. Q.e.d.

3.9. THEOREM. Supposeuandvareordinal numbers, and suppose f & W+(U*)
NW>(U*). Then A*(f) =A(f).

Proof. We proceed by induction on max(u, ») =u\Ur. We may suppose
p<v. Then »>0. If v=1, then u=0, and fEU*N\N=0, a contradiction.
Hence we may suppose » > 1. By 3.4 we may suppose neither x nor » is a limit
ordinal. If u=1, then by 3.3 and the induction hypothesis it is easily seen
that A“(f) =A"(f). If u=0, it is easily seen that » must be a limit ordinal
contrary to supposition. Q.e.d.

3.10. LEMMA. Suppose X is a set, u is an ordinal number, and fEWr+2(f).
Then

A2 (f) = AHAX(S)).

Proof. By 3.2 and 3.3,

(@) {f(@)|aEdom(f) andAEdom(f(a))} = {A2(f)(v)|yEdom(A%())}.
By 3.7 and (a),

(b) im(A*(f)) = U im(a**(f(a)))

a€dom (f)

U U im@A*(f(@)N)))

aEdom (f) AEdom (f(a))

= U, im@@(m)

vE€dom (A (1))

=im(A+*1(4%(f))).

Let
A = im(A+2(f)) = im(A+1(A%()))),
Ry = {[A*2(f)(e), A*+2()(®)] | @ < B € dom(Aas+2(f))},
Ry = {[A1(A2(N))(a), A (A2())(B)] | & < B € dom(As+1(A2()))}.

Then R\UR,CA XA, and each of R, and R, reflexively well-orders A.

To prove A*+%(f)=A*+1(A%(f)) it will suffice to prove R;=R, Using
(b) we make definitions (c) and (d) below.

(c) For each x € A, let o, be the first &« € dom(f) such that
x€im(A**(f(a))).

(d) For each x&€A4, let v, be the first y&dom (A%(f)) such that
x&€im (A*(A%(f) (7))).

Using (c) and (d) we make definitions (e) and (f) below.
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(e) For each x€4, let 8. be the first E€dom(A*+!(f(az))) such that
x=A+(f(az)) (B).

(f) For each x€ A, let §, be the first d&dom(A*(A%(f)(y:))) such that
x=A*(A*(f) (72)) (9).

Using (c) and 3.7 we make definition (g) below.

(g) For each x € 4, let N\, be the first N € dom(f(a;)) such that
x€im(A*(flaz)(N)))-

By (c), (g), and 3.7,

(h) for each x€4, f(a;)(\.) Eim(f(a)) for each a<as, and f(az)(\:)
#f(az) ) for each A <.

By 3.2, 3.3, (h), (¢), (g), and (d) (cf. also (a)),

(1) flaz)(Nz) =A%(f)(v2) for each xEA4,

() for all x, yEA, v.<7, if and only if either a, <a, or both a,=¢, and
Az <\, and v, =7, if and only if both a,=a, and A\.=\,.

By (f) and (i),

(k) for each x€4, 6. is the first §€dom(A*(f(az)(N\s))) such that
x=A*(f(ez) Ae)) (82).

By 3.3, (e), (g), and (k),

(1) A*+1(f(es) (B2)) =A*(f(ez) (N2)) (82) for each xE4,

(m) for all x, yEA with a;=ay, 8.<f, if and only if either A, <\, or both
Az=\, and 8,<d,, and B,=p0, if and only if both \,=\, and 8.=34,.

By (c), (e), and 3.2,

(n) for all x, yEA, xRy if and only if either o, <a, or both a.=a, and
B.<B,

By (d), (f), and 3.2,

(o) for all x, yE A, xRyy if and only if either v, <%, or both y,=7v, and
0:50,.

It is easily shown from (j), (m), (n), and (o) that R,=R.. Q.e.d.

3.11. THEOREM. Suppose X is a set, u is an ordinal number, v is a finite
ordinal number, and fE W+ (f). Then

At (f) = A+ A(f)).

Proof. For v=0, apply 3.1 and 3.4 if u>0, and apply 3.1 and 3.2 if u=0
(or cf. the comment after the proof of 3.7). For v=1 apply 3.2. For »=2,
apply 3.10. We now proceed by induction (using 3.10), the induction step
being

APHI(f) = A(AY(f)) = AFR(AK())) = AHARH(D),

4. Maps WH(X)—W+(Y) induced by maps X— Y. Suppose ¢ is a function
with dom(¢) a set. We define ¢*, a function with domain W*(dom(¢)), for
each ordinal number u by transfinite induction as follows (4.1-4.4).

4.1. ¢°'=¢.

4.2. Suppose FEW(dom(p)). Let A= {BSdom(f)|d(f(8)) =o(f(a)) for
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each a <B}. There is a unique strictly increasing function £ with dom() an
ordinal number and im(§) =A. Let ' (f) =¢ o f 0 £&. Then dom(¢!(f)) =dom(§).
Thus we obtain a function ¢* with domain W (dom(s)).

4.3. ¢#t1=(¢*)L. [This holds for u=0 by 4.1 and 4.2.]

4.4. Suppose u is a limiting ordinal. If fEW+(dom(e)), then, where a 1s
the first ordinal N <p such that fEW(dom(e)) (cf. 2.4), let o*(f) =o2(f).

The following theorem may be proved by a straightforward induction,
the details of which will be omitted.

4.5. THEOREM. Suppose X and Y are sets, suppose ¢ is a function from X
to Y, and suppose u is an ordinal number. Then ¢* is a function from W+(X)
to WH(Y).

The proof of the following lemma is straightforward (cf. 4.2) and will be
omitted.

4.6. LEMMA. Suppose X is a set and ¢ a function with domain X. Then

im(¢'(f)) =im(¢ o f) for each fEWNX). If ¢ is one-one, then ¢*(f)=dof
for each fEWNX).

4.7. THEOREM. Suppose XC U* and Y are sets, and suppose ¢ is a function
from X to Y. Suppose p and v are ordinal numbers, and suppose fEW+(X)
NW(X). Then ¢*(f) =¢"(f).

Proof. We proceed by induction on max(u, ») =u\Ur. We may suppose
p<v. '

Suppose » is not a limit ordinal. There is a smallest ordinal A <pu such that
FEWNX) and ¢*(f) =¢*(f). By 4.4, \ is not a limit ordinal. Since W(X)
=XCuU* and W(X)=W(W1(X))CN, WU(X)NW’(X) is void. Hence
A#0. Now f(a)EW1(X)NW~1(X) and ¢ '(f(a)) =¢""1(f(a)) for each
aEdom(f) by the induction hypothesis. It is seen from this and 4.2 that

¢(f) = ) = (@' = @ H() = ().

Suppose v is a limit ordinal. By 4.4, ¢”(f) =¢?(f) where 8 is the first ordinal
A <v for which fEW*(X). Then

() = &) = &(f)

by the induction hypothesis.
The induction is complete. Q.e.d.

4.8. THEOREM. Suppose X CU* and Y C U* are sets and ¢ a function from
X to Y. Suppose p is an ordinal number and fEW*(X). Then for each ordinal
number N, fEWNX) if and only if ¢*(f) EWINY).

Proof. We proceed by induction on u. By 4.7 we may suppose f & W*(X)
for each ordinal A <u. Then, by 2.4, u is not a limit ordinal.
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Consider first the case in which x=0. It is easily seen from f€E 3 that
fEWNX) if and only if A=0 or \ is a limit ordinal and then also, since
°(f) =¢(f) &€q, if and only if ¢°(f) EWr(Y).

Now consider the case in which u>0. Then f(a) EW*(X) for each
a&dom(f). Suppose first that A>0 is a nonlimit ordinal number. Then
(a)-(f) below are mutually equivalent. [To prove (a) equivalent to (b) and
(e) equivalent to (f), use 2.1-2.4, especially 2.3. To prove (b) equivaleut to
(c), use the induction hypothesis. To prove (c) equivalent to (d), use 4.3.
To prove (d) equivalent to (e), use 4.6.]

(@) fEWMX).

(b) f(a) EW*1(X) for each aEdom({).

(c) ¢* (f(a)) EWr1(Y) for each aEdom(f).

(d) @) (N B eW(Y) for each B&dom((¢*~1)(f)).

(e) ¢*(N)B)EeWwr1(Y) for each BEdom(¢#(f)).

) ¢*(NEeWNY).

Moreover, f&EW(X); since ¢*(f) EW (W 1(X))CN, ¢*(f) EY =w(Y).
Thus (a) is equivalent to (f) for each nonlimit ordinal number . Then also,
by 2.10, (a) is equivalent to (f) for each ordinal number .

The induction is complete. Q.e.d.

4.9. LEMMA. Suppose X and Y are sets, suppose ¢ is a function from X to
Y, and suppose Y is a function with domain Y. Then (Y o @)=y 0 ¢!

Proof. Consider f&W!(X). Let A and £ be as in 4.2. Then ¢!(f) =¢ ofo¢.
Let

B = {B € dom(¢'(f)) | ¥(6'(N(B) = ¥(¢'(f)(a)) for each a < B}.

There is a unique strictly increasing function 7 with dom(r) an ordinal num-

ber and im(7) =B. By 4.2, ¥ (@'(f)) =¥ 0 (¢'(f)) or=¢ 0o ofofor. More-
over,

B = {8 € dom(¥) | ¥(6(f(£(8)))) * ¥(¢(f(£(a)))) for each a < B},
and hence (cf. the definitions of 4 and £)

im(¢| B) = {7 € dom(f) | ¥ 0 ¢)(f(7)) # ¥ 0 $)(f(8)) for each & < 7}.

Also, (o7 is a strictly increasing function with dom(§ o 7) =dom(r) and
im(¢o7) =im(£| B). Hence, by 4.2,

(Wod)'(f) = Wog)ofo(tor) = ¢¥'(¢'(f)) = Woe)(f).
Thus (Y 0 ¢p)'=¢¥'0¢'. Q.e.d.

4.10. THEOREM. Suppose X, Y, and Z are sets, ¢ is a function from X to
Y, and { is a function from Y to Z. Suppose also that u is an ordinal number,
and suppose that either u is finite or X\J Y\VZC U*. Then 4.10.1-4.10.5 below
hold.



532 A. H. KRUSE [December

4.10.1. (Y 0 P)*=y* 0 ¢*.

4.10.2. If ¢(x) =x for each xE X, then ¢*(f) =f for each fEWH(X).

4.10.3. If ¢ maps X one-one and onto Y and ¥ is inverse to ¢, then ¢* maps
We(X) one-one and onto WH(Y) and Y+ is inverse to ¢*.

4.10.4. If ¢ is onme-ome, then ¢* is ome-ome, ¢**'(f) = ¢*of for each
fEWH1(X), and dom(¢*(f)) =dom(f) for eack fEWH(X)\U* if u>0.

4.10.5. For each fEW+t1(X), im(¢*+1(f)) =im(¢* o f).

4.10.6. For each fEW*(X), A*(¢*(f)) = (A*(f)).

Proof of 4.10.1. We proceed by induction on u. For u=0, apply 4.1. For
w=1, apply 4.9. ,

Consider the case in which p>1 is not a limit ordinal. By the induction
hypothesis, 4.3, and 4.9,

Woo) = (Wog) ) = @ logr) = ()0 (¢ ) = yro¢r

Consider the case in which u is a limit ordinal. Consider f&€W#(X). There
is a first ordinal A <u for which fEW*(X), say A=a. By 4.4, the induction
hypothesis, and 4.8 or 4.7,

Vo d) (f) = W o)) = ¥ (#(f)) = ¥=(¢*()) = ¥*(¢*())-
Thus (Y 0 P)*=y* 0 ¢*.

The induction is complete. Q.e.d.

The proof of 4.10.2 is a straightforward induction using 4.1-4.4. We omit
the details.

By standard arguments, 4.10.3 follows from 4.10.1 and 4.10.2.

Proof of 4.10.4. Suppose ¢ is one-one. We may suppose ¥ =im(¢). Then
¢* is one-one by 4.10.3. By 4.3 and 4.6, ¢**1(f) = (¢*)'(f) =¢* o f for each
fEwW++1(X), and hence dom(¢*t'(f)) =dom(f) for each fEW+I(X). It is
then seen from 2.4 and 4.4 that dom(¢*(f)) =dom(f) for each fEW#(X)\u*
if u>0. Q.ed.

Proof of 4.10.5. By 4.3 and 4.6,

im(¢**+'(f)) = im((¢*)'(f)) = im(¢* 0 f)

for each fEW*+(X). Q.e.d.
Proof of 4.10.6. We proceed by induction on u.
Consider i =0. For each x€EW(X) =X,

M%) = {[0, s@)]} = ¢ 0 {[0, 2]} = ¢ 0 (A%)) = ¢'(A°())

by 4.1, 3.1, and 4.6.
Consider u=1. For each fEW(X),

A ') = ¢'() = ¢'(A'()
by 3.2.
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Consider 4> 1 not a limit ordinal. Consider fEW*(X). We have the fol-
lowing string of equations. [Equations (1) and (6) follow from 3.7;°(2) follows
from 4.10.5; (3) follows from the induction hypothesis; (4) and (8) follow
from 4.6; (5) and (7) are immediate. ]

im(A*(¢#(1)))
(1) = U  im@A(¢*(f)(a))
a€dom (¢4 (1))
(2 = U im@A¢*'(f(8))
BEdom (f)
©)] = U im(e'(A'(f(8)))
BEdom (f)
4 = U im(¢ o (A*'(f(8))))
B€dom (f)
© = im(s] U imtwmom)
pedom (f)
© = im(¢| im(a%(f)))
(™ = im(¢ o (A*(f)))
8 = im(¢*(A*(f))).
Let

4 = im(A(¢*(f))) = im($*(A*(f))),
Ry = {[A@*(N)(a), A(@*()B)] | a = B € dom(A*(¢*())},
Rs = {[6'(A*(N) (@), ' (A*(N)(B)] | a < B € dom(p*(A*()))}.

Then R\\JR,CA XA, and each of R, and R; reflexively well-orders 4. To
prove A#(¢#(f)) = (A*(f)) it suffices to prove RyCR;. Considering the right-
hand members of (1) and (2), we may make definitions (a) and (b) below.

(a) For each x€A4 let a, be the smallest a&dom(¢*(f)) for which
x€im (A (¢*(f) (@)))-

(b) For each x € A let B. be the smallest B € dom(f) for which
x€im(A*(¢*1(f(8)))).

Considering (a), we may make definition (c) below.

(c) For each x€A let v. be the smallest yEdom(A*~1(¢*(f)(az))) for
which x=A*"(¢*(f)(az)) (7)-

One may prove (d) and (e) below from (a), (b), 4.2, and 4.3.

(d) For each xEA4, ¢*(f)(az) =¢*1(f(B2)).

(e) Forall x, yEA, a.<ay if and only if 8. <B,, and a,=a, if and only if
B:=PB,.

By (c) and (d),

- (f) For each x€A, 7. is the smallest y & dom (A*~1(¢#~1(f(8.)))) for which

x=A*1(¢*1(f(B:))) (7).
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By the induction hypothesis,

(g) For each B&dom(f), A*~1(¢*1(f(8))) =o' (A*(f(8)))-

By (g) and (f),

(h) For each xEA, . is the smallest yEdom(¢'(A*~1(f(B:)))) for which
x=¢'(A*1(f(B2))) (7).

By (g), (b), and 4.6,

(i) For each x € A, B. is the smallest 8 € dom(f) for which
x€im(¢'(A*1(f(8)))) =im(¢ o (A*1(f(B)))).

Considering (h) and 4.6, we may make definition (j) below.

(G) For each xE€A4 let 8, be the smallest & dom(A*~!(f(8;))) for which
x=¢(A*1(f(84))(9)).

By (h), (j), and 4.2,

(k) For each x&€A4, v, <7, if and only if §,<49,.

By (i) and (j),

(1) For each x€A4, A*~1(f(8.))(8,) Eim(A+1(f(B))) for each B <B..

By (),

(m) For each x€A4, A*~1(f(B.)) (8) #A*~1(f(B:)) (6.) for each 8§ <34..

Let S; be given as in 3.3. Then, by 3.3, (1) and (m),

(n) For all x€A4 and B&dom(f) and d&dom(A*~1(f(8))),

A*=1(f(8)) (8)SA*~(f(82)) (82)

if and only if either 8 <. or both 8=8. and § £4..

By (i), (i), (n), and 4.3,
(o) For all x€A and tEdom(S;) such that

tSfA“_l (f (ﬁz)) (8z) ’
o(8) # S(A*1(f(B:))(52)).

Now consider g, wE A4 such that zR,w. By (a), (c), and 3.3, either a, <a, or
both a,=ay, and ¥, <v.. Hence, by (e) and (k), either 8, =<8, or both 8,=8,,
and 8, <4,. Hence, by (),

A (£(B2)) (8)SsA* 1 (f(Bw)) (u)-
Hence, by (o), 4.3, and 4.2,

B(A*1(f(8)) (8.)) Red(A*~(f(B1)) (80)) -

Hence, by (§), 2Rew. Thus RiCR., and A*(¢#(f)) = (A*(f)).

Consider the case in which u is a limit ordinal. Consider f€EW*(X). By
2.4 there is a first ordinal A <u for which fEW*(X), say A=a. By 4.8, a is
the first ordinal A <u for which ¢#(f)EW*(Y). By 4.7, ¢*(f) =¢2(f). By 3.6
and the induction hypothesis,

A#(4(f)) = A=(¢*(f)) = A=(¢=(f))
= ¢'(A=(f)) = ¢'(a*(/)).
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The induction is complete. Q.e.d.

The following theorem may be proved by induction. The details will be
omitted.

4.11. THEOREM. Suppose Y is a function whose domain is a set, suppose
oY, and suppose u is an ordinal number. Suppose either u is finite or dom(y)
C*. Then ¢*Cy*.

Now suppose ¥ is a function (whose domain is not necessarily a set), sup-
pose u is an ordinal number, and suppose dom () CU* if u is infinite. If ¢
is not a set (i.e., if dom(y) is not a set), we define

= U ¢
¢c®w)
this equation holds by 4.11 if y is a set. Then y* is a function, for, by 4.11,
if ¢1, P2E®WY), then ¢f\Ugh C (d1\J2)* is a function. It may be proved from
4.5 that Y* is a function from W#(dom(y)) to W*(im(¥)). Obvious generaliza-
tions of 4.5-4.11 may be proved in a routine fashion, and 4.1-4.4 may be re-
phrased and generalized to theorems.

Suppose u is an ordinal number. Let U, = U if u is finite, and let U, = U*
if u is infinite. For brevity we will operate in the meta-theory in the remainder
of this paragraph. There is a correspondence which assigns W*(X) to each set
XC, and there is a correspondence which assigns the map ¢*: W*(X)
—W+(Y) to each map ¢: X—YV with XUYE®(U,). In the parlance of
categories and functors [2], by 4.10.1-4.10.3 these two correspondences con-
stitute a covariant functor from the category of subsets of U, and their maps to
the category of sets and their maps. This functor conforms with A* in a nice
way (cf. 4.10.6). If U, is replaced by U*, by 3.9 and 4.7 the superscripts on
“A*” and “¢*” could be dropped for ordinary purposes.

5. Free elements. We define u-free element for each ordinal number u by
transfinite induction as follows (5.1-5.4).

5.1. An element x is O-free if and only if xS U*.

5.2. An element f is 1-free if and only if fEW(U*).

5.3. An element f is (u+1)-free if and only if fEWHHI(U*), f(a) 45 u-free
for each aEdom(f), and

[im(a4(f(@))] N [im(a*(f(8)))] = 0

for all a, BEdom(f) with a5B. [This holds for u=0 by 5.1 and 5.2.]

5.4. Suppose u is a limit ordinal number. An element f is u-free if and only
if fFEWH(U*) and, where v is the first N < for whick f& WM U*) (cf. 2.4), f is
v-free.

5.5. THEOREM. Suppose u and v are ordinal numbers, and suppose
fEWH(UNW?(U*). Then f is u-free if and only if f is v-free.



536 A. H. KRUSE [December

Proof. We proceed by induction on max(u, »). We may suppose u <v.
Then »>0. If =1, then u=0, and fEU*NRN =0, a contradiction. Hence we
may suppose »> 1. By 5.4 we may suppose neither u nor » is a limit ordinal.
If u=0, it is easily seen that » must be a limit ordinal contrary to supposition.
Hence p>0. By 5.3, 3.8, and the induction hypothesis, f if u-free if and only
if f is v-free. Q.e.d.

For each element x, x will be said to be free if and only if x is u-free for
some ordinal number u. Then, by 5.5, for each ordinal number » and each
fEWr(U*), f is free if and only if f is v-free.

The following theorem may be proved by induction using 5.1-5.4, 4.1,
4.4, 4.10.4, and 4.10.5. The details will be omitted.

5.6. THEOREM. Suppose X CU* and Y CU* are sets and ¢ a one-one func-
tion with domain X and tmage Y. Then for each ordinal number p and each

fEWH(X), f is free if and only if ¢*(f) s free.

One of the main goals of the rest of this section is to prove 5.21. By 5.20,
5.21 holds “uniformly.” The procedure will be somewhat lengthy, but rather
straightforward.

The next lemma and its corollary are purely technical.

5.7. LEMMA. Suppose x, yEU. Then [x, y]|EN if and only if x=y=1.
Moreover, (1, 1]=1{[0, 0]}.

Proof. Suppose
{{z}, {2, 9}} = s 9] e

There are %, v€ U and ordinal numbers « and 8 such that

{#} = lo,u] = {{a}, {a, }}, s 9} = {8, 0] = ({8}, {8, 0}}.

It follows that x={a}={a, %} and a=u. Moreover, 2 ; =x={B} or
{a} =x= {B v}. Hence a=. Since dom([x, y]) = {a, g} = is an ordinal
number with cardinal 1, we have x={a}=1={0}, and B=a=0. Since
[x, y]1=1{[0, «], [0, v]} is a function, we have v=u=a=0. Hence y= {8}
={0}=x=1ory={8, o} ={0}=x=1. Moreover, since

[z, 2] = {2}, {z 2}} = {{s}}
for each s€ 4, we have
(1, 1] = {{1}} = {{{o}}} = {[o, o]}.
Q.ed.
5.8. COROLLARY. For each function f and each xE U, [f, x]EU*.

Proof. Since ordered pairs are nonvoid sets, 0 is not an ordered pair. Since
0E&1, 1 is not a function. Now apply 5.7. Q.e.d.
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If X is a set, an X-tuple is any function with domain X. We now define

T, = {xl x is a function such that dom(x) is a finite ordinal number and

im(x) C p}
for each ordinal number u, and we define
3= U T..
»e®

Thus x& T, if and only if x is a A-tuple of ordinal numbers <y for some finite
ordinal \. For each ordinal number u, 0E T, since 0 is a 0-tuple.

Suppose X is a set. We define ®%(f) for each ordinal number x and each
fEW#(X) by induction as follows (5.9-5.11) so that ®%(f) is a function with
image im(A#(f)) and with domain C3XX.

5.9. If fEW(X) =X, let

ex() = {[[0, /1, 71}
Then

dom(®x(f) = {[0,/]} C 53X X,
im(@x(f)) = {f} = im(A°(f)).
5.10. Suppose u>0 is a nonlimit erdinal number. Consider f&W*(X). Let

&5(f) = {[[tV {[dom(), ]}, 5], ®5 " (F@)([t, #])] |
o € dom(f); [t, ] € dom(®% (f(2)))}-

By the induction hypothesis and 3.7, Px(f) is a function with image
U im@r (@)= U im@A" (f@)) = im& ()

a€dom (f) aE€dom (f)
and with domain C3IXX.

5.11. Suppose u is a limit ordinal number. Then let Px(f) =PY(f) where v
is the first N\<u such that fFEWNX) (cf. 2.4). Then ®5(f) is a function with
image im(A7(f)) =im(A*(f)) ahd domain CIXX by the induction hypothesis
and 3.9.

The following theorem may be proved by induction. The details will be
omitted.

5.12. THEOREM. Suppose u is an ordinal number and X and Y are sets.
Suppose either u is finite or X\JYC U*. Suppose fEWH(X)NWH(Y). Then
Px(f) =2 ().

Suppose u is an ordinal number. Let Uy = U if p is finite, and let U= U*
if u is infinite. For each set X CU,,

ox = {[f, ®x(N]| f € WH(X)}
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is a function with domain W#(X). By 5.12,

»

= U oy
xe® @y

is a function with domain W#(U,), and, for each set X C U; and each

fewx(X), (f) =Px().

5.13. THEOREM. Suppose u and v are ordinal numbers and fEW+(U*)
NWr(U*). Then 4(f) =P (f).

Proof. We proceed by induction on max(u, »). We may suppose u<v.
Then »>0. If v=1, then u=0, and fEU*NAN =0, a contradiction. Hence we
may suppose »>1. By 5.11 we may suppose neither u nor » is a limit ordinal.
If u=0, it is easily seen that » must be a limit ordinal contrary to supposition.
Hence u>0. Now, by 5.10 and the induction hypothesis, ®*(f) =®"(f). Q.e.d.

5.14. THEOREM. Suppose u is an ordinal number and fEW+(U), and sup-
pose fFEWH(U¥) if p is infinite. Then dom(P*(f)) CIXUC U*.

Proof. Apply 5.8. Q.e.d.

Suppose X is a set. We define T'k(f) for each finite ordinal number p and
each fEW#(X), and also for each infinite ordinal number u and each fEW#(X)
if X Cu*, by induction as follows (5.15-5.17) so that (A), (B), and (C) below
hold.

(A) For each fEWHX), Tk (f) EWr(dom(®4(f))).

(B) The function T%={[g, I“i(g)]|g€W"(X)} s ome-one.

(C) If XCu*, then for each fEW*(X) and each ordinal number N, I'y(f)
e WrU*) if and only if fEWNX).

5.15. If fEW(X) =X, let T%(f) = [0, f].

In 5.15, for each fEW(X), T%(f) = [0, f]Edom(®°(X)) by 5.9. Thus (A)
holds. Trivially, (B) holds. Suppose X CU*. Then for each fEW(X), fE U*
and [0, fl|Eu* by 5.7. Hence (cf. 2.1-2.4) for each ordinal number )\, f
EWNX) if and only if N is a limit ordinal, and [0, f]€W*(u*) if and
only if A is a limit ordinal. Thus (C) holds.

5.16. Suppose u>0 is a nonlimit ordinal. Consider fEW»(X). Consider
a&dom(f). By the induction hypothesis,

Iy (f(a)) € We(dom(® (f()))),

im(A" T ('t (f@)))) C dom(@ " '(f(@))) C 3 X X.

Let

p—1 u—1

£ = {[[t, 2], [tV {[dom(), o]}, #]]| [1, =] € im(A" (T
Then £ is a one-one function such that (cf. 5.8)

(fle)N}-
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dom(t) = im(A"” (I (f(@))) C dom(@"™ (f(a))),
im(£,) C dom(&(f)).
Let
fo = &5 (f@)).
Then
fa € Wei(dom(P#(f))).
Let

I'x(f) = {[8, fs]| 8 € dom(f)}.

In 5.16 we will use the induction hypothesis to show that (A) holds. For
each a&dom(f) observe from 5.16, 4.10.6, 4.6, and 5.16 respectively that

p—1, u—1 _ u—1

im(A"” (M5 (N (@) = im(A"" &% (f@))))

u—=1_ _ pu—1

= im(t.(A" (T (f(2)))))

p—1,_ u—1

=im((.0 (A" (Tx (f(2)))))
= im(¢,).
Now consider 8 <y&Edom(f). If either £, or &, is nonvoid, then, by 5.16,

im(A"”(CX(N(B))) = im(&) # im(E,) = im(A"” (Tx(NW))),

and T%(f)(B) #T%(f) (v). If £s=£,=0, then &' =£;""is one-one by 4.10.4, and
(by 5.16 and the fact that % '(f(8)) #T'% '(f(y)) by the induction hypothesis
(cf. (B)))

pu—1 u—1

TX(NB) = & (Ix (f8) = &

Thus I'ty(f) is one-one, and

(T (F@))) = Tx(N().

Ir(f) € W(W' ™ (dom(&"(f)))).

Thus (A) holds.

Next we will dse the induction hypothesis to show that (B) holds. Con-
sider f, gEW+(X) such that f=g. We must show that I'4%(f) =T'%(g). If
dom(f) #dom(g), then

dom(T'x(f)) = dom(f)  dom(g) = dom(I'x(g)),

and T%(f) #I'%(g). Suppose dom(f)=dom(g). Then f(B) #g(B) for some
BEdom(f). Consider such a 8. Let & be defined as in 5.16, and let & be
defined similarly with f replaced by g. If &#&/, then im(g)=im(&) (cf.
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5.16), and (cf. the preceding paragraph)

im(A"(T%(f)(8))) = im(%) = im(&5) = im(A"” (I'x(2) (8))),

and hence T%(f)(B) #T'%(g)(B). If &=§&7, then, by 5.16, 4.10.4 (since & is
one-one), and the fact that I% '(f(8)) #T'% '(g(8)) by the induction hypoth-
esis,

rx(N@) = & (T (J6)) = & (T (g8)) = Tx(e)(8).

Thus T'%(f) (B) =TIk () (B) if f(B) #g(B). Thus I'y(f) #I'k(g). Thus (B) holds.

Next we will use the induction hypothesis to show that (C) holds. Con-
sider X CU* and fEW#(X). For each aEdom(f) and each ordinal number X,
in 5.16,

dom(£,) Y im(¢.) C dom(®~(f(a))) U dom(®#(f)) C u*
by 5.14, and hence, by 4.8 (cf. also 2.8),

I3(N(@) = & (T5 (f(e) € W (u*)
if and only if I'%!(f(a)) EW*(U*) and hence, by the induction hypothesis, if
and only if f(a) EWrU*). Also, for each ordinal number \, fEW*1(X) if
and only if f(a) EWMNX) for each aEdom(f) (cf. 2.3), hence if and only if

%) (@) EWr(u*) for each aEdom(f) =dom(I'%(f)), and hence if and only
if Ty (f) EWwrt(U*) (cf. 2.3 and 2.8). Since fEW*(X)CN and Ty () EN, we
have fEX =W*X) and I'y(f) Fu*=w(u*). Now by 2.4 (and 2.8) and
the preceding part of this paragraph, if \ is a limit ordinal, fEW*(X) if and
only if I'¥(f)EWr(u*). Thus (C) holds.

Thus 5.16 preserves the induction hypothesis.

5.17. Suppose u>0 is a limit ordinal number. Consider fEW#(X). Let v
be the first ordinal N <u such that fEWNX) (cf. 2.4). Let T%(f) =Tx(f).

Then (A) holds by the induction hypothesis (which implies I'y(f)
€ Wr(dom(®7(f))) in 5.17), 5.13, and 2.4. Also, (C) holds by the induction
hypothesis. To prove (B) consider f, g€ W+#(X) with I%(f) =T%(g). Let v be
the first A <u for which fEW"(X) and let & be the first A\<u for which
gE‘W"(X) Then, by (C), ¥ is the first A\ <u for which I'4(f) €W*(U,), and
0 is the first A <u for which I'y(f) =T'%(g) EW*(Uo). Hence y=48. Then I'3(f)
=T%(f) =T%(g) =T'%(g), and hence f=g by the induction hypothesis. Thus
(B) is established.

The definition via 5.15-5.17 of T'4(f) for all &, X, and f as specified at the
outset is now justified.

The following theorem may be proved from 2.8 and 5.15-5.17 by induc-
tion. We omit the details.

5.18. THEOREM. Suppose u is an ordinal number and X and Y are sets,
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and suppose FEWHX)NWH(Y). Suppose u is finite or X\JYCU*. Then
T2 () =T% ().

Suppose u is an ordinal number. Let U; = U if  is finite. and let U; =U*
if u is infinite. By 5.18,

r'= U rIx
xe® Uy
is a function with domain W*(U,), and for each set X C U, and each f€ W*(X),

T#(f) =T%().
To prove the following theorem proceed as in the proof of 5.13, but use
5.17 and 5.16 instead of 5.11 and 5.10. Use also 5.13. The details will be

omitted.

5.19. THEOREM. Suppose u and v are ordinal numbers and fEW+*(U*)
NWr(u*). Then T+(f) =T"(f).

5.20. THEOREM. Suppose u is an ordinal number and f&W+(U), and sup-
pose fEWH(U*) if u is infinite. Then 5.20.1-5.20.4 below hold.

5.20.1. dom(T*(f)) =dom(f) #f u>0.

5.20.2. T»(f) is free.

5.20.3. ®(f) is a function whose domain is im(A*(T*(f))) CU* and whose
image is im(A*(f)).

5.20.4. [®&(H) ](T*(N) =f.

Proof of 5.20.1. Apply 5.16 and 5.17. Q.e.d.

Proof of 5.20.2. We proceed by induction. For u=0 apply 5.15, 5.7, and
5.1,

Consider £>0 not a limit ordinal. Consider aEdom(f) =dom(I*(f)). In
5.16, dom(£,) Uim(¢,) CU* by 5.14, and &, is one-one. Also, T*~1(f(a)) is free
by the induction hypothesis. Hence (cf. 5.16)

() =t @7 (@)
is free by 5.6. Also, as in the proof of (A) for the u of 5.16,
im(A*~1(T*(f)(a))) = im(£.).

In 5.16, if a <BEdom(f), then im(£.)MNim(és) =0. Hence T'*(f) is free by 5.3.

Consider p a limit ordinal. Then I'*(f) is free by 5.17, 5.4, and the induc-
tion hypothesis.

The induction is complete. Q.e.d.

Proof of 5.20.3. (First observe that dom(®#(f)) Cu* by 5.14.) We proceed
by induction. For u=0, 5.20.3 follows from 5.9, 5.15, and 3.1.

Consider u>0 not a limit ordinal. By 5.10, #%(f) is a function. We have
the following equations. [Equation (1) follows from 5.10 and the induction
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hypothesis; (2) and (5) follow from 5.16; (3) follows from 4.6; (4) follows
from 4.10.6; (6) follows from 3.7.]

dom(®+(f))
1) = {[t U {[dom(), a]}, 2] | « € dom(y);
1, 2] € dom(®'(f(a))) = im(A*1(D*1(f(a))))}
) = U im0 (AW (T*(f(a)))))
a€dom (f)
@3) = U imEe” @@ @)
a€dom (f) ' et et
0 = U wim(A“‘ & @ @)
(5) = U im@AY(*(f)(a)))
a€dom (f)
(6) = im(A%(T¥(f))).

By 5.10, the induction hypothesis, and 3.7,
im@(f) = U im@®(f(a)))
a€dom (f)

= U im(A='(f(®)

a€dom (f)
= im(A%(f)).

Now consider u a limit ordinal. Then 5.20.3 follows from 5.11, the induc-
tion hypothesis, 5.17, and 3.9.

The induction is complete. Q.e.d.

Proof of 5.20.4. We proceed by induction. For p=0 apply 5.15, 5.9, and
4.1,

Consider x>0 not a limit ordinal. Consider a€dom(I'*(f)) =dom(f). In
the notation of 5.16, by 5.10, 5.16, and 5.20.3,

P1(f(a)) = ®#(f) 0 &a.

Then, by 5.16, 4.10.1, and the induction hypothesis,

p—1

O] T @) = BN ET T H@))
= [#(f) 0 &]1(T*'(f(a)))
= [#1(f()) |- UT"(f(a))) = f(a).
It now follows easily from 4.2 and 4.3 (since f(8) #f(vy) if 8 <yESdom(f)) that
BN ]xT() = [#(D]1 o [T(N)] = f.

Consider u a limit ordinal. Then 5.20.4 follows from 5.17, 5.11, 4.7, and
the induction hypothesis.
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The induction is complete. Q.e.d.
In 5.20 take Y=dom(®*(f)), g=T"*(f), and ¢ =P*(f) to get the following
corollary.

5.21. COROLLARY. Suppose u is an ordinal number and fEW+(U), and
suppose fEWH(U¥) if u is infinite. Then there are a set YC U*, a free element
gEWH(Y), and a function ¢ from Y onto im(A*(f)) such that f =¢*(g).

As remarked earlier, 5.20 shows that 5.21 holds “uniformly.”

Suppose X is a set. We define &§(f) for each u€0 and each f&W+(X)
by induction as follows (5.22-5.24) so that &4(f) is a nonvoid subset of 3.

5.22. If fEWO(X), let $4(f) = {0}.

5.23. Suppose u>0 is a nonlimit ordinal number. Consider fEWH(X). If
f=0, let %(f) = {0}. If =0, let

ap—1

&x(f) = {tU {[dom()), a]} | « € dom(f);1 € ¥x (f(a))}.

5.24. Suppose u>0 is a limit ordinal number. Consider f& W*(X). Then
let 3%(f) = d3(f) where v is the first \<u such that fEWNX) (cf. 2.4).

The discussion between 5.11 and 5.13 (including 5.12) could be repeated
with “®” replaced by “®”. The result is a function for each u€0.

5.25. THEOREM. Suppose u, vE0. Suppose f&WH(U), and suppose
FEWH(U*) if u s infinite. Suppose gEW*(U), and suppose g& W*(U*) if v is
infinite. Suppose

im(A%(T¥(f))) = im(A(T"(g))),  3(f) = &(e).
Then f=g.
Proof. By 5.20.3 we are supposing
dom(®#(f)) = dom(®'(g)),  ¥(f) = &(p).

These equations will be easier to work with.
We proceed by induction on max(u, »). We may suppose p <».
Consider »=0. Then also =0, and, by 5.9,

{[0,/]} = dom(#%()) = dom(2°(g)) = {[0, g]}.
Hence f=g¢.
Consider » >0 a nonlimit ordinal and 4 =0. By 5.9,

{[0,]} = dom(#°()) = dom(®(g)).
By 5.10, for some t€ 3, x& X, and a&0,
[O’f] = [tU {[dom(t)» a]}) x], 0=tV {[dom(t); a]} #= 0,

a contradiction. Thus x>0 if »>0.
Consider v and x>0 nonlimit ordinals. By 5.23 (since ® (k) C3J is nonvoid
for each A€E0 and each h&dom(d")),
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dom(f) = {a| ¢V {[dom(s), a]} € $*(f) for some € 3}
= {a| tU {[dom(t), a]} € & (g) for some: € 3} = dom(y).
For each a&dom(J), let
S ) = {[tV {[dom(s), al}, ]| [1, 5] € dom(2—2(f(2))},
and let S(a, g) be defined similarly. By 5.10,
U Sa,f) = dom(#*(f)) = dom(®(g)) = U S(a,p).

a€dom (1) a€dom (g)
It follows easily that S(a, f) =S(a, g), and then also that
dom(2*~(f(a))) = dom(®~'(g(a))),
for each aEdom(f) =dom(g). More_over, for each a&dom(f),
&(f(@) = {t€ 3]tV {[dom(s), a]} € (1)}
= {t€ 3|1V {[dom(), ]} € ¥(p)} = ¥(g(a)).

Hence, by the induction hypothesis, f(a) =g(a) for each aEdom(f). Hence
f=g

Consider » a nonlimit ordinal and u a limit ordinal. Let ¥ be the first
ordinal A<p for which fEwW*(U*). Then (cf. 5.11 and 2.8) ®’(g) =P*(f)
=®7(f). By 5.24 and the previously mentioned analogue of 5.12, #7(g) = &*(f)
=&(f). Moreover, by 2.4, v is not a limit ordinal. Hence f=g by the preced-
ing paragraph.

The induction step for » a nonlimit ordinal is complete. The induction
step for v a limit ordinal is similar to the argument in the preceding paragraph;
the details will be omitted.

The induction is complete. Q.e.d.

Consider any set X. Let

W(X) = { fE W(X) I if dom(f) has a largest member, say 8, then f(8) = 0}.

Define W#(X) for uE0 in the obvious way (cf. 2.1-2.5); Wr(X) CWH(X) for
each u€0. Analogues of 2.5-2.7 with “W” replaced by “W” may be proved,
and W(@) may be defined for each class @ in the obvious way. In 5.25, if
“a9” is replaced throughout by “W,” the hypothesis that $(f) =&’(g) may
be dropped (examine the proof of 5.25).

One may effectively define by known methods (the details will be omitted;
cf. [6]) a one-one function A from 3 onto © such that

im(A] 5,4 = w® (« € 0).

There is a one-one function A* from ®(3) onto ®(0) such that A*(4)
= {A(t)ltEA} for each 4 €®(3). Observe that

im(a*| @(3,.)) = ®(w) (« € 0).
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There is a one-one function Af from 3XU onto © XU such that A*([¢, «])
= [A(), u] for all t€3 and uEU. For each u€0 there is a function E* with
domain W+(U;), U1 being U or U* according as u is finite or infinite, such that

2e(f) = [a*(@#()), im(a* o (A=(T*(1)))] (f Ewy).
The following theorem follows from 5.25; for more information cf. 6.11.

5.26. THEOREM. For each ordinal number u, E* is a one-one function from
We(Uy) to ®(0) X ®(OX W) where W, is W or U* according as u is finite or in-
Sfimite.

5.27. We outline briefly other developments. One may define by imduction
Sfunctions spt* and o* from WE(U*) to © such that 5.27.1-5.27.4 below hold.
More precisely, first define spty and o on W*(X) for each set X CU*, and let

spt= U splx, o= U ox
xe®AU*) xe®U
5.27.1. For each fEU*=Wo(U*), spt*(f) =a°(f) =1.
5.27.2. For each fEWI(U¥), sptr(f) =a'(f) =dom(f).
5.27.3. For each fEW+=+1(U¥),

sp#4(f) = [dom(f)] U[ U spt“(f(a))],

a€dom (f)

() = T o(f(e)).
a€dom (f)

5.27.4. If u is a limit ordinal number and fEW*(U*), then, where v is the
first ordinal number \ for whick fEWN(U*), spt*(f) = spt'(f) and o*(f) =a(f).

It is routine to prove 5.27.5-5.27.10 below.

©5.27.5. If fEWs(UX)NW(U*), then spt(f) = sp'(f) Sa*(f) =a*(f).

5.27.6. If ¢ is a function from X CU* to YC U*, then for each fEW*(X),
spt(¢#(f)) S spt*(f) and o*(@(f)) So4(f).

5.27.7. If few+(Uu*), then dom(A*(f)) So*(f), and dom(A*(f)) =a*(f) +f
f s free.

5.27.8. If fEw+(U*), then

dom(AX(T¥(f))) = o*(T*(f)) = o*(f),
and
sp(T(N) = spr(f).

5.27.9. If few*(X) with X CU*, then T+*(f) € Wr(T, X X) where v =spt*(f).

5.27.10. If fEWH(X) with X CU*, then E*(f) € ®(w?f) X ®(wf X X) where 8
1s the smallest ordinal number a for which spt*(f) Swe.

6. Powers and cardinals arising from W#(X). We define by induction a
function ¥, whose domain is the class of all ordinal numbers, such that
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) = {[\ YOI N < u)

for each ordinal number u. In particular, ¥(0)=0. Then for each ordinal
number u, ¥(u) is a function with domain u. If A <y, then

dom(¥(A\)) = X\ # p = dom(¥(u)),

and hence ¥(A\) #¥(u). Thus ¥ is one-one, and, for each ordinal number g,
V() =\If| u is one-one. The following lemma may be proved by induction on
u. We omit the details.

6.1. LEMMA. Suppose X is a set, and suppose u and v are ordinal numbers
with u<v. Then ¥(u) EW’(X).

The following lemma follows from 4.5, 4.10.4, and 4.10.3.

6.2. LEMMA. Suppose X and Y are sets with | X| | Y| (resp., | X| =] Y|).
Then for each ordinal number u, |WH(X )l < [ Wu(Y)| (resp., |wWe(X)|
=|we(1)]).

The following lemma would remain valid if W(X) were replaced by
{ YCX| there is a relation which well-orders Y} ; this was proved by Tarski
[7, Theorem 10]. Moreover, this substitution for W(X) would also be valid
in 6.4.

6.3. LEMMA. For each set X, | X| <|w(X)|.

Proof. Use A% (cf. 3.1) to see that | X| <| W(X)|. Suppose | X| = | w(X)]|.
Then there is a one-one function ¢ from W(X) to X. Let G be the set of all
fEW(X) such that for each aEdom(f), f(a) =¢(f|@). Let g=Useq f. Then
gEG, and g is the maximum member of G. Moreover, ¢(g) €im(g). Let

k= g\ {[dom(g), 8(p)]}.

Then hEG contrary to g being the maximum member of G. Hence | X|
#|w(X)|. Qed.

6.4. REMARK. By combining the method of proof of 6.3 with a method of
Specker [6], much more than 6.3 could be proved; e.g., | X|*<|W(X)| if X is
infinite.

6.5. THEOREM. For each set X and all ordinal numbers u and v, 6.5.1—-
6.5.3 below hold.

6.5.1. If u<v, then | Wu(X)| <|w(X)|.

6.5.2. | Wet(X)| =| wr(wr(X))].

6.5.3. |u| s|wH(X)]|.

One may prove 6.5.1 by induction on v using 2.1-2.4 and 6.2. The details

will be omitted.
Proof of 6.5.2. By 2.5,
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| wrw«(X))| < | wer(X)],

equality holding if » is finite or u is 0 or u is a limit ordinal. Suppose » is
infinite. There are ordinal numbers A and & such that u=\+34, uis 0 or a
limit ordinal, and § is finite. Then 8+»=», and |WMX)| =|W+(X)| by
6.5.1. Hence, by the cases of equality already established and 6.2,
l Wetr(X) | = l wx+c+y(X)| = | Wi (X) |
= | wwX)| = | wwx(X))].

Now 6.5.2 holds by the Schréder-Bernstein equivalence theorem. Q.e.d.
Proof of 6.5.3. By 6.1, ¥(u) EW+t(X). Hence im(¥(p)) CW+(X), and,
since ¥(u) =\Il| u is one-one, 6.5.3 holds. Q.e.d.
6.6. REMARK. One can obviously strengthen 6.5.3 for nonlimit ordinals. In
the proof of 6.5.3, observe that

{[¥w)]of|fE W) is increasing} C WH+(X)

and hence 218l £ Wast1(X).
Consider any set X. After F. Hartogs [3] we define

N(X) = sup{dom(f) | f € W(X)} = )dom(f).

U
7eW(x

For the elementary properties of N(X), cf. [3; 4]; we mention a few. N(X)
is a cardinal number. If X is not finite, N (X) is the smallest cardinal number
(and smallest ordinal number) not equi-potent with a subset of X. If X is
finite, |R(X)| =|X|. We have the inequalities (sharpened later in 6.13)

IRZX)| s*277,  |RX)| s* 2™
and hence

kDI < X gwanr g "0

For each ordinal number u, R{R,) =8,,1. Consider any set ¥ in addition to
X. If X or Y is infinite, then

R(X X ¥) = R(X VU Y) = max(R(X), R(Y)).
If | X| 2| Y| (resp., | X| =] ¥|), then R(X) SR(Y) (resp., R(X) =R(V)).
6.7. THEOREM. For each infinite set X, N(W (X)) SR (¢(X)).

Proof. Consider any infinite fEW?(X). Let 4 =im(A%(f)). Then ACX
is equi-potent with the ordinal number dom(A%(f)), and 4 is infinite since
fEW2(A) is infinite. Hence |W(A)| =|®(4)| by standard arguments, and,
since fEW(W(4)),

dom(f) < R(W(4)) = R(®(4)) £ R(®(X)).
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Given any finite f€E W?2(X), trivially, dom(f) <N (®(X)). It follows that
NWw(X)) = U dom(f) = N(®(X)).
7€ W)
Q.ed.
It is elementary that [N (X)| £|X| if X is an infinite set. The following
lemma is a routine consequence.

6.8. LEMMA. Suppose X and Y are infinite sets with |X| | Y|. Then
R(X) =R(Y) #f and only if |R(O)| £| Y]

For edach set X CU* and each ordinal number x>0 we let
Ne(X) = U dom(f),

1eWtx)\x
and we let R°(X)=1. For each set X u* and each ordinal number u, we
observe that {0} XX is equi-potent with X and is CUu* by 5.7, and we let
R#(X) =N#({0} XX) [this equation holds also if X Cu* by the next asser-
tion ]. Observe from 4.10.4 that if X and Y are equi-potent sets, then R#(X)
=R#(Y) for each ordinal number u. It is easy to prove that for each set X,
N1(X) =R (X), and R#(X) is a cardinal number for each ordinal number p.
6.9. REMARK. Suppose X is a set. For each ordinal number u,

NH(X) = R(WH(X)) = RY(WH(X)).
For each limit ordinal number u,

N4(X) = U RM(X) = sup RMX).

A<p Ap
If u<v€EO, then N#(X) SN (X).

6.10. THEOREM. Suppose X and Y are sets such that N(X) SN(Y) (resp.,
N(X)=R(Y)). Then for each ordinal number u, R#(X) SR#(Y) (resp., N#(X)
=N«(1)).

Proof. (The result for R(X) =R (¥) follows immediately from the result
for N(X) =N(Y).) We may suppose X\JYVCUu*. The case p=0 is trivial.
Consider an ordinal number p>0. Consider fEW*(X)\X. Then A*(f)
€EW(X). Since R(X) =N(Y), dom(A*(f)) =dom(g) for some g&W(Y). Let
o=g o ((A*(f))™?). Then ¢ is a one-one function with domain 4 =im(A*(f))
CX and image im(g) C Y, and fEW+*(4) by 3.8. Then ¢*(f) EW+(Y)\V (cf.
2.1 and 4.8), and dom(¢*(f)) =dom(f) by 4.10.4. Hence

ReX) = U dom())

1eWHEx\x

C U  dom(p) = N#(YD).

e WHT)\y

Q.ed.
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The following theorem follows from 5.26 and 5.27.10 (cf. also the last
part of 6.9).

6.11. THEOREM. Suppose X CU* and uE0, and suppose X or u is infinite.
Then E* maps WH(X) one-one into ®(N*(X)) X P(N#(X) X X).
6.12. COROLLARY. Suppose 0% XS ®(U*) and u€0, and suppose X or u
ts infinite. Then
| Ww(X) | < 21x1° | Ww(X) ' < 2202, | Wws(X) | < 21XIIREAOL,
[The inequations for | W(X)| hold for all sets X.]

Proof. There are one-one functions ¢; and ¢, from W(X) into ®(X XX)
and ®(®(X)) respectively such that
$1(f) = {[/(@,/®]]| « < 8 € dom(f)} (f € W(X)),
¢a(f) = {{f(@)| « < 8}|8 = dom(f)} (f € W(X)).
The inequations for |‘W(X )| are thus established. If X is infinite, R*(X) = N,.
If p is infinite, R*(X) 2u 2N, by 6.1. Hence N*(X) 2N,. By 6.11,
|Wn(X)| < 2IRFEDIIXIIRED] = 2AXIHIDIRFED| = 2IXIIRCD]

Q.ed. ~
For each p€0 there is a function E* with domain U; =dom(Z*) such that

B(f) = [a%@()), &% o (A(T(£)))] (f € W.
It is easy to prove analogues of 5.26 and 6.11 obtained by replacing “E*” by
“g".” “@(0XU)” by “W(OXWU),” and “CN#*(X) X X)” by “w(R#(X) XX).”
6.13. LEMMA. Suppose X is an infinite set. Then
| X|2| R(X)| =* 2%, 2XRAD| < 22""",
271 |N(X) | <* 2" 2%k g 9™,

Proof. Let ¢, and ¢; be the functions in the proof of 6.12. There is a func-
tion Y1 from ®(X XX) onto [X XX ]X [N(X)\2] such that for all f€EW(X)
with domain >1 and all x, yEX\im({),

(= y]} Y () = ([, 5], dom(y)].

(E.g., if S is the set of all subsets of X XX not of the form {[x, y]}\U¢:i(f)
with f, x, y as just specified, let ¢1| S be constant, the constant value of ¢1l S
being any member of [X XX ] X [R(X)\2].) Since |R(X)\2| =|R(X)|, the
first inequality is established. The second inequality is a consequence of the
first. There is a function ¥, from ®(®(X)) onto ®(X) X [N(X)\2] such that
for all fEW(X) with domain >1 and all YCX, '

v{{5} | ¥ € Y} U @:(N\{f(0)})) = [V, dom(y)].



550 A. H. KRUSE [December

(Cf. the parenthetical remark made in connection with ¥,.) Since ‘R(X )\2|
= IR(X)I , the third inequality is established. The fourth inequality follows
from the third. Q.e.d.

Suppose a and p are ordinal numbers. Then R, is u-accessible if and only if

xa = U ¢(X)

AEp
for some nondecreasing function ¢ from u into N,.

6.14. THEOREM. Suppose X is an infinite set such that N*(X)=N'(X).
Then there is a first ordinal number u>2 for which V#(X) #N(X), say u=v.
Then v <NR(X), v is not a limit ordinal, v—1 is a limit ordinal, and N(X) is
(v —1)-accessible. Moreover, for each u<v,

| wax)| = 25wl g 2
1X|
| wp( X)I < 22:

Proof. We may suppose X CU*. The existence of » and » <R (X) follow

from 6.5.3. Moreover, N (X) =dom(g) for some g€ W (X), say for g=g,.

Suppose v is a limit ordinal. Then for some nonlimit ordinal u>0,
20EW*(X), and

R(X) = R«(X) > dom(go) = R(X),

a contradiction.
Thus » is not a limit ordinal.
If v—1 is not a limit ordinal, then

N(W—(X)) = R1(X) = R(X),
and hence, by 6.10,
N'(X) = R(W(X)) = R(W(W*(X)))
= R(W%(X)) = N¥(X) = R(X),

a contradiction.
Thus v—1 is a limit ordinal.
Since N (X) <N (X) = N(W1(X)), R(X) =dom(f) for some

€ wewi0) = w( U W),

Consider such an f. For each u <v—1 there is a unique strictly increasing func-
tion £, with domain an ordinal number 8, and with

im(,) = {X € dom(f) | fA) € WH(X); f(A) & W¥(X) for each v < u}.

Then f o £,E W++1(X) for each u <v—1. There is a unique function gEW(X)
with domain
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o= 2 &,

u<r—1

such that for each u <y —1 and each A <3,

g([ 25] + x) = fE0)).

Then im(g) =im(f), and hence | 8| = |N(X)]|.

We shall prove that for each u <v—1, ¢, <N (X) where €,= Y <, 8,. Sup-
pose not. Then the inequality fails for some smallest p<v—1, say u=7. If 7
is a limit ordinal, then g|e&, EW™1(X), and hence ¢ <N™(X)=R(X), a
contradiction. If 7 is not a limit ordinal, then ¢_; <N (X) and §,_, <N (X),
hence €, =¢,1406,-1 <N (X), a contradiction. The inequality €, <N (X) for all
u<v—1 is now established.

Since |N(X)| =|8| where §=U,<,—1 & with & <R(X) for each p<r—1,
N (X) = 4. Hence also N (X) is (v —1)-accessible.

By 6.12 and 6.13 and the fact that R (X) 2R, for each u <v we have

| wi(X)| = 2xIR@®I < X
"W“(X)l < 2XIRDI < g2*¥!

Q.ed.

7. On sufficient conditions for the axiom of choice. For each power
m and each ordinal number « let H(m; a) be the statement that there is no
function ¢ with domain a such that ¢(u) is a set with m< |¢(u)| <2™ for
each u <a and such that |¢(p)l <|#@)| for all » <a and u <». Loosely speak-
ing, H(m; ) is the statement that there is no strictly increasing a-sequence of
powers strictly between m and 2™. In particular, H(m; 1) is the statement
Hpnor H(m) of [4;5;6]. If a<BE0, then H(m; a) implies H(m; B).

For each ordinal number a, we define acc(N.), the accessibility of N., to
be the smallest ordinal number u such that N, is u-accessible. Then acc(N.)
is an infinite cardinal number.

The following theorem further refines Specker’s sharpening [6] of the
Lindenbaum-Tarski-Sierpifiski theorem [4; 5].

7.1. THEOREM. Suppose X is an infinite set such that H(|X|) and
H(2'X1; acc(R(X))) hold. Then 21X = |N(X)].

Proof. By a result of Specker [6], | X|*=X by H(|X|). Hence |X|
<|W(X)| £2'% by 6.3 and 6.12. Hence | W(X)| =2!X! by H(| X|).

Suppose |R(X)| £2!XI. Then R2(X)=R(W(X))=R(®(X))=R1(X) by
6.9 and 6.8. Let » be given by 6.14. Then »—12acc(R (X)), and

2= |w)| < |wX)| < [wiX)| 5 27 = 22X
if 1<A<usSv—1 by 6.14 and 6.5.1, contrary to H(2!X!; acc(N(X))).
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Hence |R(X)| <2'X. Hence |R(X)| =2/ by an argument used by
Specker [6]. Q.e.d.

7.2. COROLLARY. Suppose X is an infinite set such that H(| X |) and
H(2'X1; w) hold. Then 2'X' =R (X).

For each set X we define by induction ®*(X) for each ordinal number u so
that #°(X) =X, €' (X) =P(X), ot (X)=e(¢*(X)), and

(X) = U ex(X)
u<r
if » is a limit ordinal. For each set X, { ®*(X) },eg and {W*(X)},eg are fam-
ilies of sets whose powers are strictly increasing. The axiom of choice implies
that | @*(X)| =| W"(X)L for each p€0 if X is infinite. The writer has been
unable to prove that this condition implies the axiom of choice. We present a
partial result (7.3 and 7.4) after stating two axioms.

Let QLo be the class of all atoms. Axiom (*) below is a form of the restric-
tive axiom and restricts any set to be built ultimately from atoms. Axiom
(*) is equivalent to the usual statement of the restrictive axiom (if stated to
allow for atoms): Each nonvoid class @ has as a member either an atom or a
set disjoint with Q.

AxioM (*). U=Ux,uepaoxo ®(X).

AXIOM (**). For each set X C o there is a function ¢ with domain ®(X)\{0}
such that ¢(Y)EY for each nonvoid set YCX.

Axiom (**) is equivalent to each set of atoms having a well-ordering. The
axiom of choice reads the same as the axiom just stated with “Cal,” deleted.
Axiom (**) holds automatically if Uy =0, as is the case for the von Neumann-
Bernays-Gédel type of set theory.

7.3. THEOREM. Suppose Axioms (*) and (**) hold, and suppose (1) and (2)
below hold.

(1) | we(X)| =|®*(X)| for each set X Cu* and each uEo.

(2) For all sets X and Y and each u€o, if [(P"(X)] < | (P“(Y)] , then
| x| <| Y|
Then the axiom of choice holds.

Proof. Consider XE€®(U*). There are a set A C Uy and »E0 such that
XCe(4), and | 4| =|N.| for some ordinal number a. It may be proved
by induction that |®*4)|| ¥| £|®*(4UY)| for each AEO and each set
YCu\A4. Hence, for each u€o0,

| X[ R0 | = | @ (4) || RX) |
2 |eAURX)| = | @) |
with 8 depending on g, and, by 6.12,
| wr(X)| < 2XIRDI < | @H(Ry) | .
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[So far neither (1) nor (2) has been used.] Now let u=v+2 to get
lenX) | < [oxx)| = |weX)| = |eH®Rp)|

by (1) and then |X | =< INgl by (2). Since X € ®(U*) was arbitrary, the axiom
of choice holds. Q.e.d.

7.4. REMARK. The previous theorem remains valid if (1) and (2) together are
replaced by the single condition (3) below.
| |(3)|F0|r all sets X, YCU* and each p€O, if IW"(X)I < | (P"(Y)I , then

X|[<|Y].

In fact, the previous theorem remains valid if (1) and (2) together are replaced
by the single condition (4) below.

(4) For each set X CU* and each a €0, there is u €O such that for each set
Y with | We(X)| <|®=(Y)|, it is true that | X| <| Y.

Loosely speaking, (4) states that for each set X CU* and each a €0, we have
uniformly for | Y| »|X| that eventually | Wr(X)| «|®*(Y)| as u increases
through 0.
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